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Abstract: We explore the design and implementation of Enhanced Quantum Tree Tensor Networks (EQTTNs) for 
Variational Quantum Circuits. A Quantum Tree Tensor Network (QTTN) offers a hierarchical structure to 
manage entanglement and optimize quantum operations. The traditional requirement for constructing a QTTN 
is that the number of qubits (n) must be in the form 𝑛 = 2௫.  This paper proposes an EQTTNs design that can 
accommodate any number of qubits. This flexibility means there are no restrictions on the problem size, 
allowing for broader applicability and scalability in various quantum computing tasks. We provide a 
comprehensive analysis of the parameter count required for EQTTNs. Experimental results validate our 
theoretical model, in terms of fidelity score and entanglement strength. 

1 INTRODUCTION 

Variational Quantum Algorithms (VQAs) are a class 
of quantum algorithms designed to solve optimization 
and Artificial Intelligence (AI) tasks on quantum 
computers. VQAs have emerged as the leading 
strategy to obtain quantum advantage. However, 
implementation challenges remain because of size 
limitations and errors that are inherent in Noisy 
Intermediate-Scale Quantum (NISQ) devices.     

A major reason behind the success of variational 
quantum algorithms (Cerezo et al., 2021) is that 
VQAs minimize the computational burden on NISQ 
devices. VQAs achieve high performance by running 
only the part of the algorithm that will result in 
quantum advantage on a quantum system, while all 
remaining tasks are outsourced to a classical 
computer. VQAs are therefore a class of hybrid 
quantum-classical algorithms in which quantum and 
classical computational resources are used in 
combination to solve a task while achieving high 
performance. 

Quantum Artificial Intelligence (QAI) is one of 
the most promising areas of VQAs, as VQAs provide 
a robust framework for implementing QAI on NISQ 
devices, by optimizing Parameterized Quantum 
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Circuits (PQCs/ansatz) using classical methods. 
However, optimizing (PQCs) using classical methods 
faces challenges like barren plateaus, noise, and 
scalability issues. The efficiency and success of 
variational quantum algorithms in QAI depends on a 
well-designed ansatz (Nielsen et al. 2011). Ansatz is 
a tuneable parameterized quantum circuit. To address 
these limitations and enhance the applicability of 
variational quantum algorithms in quantum machine 
learning, it is crucial to explore ansatz design. Tensor 
tree networks ansatz, which efficiently represent 
complex quantum states, offer a promising solution. 

Tensor networks are factorizations of very large 
tensors into networks of smaller tensors used to 
represent and manipulate large, multi-dimensional 
arrays of data or tensors efficiently. The ansatz takes 
any quantum state as input, and through manipulation 
by a unitary matrix, produces an outcome of a 
quantum state. Given that this quantum state can be 
thought of as a high-dimensional vector, it aligns well 
with the structure of tensor networks. Tensor 
networks are specifically designed to efficiently 
represent and manipulate such high-dimensional 
vectors by breaking them down into smaller, 
interconnected tensors. Tensor networks are therefore 
an ideal tool for preparing the ansatz in quantum 
machine learning. By leveraging tensor networks, we 
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can efficiently model and optimize the quantum state 
generated by the ansatz. 

There are various tensor network ansatzes 
available, Matrix Product State (MPS) and Tree 
Tensor Network (TTN) being among the most widely 
used. However, current implementations of MPS and 
TTN are generally applicable only when the number 
of qubits, n, is in the form 𝑛 = 2௫ , where 𝑥  is an 
integer (e.g., 1, 2, 3, ...). This requirement limits their 
applicability, as not all quantum problems require a 
qubit count that fits this specific pattern. If 𝑛 does not 
equal 2௫  it becomes necessary to either pad the 
system with additional qubits or to shrink the network 
to fit the required qubit count. Padding the system 
adds unnecessary complexity to the model, 
introducing extra qubits that do not carry useful 
information, which can increase the computational 
resources needed without improving performance. 
On the other hand, shrinking the network to match the 
required qubit count often results in a loss of accuracy 
and effectiveness in the ansatz. 

