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Abstract: The representation of visual data using Symmetric Positive Definite (SPD) matrices has proven effective in
numerous computer vision applications. Nevertheless,the non-Euclidean nature of the SPD space poses a
challenge, especially when dealing with high-dimensional data. Conventional dimensionality reduction meth-
ods have been typically designed for data lying in linear spaces, rendering them theoretically unsuitable for
SPD matrices. For that reason, considerable efforts have been made to adapt these methods to the SPD space
by leveraging its Riemannian structure. Despite these advances, a systematic comparison of conventional,
i.e., linear and revisited, i.e., non-linear dimensionality reduction methods applied to SPD data according to
their distribution remains lacking. In fact, while geometry-aware dimensionality reduction methods are highly
relevant, the convexity of the SPD space may hinder their performance. This study addresses this gap by
evaluating the performance of both linear and non-linear dimensionality reduction techniques within a binary
classification scenario. For that purpose, a synthetically generated dataset exhibiting different class distribu-
tion configurations (distant, slight overlap, strong overlap) is used. The obtained results suggest that non-linear
methods offer limited advantages over linear approaches. According to our analysis, this outcome may be at-
tributed to two primary factors: the convexity of the SPD space and numerical issues.

1 INTRODUCTION

Symmetric Positive Definite (SPD) matrices are non-
linear mathematical entities that have shown great po-
tential in the field of computer vision (Pennec et al.,
2006; Tuzel et al., 2006; Harandi et al., 2012; Jaya-
sumana et al., 2015). They have been used as repre-
sentations for several visual classification tasks such
as image classification (Chen et al., 2020) and ac-
tion recognition (Ghorbel et al., 2018). Nonetheless,
handling high-dimensional SPD matrices is tricky,
as it induces a high computational complexity. To
handle this issue, dimensionality reduction methods
which aim at projecting high-dimensional data into
a lower-dimensional space while preserving essential
information might be employed. Conventional meth-
ods such as Principal Component Analysis (PCA)
(Hotelling, 1933) are mainly linear, which means that
they have been introduced for data lying in linear
spaces. Although the space of SPD matrices is known
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to be non-Euclidean, conventional methods can be
practically by flattening SPD matrices. However,
such a process has been widely criticized in the lit-
erature as it is not theoretically sound (Harandi et al.,
2018; Pennec et al., 2006; Tuzel et al., 2008; Jaya-
sumana et al., 2015). Indeed, this would contribute
to breaking the geometric structure of SPD matrices,
potentially resulting to a physically implausible re-
duction, i.e., lower-dimensional matrices that are not
SPD. To address this issue, probabilistic dimension-
ality reduction methods leveraging advanced distance
measures have demonstrated improved classification
accuracy compared to traditional approaches (Drira
et al., 2012).

Moreover, recent advances in differential geome-
try have led to the development of specialized dimen-
sionality reduction techniques, which account for the
Riemannian structure of SPD (Harandi et al., 2018;
Fletcher et al., 2004).These methods have shown
promise in preserving the manifold intrinsic geometry
while effectively reducing the dimension of SPD ma-
trices. However, a comprehensive comparative analy-
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sis between traditional linear methods and non-linear
approaches in the context of SPD matrices remains
underexplored. Despite the theoretical soundness of
non-linear methods, their effectiveness as compared
to linear approaches is not guaranteed as numerical is-
sues may arise. Furthermore, understanding the clas-
sification performance of these techniques under dif-
ferent data distribution configurations is of wide in-
terest.

In this paper, the primary objective is therefore
to compare the performance of both linear and non-
linear dimensionality reduction techniques for data
on the SPD manifold. Specifically, we evaluate two
linear and two non-linear methods, namely, the clas-
sical PCA, a standard Convolution Neural Network
(CNN)-based Autoencoder, Tangent PCA, and Ha-
randi’s method (Hotelling, 1933; Wang et al., 2023;
Fletcher et al., 2004; Harandi et al., 2018), respec-
tively, using synthetically generated data in a binary
classification setup. Moreover, we consider different
label-related distribution configurations, ranging from
well-separated to strongly intertwined distributions.

Through this comparative analysis, we aim to pro-
vide deeper insights into the strengths and limitations
of linear and non-linear approaches, contributing to
a broader understanding of how dimensionality re-
duction techniques can be adapted to non-Euclidean
spaces. Our findings are intended to inform the se-
lection of appropriate methods for high-dimensional
data on Riemannian manifolds, particularly in scenar-
ios where SPD matrices play a central role.

Our findings suggest that linear and non-linear
dimensionality reduction methods yield comparable
performance on SPD matrices. This might be ex-
plained by two facts, namely, (1) the convexity of the
SPD cone: the regions corresponding to SPD matri-
ces with a minimum eigen value largely greater (in-
terior of the cone) are not highly impacted by non-
linearity, and (2) the existence of numerical issues:
the regions that are the most impacted by the non-
linearity are the ones close to the cone boundaries,
representing the matrices with a minimum value close
to 0. However, it is known that such SPD matrices are
often subject to numerical issues when applying the
logarithmic map (Ghorbel et al., 2018). This high-
lights the need for considering the convex structure of
SPD matrices as well as potential numerical issues in
non-linear dimensionality reduction techniques.

