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Abstract: The primary objective of this study was to test the hypothesis that the binary information on the presence
or absence of gene expression can sufficiently capture the inherent heterogeneity within single-cell RNA se-
quencing (scRNA-seq) data. This hypothesis posits that even without detailed expression levels, valuable
insights about cellular diversity can be obtained. Utilizing this method can be particularly advantageous when
analyzing large datasets, a common scenario in the field of scRNA-seq. In this paper, we evaluate clustering
performance and cluster separability of a variety of model-based algorithms and distance-based methods to an-
alyze both expression level data and threshold-encoded binarized data. We examined the performance of the
Bernoulli-mixture model and Gaussian-mixture model. These were compared against traditional clustering
techniques such as hierarchical clustering, K-means, and the Louvain algorithm on a range of scRNA-seq
datasets. Our findings reveal that mixture models exhibit a lower dependence on the specific dataset compared
to distance-based methods. Mixture models, particularly, demonstrate greater efficacy in accurately estimat-
ing the number of clusters present within the data. Among analyzed algorithms, the Bernoulli-mixture model
stands out, outperforming distance-based approaches in several key aspects. Binary data, presence/absence
of gene expression, seem to be indeed adequate to capture the heterogeneity of scRNA-seq data when clus-
tering with methods specifically designed for binary datasets. The implications of this finding are significant,
as it opens up new possibilities for simplifying data analysis in scRNA-seq studies without compromising
the accuracy of the results.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) generates
extensive datasets measuring approximately 20,000
genes across thousands of cells, creating significant
computational challenges in data analysis and visu-
alization. With the increasing number of scRNA-seq
experiments, understanding cellular heterogeneity in
scRNA-seq data while managing data-specific issues
remains challenging. scRNA-seq enables the identi-
fication of specific cell types and molecular targets
for disease progression and drug response. Study-
ing cell heterogeneity reveals subpopulations affect-
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ing disease pathology and drug resistance, enabling
targeted personalized treatments.

Clustering algorithms should take into account
specificity of scRNA-seq data. Identification of cellu-
lar subpopulations in scRNA-seq sequencing datasets
presents challenges due to their large size and com-
plexity, as well as occurrence of numerous dropouts
in expressions of genes Zhang et al. (2023).

Existing research has extensively reviewed
scRNA-seq clustering methods. In Kiselev et al.
(2019) the authors described challenges in scRNA-
seq clustering, including computational issues.
They noted that large scRNA-seq datasets, with
hundreds of thousands of cells, offer both challenges
and opportunities. While large datasets may improve
the power of analyses and the detection of rare
cell types, they also make visualizing and inter-
preting clustering results difficult. Furthermore,
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they discussed the issue of selecting the number
of clusters, emphasizing that user-defined parameters
significantly affect the clustering outcome. For some
methods, such as k-means clustering, users explicitly
specify the number of clusters, whereas for others,
this number is determined indirectly through param-
eters such as the number of nearest neighbors in a
graph.

In Petegrosso et al. (2019) the authors compare
various clustering algorithms, including partition-
based clustering (e.g. K-means, K-medoids), hier-
archical clustering (HC), graph-based clustering (e.g.
spectral clustering, clique detection, Louvain cluster-
ing), density-based clustering (e.g. DBSCAN, den-
sity peak clustering), neural networks (e.g. Kohonen
networks), ensemble clustering, affinity propagation,
and mixture models (e.g. Gaussian mixture mod-
els, hierarchical Dirichlet models). Using PBMC and
breast cancer datasets, they found that current clus-
tering methods work efficiently only with datasets of
tens of thousands of cells. They emphasized the need
to develop more scalable algorithms capable of han-
dling larger datasets – up to a million cells. Simi-
larly, in Duò et al. (2020) the authors compared 14
clustering methods based on dimensionality reduc-
tion techniques like PCA and t-SNE, and algorithms
such as HC, K-medoids, K-means, ensemble clus-
tering, nearest-neighbour graph clustering, density-
based clustering, model-based clustering, and support
vector machines (SVM), testing them on both simu-
lated and real datasets.