By developing an ansatz that is flexible and 
scalable without the need for such padding or 
shrinking, performance can be significantly 
improved. Such an ansatz would streamline the 
computational process, making it more efficient and 
better suited to handling problems with arbitrary qubit 
counts. Additionally, this flexibility would allow for 
more efficient utilization of quantum hardware and 
avoid the pitfalls of excess qubit overhead or reduced 
expressibility, ultimately enhancing both the 
accuracy and scalability of the solution. 

This work introduces a novel approach for 
applying tensor-network architectures to problems of 
arbitrary size, without imposing constraints on the 
number of qubits. We experimentally evaluate the 
efficiency of the proposed ansatz through metrics 
such as fidelity, expressibility, and entanglement 
strength. Furthermore, we showcase the trainability 
of our ansatz by implementing a quantum neural 
network classifier to classify the MNIST handwritten 
image dataset  (Y. LeCun et al., 1998). 

1.1 Tree Tensor Network Ansatz 

A Tree Tensor Network (TTN) is a hierarchically 
structured tensor network resembling a tree and can 
be represented as an acyclic graph T = (G, A) where 
A denotes tensors (multi-dimensional arrays) 
connected at their indices, and G represents the graph. 
An index is a label that connects two or more tensors, 
representing the shared dimensions across which the 
tensors interact. In this structure, the nodes 

correspond to tensors, while the edges represent 
contracted dimensions between them. Any n-qubit 
TTN ansatz can be described by 𝑛 open indices and a 
tree-like structure. 

To construct a TTN that represents a quantum 
state of dimension 2𝑛, begin by connecting each of 
the 𝑛  open indices to a node, labeling each node 
uniquely to form the leaves of the tree. At each 
hierarchical level, group the nodes into pairs, creating 
two-index tensors to capture local entanglement 
between the qubits. On ascending the hierarchy, 
continue merging pairs of tensors at each subsequent 
level. The new tensors formed will have three indices: 
two inherited from the previous lower-level tensors 
and one internal connection to the next level, 
encapsulating the entanglement between larger 
groups of qubits. This recursive process is repeated 
until only a single root tensor remains, which captures 
the global entanglement of the entire quantum state. 

Figure 1 (Guala et al., 2023) illustrates a Tree 
Tensor Network (TTN) on the left, and its equivalent 
quantum circuit representation on the right, both 
corresponding to the process of constructing a 
quantum ansatz. The nodes 𝑣, 𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ଵ, 𝑣ଶଷ 
represent tensors.  𝑣, 𝑣ଵ, 𝑣ଶ, 𝑣ଷ are  leaf nodes 
corresponding to the initial qubits or input tensors. 
The intermediate nodes 𝑣ଵ, 𝑣ଶଷ represent tensors 
that encapsulate the local correlations between the 
qubit pairs.The root node 𝑣ଵଷ at the top encapsulates 
the global entanglement of the entire quantum state, 
combining all previous layers. The edges between 
nodes represent tensor contractions, where shared 
indices are summed over to capture the entanglement 
between qubits or groups of qubits at different levels 
of the hierarchy. The circuit on the right reflects the 
same entanglement structure as the TTN, represented 
as quantum gates. The input qubits, initialized to ∣0⟩, 
correspond to the leaf nodes of the TTN. The first 
level of gates entangles the initial qubits (matching 
the first level of tensor nodes in the TTN). Subsequent 
levels represent further entanglement operations, 
corresponding to higher levels in the TTN, until the 
root node is reached. 

2 PROPOSED ARBITRARY 
QUBIT COUNT TTN 

We propose a method for constructing quantum 
circuits using a hierarchical tree structure, designed to 
handle any number of qubits. At each level of the tree, 
qubits (or nodes) are paired to establish entanglement.
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Figure 1: Quantum Circuit (left) and Corresponding TTN (right).

 

If the number of nodes at any level is odd, that is, 
one node remains unpaired, we handle this by moving 
the unpaired node to the next level of the tree. 