Recently, it was hypothesized that transforming
scRNA-seq data to binary format and therefore fo-
cusing on gene expression presence rather than level,
can lead to improvements in the bioinformatics data
analysis pipelines Bouland et al. (2021). Such an ap-
proach can lead to more robust and reliable results
without the loss of sensitivity. In this paper, we
further studied this hypothesis, by experimentally
verifying whether threshold-encoding transformation
in scRNA-seq data could capture dataset heterogene-
ity. We evaluated the performance of model-based
and distance-based Bouveyron et al. (2019) cluster-
ing algorithms on the three scRNA-seq datasets, com-
paring their performance on original expression data
and binarized data. Obtained results demonstrate
that the gene expression presence alone is sufficient
to capture genetic variability at the cellular level,
potentially simplifying analysis of large scRNA-seq
datasets.

2 METERIALS AND METHODS

2.1 Datasets

We utilized scRNA-Seq to analyze high-throughput
molecular biology data, which featured sparse gene
expression matrices containing thousands of genes
across thousands of cells.

We selected three datasets from Chromium 10x
platform scRNA-seq experiments, each with origi-
nal group annotations for clustering evaluation. Dur-
ing preprocessing, we filtered out low-variance tran-
scripts using Gaussian mixture model decomposition
(using the threshold for the component with the low-
est mean; Marczyk et al. (2019)), removed cells with
fewer than 2,500 genes, and discarded transcripts
lacking or having duplicate Ensembl IDs. Expression
matrices were log-normalized using R Seurat package
(v4.0; Hao et al. 2021).

The first dataset comes from a breast cancer (BC)
study of circulating tumor cells Jordan et al. (2016)
in women, obtained from the Gene Expression Om-
nibus database under accession number GSE75367.
The second dataset contained raw scRNA-Seq data
from RBC-depleted whole blood of COVID-19 pa-
tients and controls, published in Silvin et al. (2020).
We filtered this dataset to include only COVID-19 pa-
tient samples from day 0, excluding the control group.
For our third dataset, we used scRNA-Seq benchmark
dataset of PBMC obtained from the Single Cell Portal
of the Broad Institute Ding et al. (2020).

2.2 Data Preprocessing

For all datasets, we extracted genes with the highest
variance, ranging from 5% to 50% of the largest vari-
ance across cells, in 5% increments. This created 10
subsets per dataset, each with varying matrix sparsity
and information levels. Using variance-based gene
selection minimizes the signal noise, reducing com-
plications of expression level thresholding. We then
applied binary coding as follows: 0 for non-expressed
genes (expression = 0) and 1 for expressed genes (ex-
pression > 0). This represents a threshold-encoded
approach for data binarization. Detailed characteris-
tics of datasets are presented in Tab.1.

2.3 Examined Clustering Methods

In our study, we applied model-based clustering
techniques and distance-based approaches to con-
tinuous (expression) and binary data representations
of scRNA-Seq datasets.
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Table 1: Summary of analyzed datasets.

Property BC COVID PBMC
Genes 16,501 15,390 15,817

Genes per subset
(5 - 50%) 825 - 8,250 770 - 7,695 791 - 7,908

Cells 232 2,564 3,222

Clusters 5 6 9

We utilized an independent multivariate Bernoulli
mixture algorithm (BMM) for binary data Saeed et al.
(2013) and a Gaussian mixture algorithm (GMM)
Hennig et al. (2015) for continuous data, both us-
ing the Expectation-Maximization (EM) iterations
McLachlan and Peel (2000) to identify model pa-
rameters. We assumed independence of components
of multivariate distributions, which simplified com-
putation and enhanced the algorithm’s scalability.
The EM algorithm was initialized with the K-means
method Hartigan and Wong (1979), with the proce-
dure repeated 20 times to find initial parameters with
the highest likelihood.

For distance-based approaches, we employed Hi-
erarchical Clustering Hubert and Arabie (1985),
which organizes data hierarchically by treating each
data point as a separate cluster and iteratively link-
ing the nearest cluster pairs. We used Hamming dis-
tance for binary data and Euclidean distance for ex-
pression data, with Ward’s linkage Ward (1963). We
also examined the K-means algorithm, which par-
titions the dataset into K distinct clusters by maxi-
mizing within-cluster similarity and between-cluster
distinctness. The algorithm assigns data points to
clusters by minimizing the Within-Cluster Sum of
Squares of distances to the cluster centroid. We re-
peated the centroid optimization procedure 20 times.
Lastly, we applied the Louvain clustering method
Blondel et al. (2008) for community detection in large
networks. This method optimizes modularity by it-
eratively merging nodes into communities, then ag-
gregating these communities into a new network un-
til reaching optimal modularity. We constructed the
network using Hamming distance matrices for binary
data and Euclidean distance matrices for expression
data.

Most of the time for real-life datasets the op-
timal number of clusters must be determined from
the data. We tested algorithms with cluster num-
bers ranging from K = 2 to max (where max = 15
or the number of unique samples). The optimal
model selection used the Bayesian Information Cri-
terion (BIC) for BMM and GMM, and the Silhouette
score Rousseeuw (1987) for other algorithms.

The analyses were performed using R (v4.2.2; R

Core Team 2022). For HC, we used the fastcluster
(v1.2.3; Müllner 2013), while for K-means clustering
stats package. The Louvain method was implemented
using the igraph package (v2.0.3; Csardi and Nepusz
2006). Additionally, we created implementations of
the BMM and GMM.

2.4 Performance Evaluation

We conducted a comprehensive clustering evaluation
using both clustering performance metrics and cluster
separation metrics.

For clustering performance metrics, we used:
(i) Adjusted Rand Index (ARI) Hubert and Arabie
(1985), which measures cluster similarity by compar-
ing sample pair assignments between predicted and
ground truth clusters, offering reliable case-adjusted
results; (ii) Fowlkes-Mallows Index (FMI) Campello
(2007), which assesses performance through geomet-
ric mean precision and recall; (iii) Normalized Mu-
tual Information (NMI) Fred and Jain (2005), which
measures similarity between predicted clusters and
ground truth labels—while Mutual Information (MI)
tends to increase with cluster numbers, NMI reduces
this bias by normalizing scores to 0–1, allowing for
scale-invariant comparison; (iv) Error in estimated
number of clusters (ENC), which measures how ac-
curately the estimated cluster count matches the ex-
pected count, with values closer to zero indicating
better estimation.

For cluster separation metrics, we applied: (i)
Mean Silhouette Coefficient, which evaluates cluster-
ing quality by assessing how well data points fit their
assigned clusters versus other clusters—higher values
indicate more distinct clusters; (ii) Davies–Bouldin
Index (DBI) Davies and Bouldin (1979), which mea-
sures average similarity between clusters based on
within-cluster and between-cluster distances. Within-
cluster distance represents the average distance from
data points to their cluster centroid, while between-
cluster distance measures the separation between cen-
troids. A lower DBI indicates more distinct clusters,
implying a more effective clustering solution.

We calculated each evaluation metric across all
datasets and their combinations. To compare cluster-
ing method performance, the statistical inference us-
ing a t-test was performed, considering p-value<0.05
as statistically significant.

Additionally, to visualize how clustering results
correspond to biologically labels, we employed t-
Distributed Stochastic Neighbor Embedding (t-SNE)
van der Maaten and Hinton (2008) utilized by Rtsne
(version 0.17; Krijthe 2015).
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Figure 1: Evaluation of clustering on expression vs. Threshold-encoded datasets collectively presented on boxplots, measured
by clustering performance metrics (A) and cluster separation metrics (B). Statistical significance was calculated with t-test.

3 RESULTS

3.1 Clustering Evaluation

We compared clustering results from expression and
binary data across all datasets to evaluate differences
between binary and continuous clustering methods
(Fig.1).

Our analysis of clustering performance (Fig.1A)
revealed statistically significant differences for
model-based and Louvain clustering methods, except
for ENC. K-means clustering showed significant
differences in both FMI and NMI metrics, while HC
demonstrated significant differences only in FMI.
Expression data clustering generally yielded better
overall performance, with model-based methods
being the notable exception.

Regarding cluster separation measures (Fig.1B),
we found no statistically significant differences in
the Silhouette Index when comparing algorithms on
threshold-encoded data versus expression data. How-
ever, the DBI showed significant differences favor-

ing binarized data clustering, suggesting better cluster
separation in this case.