For instance, if a node labeled 𝑣 does not have a 
partner at its current level, it is carried over to the next 
level and renamed  𝑣, forming a self-paired node. 
This ensures that every level of the tree has complete 
pairs, allowing the structure to be progressively built 
up until the quantum circuit is fully constructed. By 
systematically pairing nodes and addressing any odd-
numbered situations, the method guarantees that 
qubits are organized into a well-defined entanglement 
structure, ultimately leading to a fully connected 
quantum circuit. The process is split into two key 
modules: (1) Generate_Tree _Tuples, which selects 
the indices for entanglement at each hierarchical 
level, and (2) Construct_EQTTN, which applies 
unitary operations to form the quantum ansatz. 

The Generate_Tree_Tuples algorithm takes the 
number of qubits (n) as input and outputs a list of 
tensor nodes, which defines the connections needed 
to form the tree tensor network architecture. The 
algorithm is outlined below. 

Algorithm 1 
Data: number of qubits n 
Results: list of list entangled qubits at each level 
indices [] [] 
Initialize tuples_list []   
Initialize indices [] []  
Assign 0 to i ; 
//Generate level 1 /initial entanglement qubit indices 
While i is less than n do  
       Assign (i, i+1) in tuples_list  
       Increment i by 2; 
end 
 if n is odd 

      final node paired with the same node and stored 
in tuples_list. 
end 
Store the tuple_list into indices. 
// iterate through each level 
while len (tuples_list) is equal to 1 do 
      Initialize new_tuples []; 
      for each i from 0 to len (tuples_list – 1) do  
            store (tuples_list[i][1], tuples_list [i +  
             1][1]) in new_tuples[i] 
            increment i by 2; 
     end 

      if length of tuples_list is odd: 
          paired with the same node and store is a final 
element.  
       end 
       Store new tuples in tuples_list  
       Store indices in new_tuples  
end 
Return indices 

Algorithm 1: Finding the entanglement pair list. 

Algorithm 1 begins by initializing two lists: 
tuples_list, which stores node indices for connecting 
tensors at each level of the network, and indices, 
which will store all layers of tuples_list. The 
algorithm first generates pairs of qubit indices by 
iterating through the range from 0 to num_qubit - 1 in 
steps of 2, pairing each index with the next; if the 
number of qubits is odd, the last qubit is paired with 
itself. These pairs are stored in tuple_list. Then, for 
each hierarchical layer of entanglement, if tuple_list 
contains more than one element, the algorithm creates 
a new_tuple_list by pairing the first indices from 
consecutive pairs in tuple_list; if there's an odd 
number of elements, the last element is left 
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unchanged. This new_tuple_list is added to indices, 
and the process repeats with tuple_list updated to the 
new pairs. The algorithm stops when only one pair 
remains in tuple_list and returns indices with all 
levels of node pairs that define the EQTTN structure. 

The Contruct_EQTTN takes the number of qubit 
and number of layers as input argument and returns a 
tree tensor network ansatz for arbitrary qubit count. 
The proposed algorithm is outlined below. 

Algorithm 2 
Data: number of qubits n, number of layers l. 
Results: Quantum circuit qc of size n: 
Initialize Quantum Circuit   qc of size n 
Get the entanglement pairs list using Algorithm 1.  
Initialize the parameter count by 0 
 //Iterate Over Layers 
 For each set of layer indices in indices 
        For each tuple (i, j) in the layer indices: 
               If i is not equal to j: 
                   Add rotation gates with unique           
parameters to ith qubit and jth qubit in qc. 
                   Increment the parameter count by 2 
               end 
               For each layer from 0 to l - 1: 
               Add entanglement between ith qubit and 
jth qubit in qc. 
               end 
          Add rotation gates with unique parameters 
to ith qubit and jth qubit in qc. 
           end 
end  
return qc 

Algorithm 2: Constructing EQTTN ansatz. 

The proposed algorithm for constructing the 
EQTTN ansatz begins by creating a quantum circuit 
with the specified number of qubits and generating a 
tree structure using the Generate-Tree-Tuple function 
to define qubit connections. A parameter counter is 
initialized to track the number of parameters used. In 
the first step, parameterized rotation gates (e.g., Ry 
gates) are applied to each qubit pair at each level of 
the tree, with the parameter counter incremented by 2 
for each distinct pair. In the next step, entanglement 
gates (such as CX, CZ, or CY) are added between qubit 
pairs, followed by additional rotation gates on the 
entangled qubits, again incrementing the parameter 
counter by 2. This process continues for all layers of 
the tree structure. Figure 2 provides an example of a 
single layer of the 5-qubit EQTTN, built using Ry 
gates for rotations and CZ gates for entanglement. 
 

2.1 Parameter Calculations 

Let 𝑛 be the number of qubits and 𝑙 the number of 
layers. In an EQTTN, qubits are grouped into pairs at 
each level of the network. These pairs are then 
entangled by controlled gates and bound by a pair of 
parameterized rotation gates, which represent the 
quantum interactions and correlations between the 
subsystems. Additionally, there is a layer of 
parameterized rotation gates applied to each qubit for 
initialization. Hence the total number of parameters is 
calculated as follows. 

Let 𝑡 be the total number of pairs per layer which 
is calculated as follows. Given 𝑛 qubits, the number 
of pairs created at level one is ଶ. This is halved at each 
subsequent layer until only a single pair remains. The 
total number of pairs per layer 𝑡 will be, 𝑡 = 𝑛2 + 𝑛4 … + 1. 𝑡  represents the geometric progression (GP) series 
such that 𝑎, 𝑎𝑟, 𝑎𝑟ଶ, 𝑎𝑟ଷ, … 1 𝑡 = 𝑛2 + 𝑛2 ൬12൰ + 𝑛2 ൬ 12ଶ൰ … + 1. 

Here the first term  𝑎 = ଶ  and the common ratio  𝑟 = ଵଶ. 
The sum of GP Series for 𝑘 terms is:  𝑆 = 𝑎(1 − 𝑟)1 − 𝑟 . 

𝑡 =  𝑛2 (1 − (12))1 − 12 . 
𝑝 = 2 × 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 ×൫ 𝑙 + 1(for initialization)൯.  (1)
 

t = n (1 − (ଵଶ))  .   (2)

To find 𝑘 , there are k terms in the series where the 
kth term is 1  𝑎𝑟ିଵ = 1. 

Substituting  𝑎, 𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑛2 (12ିଵ) = 1. ଶೖ = 1. 𝑘 = log 2. 

Enhanced QTTN Design: Scalable Quantum Circuits for Arbitrary Qubit Counts

769



Substitute 𝑘 𝑖𝑛  (2) 

t = n (1 − (ଵଶ)୪୭ ଶ). 

t = n (1 − (2ି୪୭ ଶ)). 

Substituting 𝑘 𝑖𝑛  (2) 

t = n (1 − (ଵଶ)୪୭ ଶ). 

t = n (1 − (2ି୪୭ ଶ)). 

t = n (1 − (2୪୭ ଶభ)). 

t = n (1 − ଵ ). 𝑡 = 𝑛 − 1. 
Substituting  𝑡 𝑖𝑛  (1)  𝑝 = 2 (𝑛 − 1) (𝑙 + 1). 
Thus, the total number of parameters p is 

calculated. 

3 EXPERIMENTS 

Variational Quantum Algorithms (VQAs) offer a 
promising strategy for achieving quantum advantage 
in the NISQ (Noisy Intermediate-Scale Quantum) era. 
A key challenge in this approach is designing an 
efficient ansatz, one that effectively represents the 
solution space while minimizing circuit depth and the 
number of parameters to mitigate noise and enhance 
performance. The quality of an ansatz can be 
evaluated based on several criteria (Sim et al., 2019): 
Expressibility -the ability of the ansatz to represent a 
wide range of quantum states, ensuring that the 
solution space is sufficiently covered for 
optimization. A highly expressible ansatz can better 
capture the complexity of the problem being solved.  
Entangling Capability-the ansatz must be able to 
generate entanglement between qubits, which is 

essential for exploiting quantum correlations and 
maximizing quantum computational power. A good 
ansatz promotes strong entanglement across qubits 
while maintaining control over circuit depth. Fidelity 
measures the accuracy with which the ansatz can 
approximate the target quantum state. Higher fidelity 
indicates that the ansatz is effective in reaching the 
desired state, despite potential noise and errors in 
NISQ devices. 