BMM and GMM demonstrate consistent perfor-
mance across different datasets, which is where these
mixture models excel. A key advantage of mixture
models is their ability to accurately estimate clusters.
Their ENCs are typically the smallest, with an ex-
pected value of 0, and show better separability, par-
ticularly when measured by DBI. However, these al-
gorithms may overlook subtle data variations, making
them more suitable for global analysis than for iden-
tifying small, nuanced groups.

3.2 Dataset Effect

We observed that the results on specific datasets form
clusters in Fig.1. Therefore, we compared the cluster-
ing performance of the algorithm pairs individually
on each dataset, detailing the percentage of variance
(Fig. 2).

Comparing BMM and GMM, the ARI shows
BMM performs better on binary data across datasets,
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Figure 2: Spearman’s rank correlation for the metrics considering subsetting due to the highest % of gene variance. ”NA”
appears if there are attributes with zero variance (with all elements equal).

with varying performance as variance increases: im-
proving for COVID but declining for BC and PBMC.
FMI follows similar trends, favoring binary data for
COVID and BC, while expression data excels for
PBMC. NMI consistently favors binary data across
all datasets. ENC shows binary data is more stable,
especially for PBMC, with COVID and BC showing
comparable results between data types as variance in-
creases. The Silhouette decreases with feature count
in binary datasets (lowest for PBMC binary), while
improving for expression data. DBI performs best
with binary datasets, indicating better cluster separa-
tion.

For Louvain clustering, BC data shows compara-
ble ARI between data types until 35% variance, af-
ter which binary data performance declines. COVID
maintains similar ARI, with expression data showing
slight advantages. PBMC binary data yields lower
ARI than expression data, with FMI, NMI, and ENC
following similar patterns. Silhouette is highest for
binary COVID data and lowest for PBMC binary data.
BC and PBMC show similar results across data types,
while DBI indicates better cluster separation in binary
datasets.

HC shows best ARI performance on BC expres-
sion data, with slightly lower results for binary data
(5-40% variance). ARI worsens with increased vari-
ance in binary data. PBMC data shows poorest ARI,
though binary data improves with variance while ex-
pression data declines. FMI and NMI mirror these
patterns. ENC fluctuates significantly in PBMC bi-
nary data and performs worst in PBMC expression
data, while remaining stable for COVID and BC bi-
nary datasets and performing best for BC expression
data. The Silhouette is highest for COVID binary
data, followed by COVID expression data, lowest for
PBMC binary data, and similar across BC data types.

DBI also performs better for binary datasets, indicat-
ing well-separated clusters.

K-means clustering yields worst ARI for PBMC
and best for BC data, performing better overall on
expression data. The trends for FMI, NMI, and
ENC match those of ARI. The Silhouette reveals
highest separability in COVID binary data, followed
by COVID expression data, with poorest results in
PBMC binary and BC expression data. The DBI also
favors binary datasets, suggesting better separation of
clusters.

Our analysis shows distinct trends in clustering
algorithms across data types. BMM excels on bi-
nary data, particularly for COVID and BC datasets,
but varies for PBMC data. Louvain performs well
on binary data, with expression data better for COVID
and PBMC datasets. HC is best for BC expression
data and varies for PBMC data, while binary datasets
generally give better DBI scores. K-means performs
best on BC datasets and generally better on expression
data, especially for ARI and Silhouette. Binary data
often provides better cluster separation and stabil-
ity, while expression data excels in specific contexts
like COVID and BC datasets. The choice of algo-
rithm and data type significantly impacts performance
metrics, requiring careful consideration in clustering
analysis.

3.3 BMM vs. Other Algorithms

We evaluated clustering algorithms on their preferred
data types: BMM for binary data and others for con-
tinuous expression data (Fig.3). BMM outperformed
GMM in ARI, FMI, and NMI, while matching other
algorithms’ performance. It excelled in estimating
optimal cluster numbers (ENC) but scored lower on
Silhouette Coefficient. For the DBI, BMM showed
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superior results, with GMM being the least effective.
Overall, BMM demonstrates strong cluster sepa-

ration and stability for binary data, despite some limi-
tations compared to continuous expression data algo-
rithms.

Figure 3: Evaluation of BMM clustering and algorithms
used on expression data collectively presented on boxplots,
measured by clustering performance metrics (A) and clus-
ter separation metrics (B). Statistical significance was cal-
culated with t-test.

3.4 t-SNE Visualization

We performed t-SNE dimensionality reduction on
gene expression data, focusing on the top 25%
of genes with the highest variability. This subset
served as a strategic midpoint in our broader analysis,
which examined gene subsets ranging from the top
5% to 50% of genes with the largest expression vari-
ance. By concentrating on the 25% range, we struck
a balance between computational efficiency and cap-
turing sufficient biological variation for meaningful
clustering.

For visualization, we selected the COVID dataset,
which contains labelled cell types including B-cells
and T-cells, both known to comprise distinct sub-
types. While the ground truth defined 6 clusters (Fig.
4A), Louvain found only 2 groups (Fig.4C), and both
BMM and GMM detected 11 clusters (Fig.4B).

BMM provided better cluster separation, ef-
fectively identifying biological subtypes, especially
within heterogeneous populations like B-cells and T-
cells. Despite over-clustering, it produced more dis-
tinct and structured groupings of cell populations.

In contrast, GMM clusters showed poor definition
and significant overlap. GMM struggled with expres-
sion data variability, producing clusters that lacked
biological coherence and were less interpretable than
BMM’s results.

3.5 Computational Time

Our computational efficiency analysis across datasets
showed significant variations by data type (Tab.2).
HC achieved the fastest speeds consistently across
all datasets and data types. K-means and model-
based methods, took longer to process data, especially
with the PBMC dataset. Binary data processing was
generally faster, though K-means and HC performed
slower with COVID and PBMC datasets than in case
of expression data. Model-based methods benefited
from threshold-encoding, which reduced data com-
plexity and improved processing speed. While BMM
shows better overall clustering performance, it re-
mained slower than distance-based methods.

4 DISCUSSION

Our findings do not support the hypothesis that con-
verting data from expression to binary worsens clus-
tering; on the contrary, it is sufficient for captur-
ing heterogeneity, as noted in Bouland et al. (2021).
This indicates that the binarization of scRNA-seq data
may not negatively impact the ability to identify di-
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Figure 4: t-SNE projection of scRNA-seq for COVID dataset: original label of COVID set; binarized (up) and expression
levels (down) (A), comparison of model-based algorithms (B), comparison of Louvain algorithm on binarized and expression
levels data (C).

Table 2: Computational times for algorithms by data types
and datasets (in seconds).

Data type Binary Expression
Dataset BC COVID PBMC BC COVID PBMC

A
lg

or
ith

m

BMM 0.50 1.12 176.85 – – –
GMM – – – 7.69 543.58 1222.36

HC 0.01 0.31 0.45 0.01 0.23 0.34
K-means 0.66 12.03 29.79 1.50 9.62 16.33
Louvain 0.01 1.27 3.38 0.02 4.34 3.80

verse patterns within the data. Bouland et al. (2021)
focused mainly on binary differential analysis us-
ing logistic regression. In this paper, we evaluated
a wider range of clustering algorithms, including mix-
ture models, HC, K-means, and the Louvain algo-
rithm. This allows for a more comprehensive under-
standing of the impact of data binarization on cluster-
ing performance.

Additionally, we investigated how the perfor-
mance of clustering algorithms varies depending on
the percentage of gene variance included in the anal-
ysis. It revealed that data binarization can be particu-
larly beneficial when analyzing high-variance data.

Binarization is most effective in mixture mod-
els, which is why it is our primary recommendation.
The BMM method’s lower dependency on the dataset
makes it the preferred choice in this category. ENC