Trainability means the ansatz should be easy to 
optimize using classical optimization methods. Poor 
trainability can lead to vanishing gradients (barren 
plateaus), which hinder the learning process. An 
efficient ansatz should have well-behaved gradients 
to enable effective optimization. We assess these 
performance metrics, and the results are shown 
below. 

To compute the expressibility of the EQTTN 
ansatz, we followed a systematic approach to measure 
how effectively the ansatz explores the quantum state 
space. First, we generated 1024 samples of pure 
quantum states from a uniform distribution by 
applying Haar-random unitary matrices of size 2 𝑋 2, The Haar measure ensures that these random 
unitary matrices uniformly cover the entire space of 
possible quantum states, making these samples 
representative of the full quantum state space. Next, 
we generated another 1024 samples of quantum states 
using our EQTTN ansatz with various random 
parameter settings. Then we calculated their 
differences and obtained a distribution A. The 
expressibility of the ansatz was then quantified by 
calculating the norm of A, providing a measure of 
how closely the ansatz-generated states resemble the 
uniformly distributed Haar-random states. The 
resulting expressibility measure ranges from 0 to 1, 
where a value near 0 indicates high expressibility 
(i.e., the ansatz can explore the state space effectively 
and uniformly), while a value near 1 suggests lower 
expressibility, meaning the ansatz is more constrained 
in the states it can generate. 

We performed this analysis across several ansatz 
 

 
Figure 2: Single layer EQTTN for 5-qubits. 
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types available in the Qiskit library (IBM), including 
Two_local, N_local, EfficientSU2, TTN which are 
standard quantum circuit ansatz types used in 
variational quantum algorithms, each designed to 
balance flexibility and computational complexity. 
These approaches range from simple operations 
(Two_local, N_local which are parameterized circuits 
consisting of alternating rotation layers and 
entanglement layers) to more structured, hierarchical 
designs (Tree Tensor Network or TTN) and efficient 
representations of unitary transformations which is 
our proposed EQTTN ansatz. As depicted in Figure 
3, our EQTTN ansatz demonstrates exceptional 
expressibility compared to the others. Furthermore, 
Figure 4 provides a visual representation of the 
expressibility of a 5-qubit single-layer EQTTN ansatz 
plotted on the Bloch sphere, which illustrates its 
extensive coverage of the quantum state space. 

 
Figure 3: Comparison graph for expressiblity. 

Entangling Capability: Quantum correlations, 
particularly entanglement, play a key role in the 
effectiveness of Variational Quantum Algorithms 
(VQAs). In the Variational Quantum Eigen solver 
(VQE), entanglement enables accurate representation 
of electron correlations essential for finding ground 
state energies in quantum chemistry (Hubregtsen et 
al., 2020). In quantum artificial intelligence, 
entanglement enhances the learning capacity of 
models by representing complex data correlations 
Bengtsson et al.,2017, Huggins et al.,2019). 

 
Figure 4: 5-qubit single layer ETTN expressiablity. 

We quantify the entangling capability by using the 
Meyer-Wallach measure (Meyer et al., 2002), a 
scalable entanglement measure for multi-particle 
(multi-qubit) systems. We took the sample of 1024 
quantum states with random parameters from a 5-
qubit single layer ETTN and then found the Meyer-
Wallach measure of each quantum state and then 
found the average which gives the entanglement 
capability of our proposed ansatz. This measure 
ranges from 0 to 1. A value close to 1 indicates that 
the ansatz has higher entangling capabilities. Our 5 
qubit EQTTN Gives at an average of 60%. Figure 5 
shows the comparative graph for entanglement. 

 
Figure 5: Comparison graph for entanglement strength. 

Fidelity is a widely recognized metric in quantum 
computing for assessing the accuracy of quantum 
operations, particularly in the presence of noise. It 
shows how close the actual quantum state is to the 
ideal, error-free state. Fidelity measures the similarity 
between the ideal density matrix (representing the 
expected quantum state) and the actual density matrix 
obtained after executing a quantum operation. A 
high-fidelity score indicates that the actual state 
closely approximates the ideal state, providing an 
indicator of the performance and reliability of 
quantum gates and circuits. 