exhibits the smallest values, indicating good estima-
tion of clusters, which is a huge advantage of the mix-
ture models and the best cluster separability is ob-
served for BMM. In this context, specifically de-
signed for binary data mixture models show supe-
rior effectiveness, better handling the unique charac-
teristics of binarized data for more accurate and reli-
able clustering. On binarized data, the BMM shows
the same, if not better overall performance com-
pared to distance-based methods. The binarization
of scRNA-seq data for distance-based clustering algo-
rithms may result in the loss of subtle expression level
information, which can potentially impact the accu-
racy of cell type identification and differentiation.
This is particularly significant in scenarios where mi-
nor variations in gene expression play a crucial role
in distinguishing between closely related cell popu-
lations. Meanwhile, on continuous data, distance-
based algorithms perform well. It is worth mention-
ing that BMM and GMM, in contrast to distance-
based methods, appear to be less reliant on the partic-
ular dataset, highlighting the strengths of these mix-
ture models. Nevertheless, it is important to con-
sider the study’s limitation: only 3 datasets were eval-
uated, and the comparison was restricted to metric-
based and mixture approaches. Thus, future expan-
sion with additional datasets to validate our observa-
tions is needed.
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Computational time analysis revealed perfor-
mance variations between binary and expression data
types. BMM showed high efficiency with BC and
COVID datasets in binarized form but slowed consid-
erably with the larger PBMC dataset. GMM demon-
strated increased computational demands with ex-
pression data across all datasets. In contrast, HC
maintains rapid processing speeds across, making it
attractive when time efficiency is crucial - though
it may compromise accuracy in complex analyses.
K-means exhibits higher computational demands for
larger datasets, especially when processing binary
data. While the Louvain algorithm remains efficient
across most datasets and data types, its clustering
performance decreases with larger binarized datasets.
In summary, BMM performs best with smaller binary
datasets but faces challenges with larger, more com-
plex ones. HC and Louvain provide faster processing
alternatives. Future development should prioritize im-
proving BMM’s scalability through parallel comput-
ing, as it remains the best-performing algorithm for
threshold-encoded scRNA-seq data despite its com-
putational limitations. In summary, BMM signifi-
cantly outperforms traditional clustering techniques
when applied to binary datasets.

T-SNE visualization demonstrated that BMM
identified distinct subpopulations of T-cells and B-
cells within the binarized COVID scRNA-seq data.
The analysis revealed four T-cell subtypes, which
likely correspond to CD8+ T-cells, CD4+ T-cells, reg-
ulatory T-cells, and memory T-cells. These subpop-
ulations exhibit characteristic gene expression pro-
files that align with their known biological functions.
For instance, CD8+ T-cells express cytotoxic genes
such as GZMB and PRF1 Ramljak et al. (2021), while
regulatory T-cells are marked by the expression of
FOXP3 Dhawan et al. (2023) - established markers
of functional and phenotypic diversity within T-cell
populations. Furthermore, the analysis identified two
B-cell subpopulations, which may represent plasma
B-cells and memory B-cells. This distinction is sup-
ported by the differential expression of genes like
PRDM1 Schultheiß et al. (2021) and CD27 Garcı́a-
Vega et al. (2024). Our findings, supported by exist-
ing literature, indicate that BMM’s enhanced ability
to differentiate cell types may be attributed to its sen-
sitivity in detecting subtle gene expression variations
that define these distinct immune cell subtypes.

An important biological conclusion is that, at least
in some cases, the simple presence or absence of gene
expression, rather than its level or intensity, might be
sufficient for a meaningful analysis.

The field of data clustering offers a diverse range
of methodologies for categorical data, which were

beyond the scope of this study. Notable examples
include K-Modes Huang (1998), Genetic K-Means
Algorithm Krishna and Murty (1999), Maximum
Dependency of Attributes Herawan et al. (2010),
and Multiple Correspondence Analysis Xiong et al.
(2009). Future work could explore these approaches,
potentially revealing new insights and data structures
in threshold-encoded scRNA-seq data.
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Wöstemeier, A., et al. (2021). Maturation trajecto-
ries and transcriptional landscape of plasmablasts and
autoreactive b cells in covid-19. iScience, 24:103325–
103325.

Silvin, A., Chapuis, N., Dunsmore, G., Goubet, A.-G.,
Dubuisson, A., et al. (2020). Elevated calprotectin
and abnormal myeloid cell subsets discriminate severe
from mild covid-19. 182:1401–1418.e18.

van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of Machine Learning Research,
9(86):2579–2605.

Ward, J. H. (1963). Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58:236–244.

Xiong, T., Wang, S., Mayers, A., and Monga, E. (2009).
A new mca-based divisive hierarchical algorithm for
clustering categorical data. In 2009 Ninth IEEE In-
ternational Conference on Data Mining, pages 1058–
1063. IEEE.

Zhang, S., Li, X., Lin, J., Lin, Q., and Wong, K.-C. (2023).
Review of single-cell rna-seq data clustering for cell
type identification and characterization. RNA, page
rna.078965.121.

BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms

602