In our study, we conducted fidelity experiments 
using various ansatz types, including Two-Local, N-
Local, EfficientSU2, TTN and our proposed EQTTN, 
ansatz. For a 5-qubit single-layer architecture, as 
shown in Table 1, the EQTTN ansatz consistently 
outperformed the others, achieving the highest 
fidelity. This superior fidelity demonstrates the 
robustness and accuracy of the EQTTN ansatz in 
preserving the desired quantum states, making it a 
highly promising candidate for noise-resilient 
quantum operations. 
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Table 1: Fidelity results. 

No Ansatz Fidelity
1 N_local 0.52739
2. EQTTN 0.79013
3. Two_local 0.65312
4 EfficientSU2 0.75756
5. TTN 0.4361

 

Trainability: To demonstrate the trainability of 
the proposed ansatz, we designed a Quantum Neural 
Network (QNN) classifier to perform digit 
classification on the MNIST dataset (Y. LeCun et al., 
1998). We used a 5-qubit single-layer EQTTN 
(Enhanced Quantum Tree Tensor Network) ansatz, 
implemented using Qiskit’s State Vector Simulator 
(IBM)For encoding the classical MNIST data into the 
quantum states, we employed amplitude encoding, 
which efficiently maps the input data into the 
amplitudes of a quantum state. This encoding method 
allows us to handle high-dimensional data using 
fewer qubits. 

We used 10000 samples from the MNIST data set 
as the training set and 2000 samples for testing. The 
model's loss function was defined as the cross-
entropy loss, which is a standard choice for 
classification problems as it measures the 
dissimilarity between the predicted and actual labels. 
The model parameters were optimized using a 
gradient based optimizer (such as COBIYALA), 
which updates the parameters to minimize the loss. 
Table 2 illustrates the results of accuracy and time to 
converge the loss function for our 5 different ansatzes 

Based on the results we have shown here, our 
EQTTN is the best ansatzes among the various ansatz, 
balancing performance across key metrics. While its 
entanglement strength is moderate compared to 
N_local and EfficientSU2, EQTTN exhibits stability 
and consistency across varying qubit numbers, which 
is crucial for robust quantum computations. In terms 

of expressibility, EQTTN shows a smooth and stable 
curve, outperforming other ansatz in consistency as 
qubits increase, making it reliable for generalization 
across different problem sizes. Its fidelity score of 
0.79013 is the highest, reflecting its strong capability 
in accurately representing quantum states. Moreover, 
EQTTN achieves competitive trainability with an 
average training accuracy of 96.22% and testing 
accuracy of 96.83%, coupled with a reasonable 
convergence time of 1172.64 seconds, making it more 
efficient than EfficientSU2 but slightly slower than 
Two_local and N_local. Overall, EQTTN offers a 
solid balance of accuracy, expressibility, and 
computational efficiency, making it a well-rounded 
choice for quantum machine learning applications. 

4 CONCLUSIONS 

In this paper, we present an Enhanced Quantum Tree 
Tensor Network (EQTTN) ansatz designed for 
Variational Quantum Algorithms (VQAs) to scale 
efficiently with arbitrary qubit counts. 

The performance of the EQTTN ansatz is 
evaluated based on several key metrics: 
expressability, entanglement strength, fidelity, and 
trainability. Our results demonstrate that the EQTTN 
ansatz offers superior performance. The proposed 
approach leads to better computational performance 
as it calculates tensor network anstazes for n cubits as 
opposed to 2n qubits. If n is large, the improvement in 
performance will be significant. In future work, we 
aim to explore the integration of the EQTTN ansatz 
with error-mitigation techniques to further enhance. 
its robustness in noisy quantum environments. 
Additionally, extending the framework to 
investigating its application in real-world problems 
could provide valuable insights. 

Table 2: Trainability results. 

No Ansatz 

Average_acuuracy 

in percentile Average_conv.time 
in secs 

Training_set Testing_set 

1 N_local 94.128 94.42 899.32
2. EQTTN 96.22 96.83 1172.64
3. Two_local 97.34 97.78 634.81
4 EfficientSU2 96.121 96.456 2529.31
5. TTN 97.38 97.42 4129.24
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