The remainder of this paper is organized as fol-
lows: Section 2 discusses the mathematical prelim-
inaries, focusing on the geometry of SPD manifolds
and key operations like the exponential and logarith-
mic maps. Section 3 details the proposed evaluation
protocol, namely, the tested dimensionality reduction

techniques and the considered data distribution con-
figurations. Section 4 details the experimental results
and analysis, while Section 5 concludes this work
with a summary of findings and potential directions
for future research.

2 PRELIMINARIES: THE
RIEMANNIAN SPACE OF SPD
MATRICES

A real symmetric matrix A ∈ Rn×n is said to be Sym-
metric Positive Definite (SPD) if for all non-zero vec-
tors v ∈ Rn, v⊤Av > 0, implying that all eigenvalues
of A are strictly positive. The space of SPD matri-
ces denoted as S++

n is therefore composed of n× n
SPD matrices. Hence, the space S++

n is non-linear
and forms the interior of convex cone in the n(n+1)

2 -
dimensional Euclidean space delimited by the sym-
metric semi-positive definite matrices. As a conse-
quence, traditional linear methods for operations such
as averaging, classification, and dimensionality re-
duction are unsuitable. To account for this, the space
S++

n is mostly endowed with a Riemannian metric, re-
sulting in a Riemmanian manifold. The latter is a dif-
ferentiable manifold, equipped with a smoothly vary-
ing inner product on each tangent space. The tangent
space at any point on the manifold consists of the set
vectors tangent to all possible curves passing through
that point. The Riemannian metric enables defining
key geometric notions such as angles between curves
and the lengths of curves.

In this section, we review several key concepts re-
lated to operations on the space of SPD matrices. We
start by giving the logarithmic and exponential maps
of the SPD space. Popular metrics for SPD matri-
ces, such as the Affine-Invariant Riemannian Metric
(AIRM) and the Log-Euclidean Metric are then re-
called. Finally, we review the concept of the Frechet
mean, which generalizes the notion of average to
curved spaces.

2.1 Logarithmic and Exponential Maps
on the SPD Manifold

In Riemannian geometry, the logarithmic and the ex-
ponential maps are use to map non-Euclidean SPD
matrices to its tangent space and vice versa. Hence,
this enables performing linear operations in the tan-
gent space before projecting the results back onto the
manifold.

Given an SPD matrix P ∈ S++
n and a reference

point X ∈ S++
n , the logarithmic map logX : S++

n →
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TXS++
n project an SPD matrix to its tangent space

TXS++
n at the point X as follows,

logX(P) = X1/2 log(X−1/2PX−1/2)X1/2, (1)

where log(·) denotes the matrix logarithm.
Conversely, the exponential map expX : TXS++

n →
S++

n is defined to map a tangent vector at X back to
the manifold as follows

expX(V) = X1/2 exp(X−1/2VX−1/2)X1/2, (2)

where V∈ TXS++
n is the tangent vector, and exp(·)

denotes the matrix exponential.

2.2 Metrics and Divergences on SPD
Manifolds

Several distance metrics have been developed for the
SPD manifold. Each of these metrics respects the
non-Euclidean structure of the manifold and is suited
for different computational and statistical tasks. The
most commonly used metrics include:

• The Affine-Invariant Riemannian Metric
(AIRM): introduced in (Pennec et al., 2006). The
AIRM computes the distance between two SPD
matrices P and Q as follows,

dAIRM(P,Q) = ∥ log(P−1/2QP−1/2)∥F (3)

where ∥ · ∥F denotes the Frobenius norm. One of
the appealing properties of AIRM is its invariance
under affine transformations, making it robust in
applications where invariance to scaling or linear
transformations is important.

• The Stein Divergence: has been proposed in
(Cherian et al., 2013) and is computed between
two SPD matrices P and Q as follows,

dStein(P,Q) = logdet
(

P+Q
2

)
− 1

2
logdet(PQ)

(4)
, This divergence is suitable for large-scale prob-
lems where computational efficiency is crucial.

• Jeffrey’s Divergence: It is another useful diver-
gence measure for SPD matrices and is defined
between two SPD matrices P and Q as follows as,

dJeffrey(P,Q) =
1
2
(
tr(P−1Q)+ tr(Q−1P)

)
−n,

(5)
where tr(·) is the trace operator and n is the di-
mensionality of the SPD matrices. Unlike AIRM,

it may not always capture the full geometry of the
SPD manifold, but it is computationally attractive
for certain applications.

• Log-Euclidean Metric:
This metric simplifies computations by treating
the manifold of SPD matrices as a flat space af-
ter applying the matrix logarithm. The distance
between two SPD matrices P and Q is given by,

dLEM(P,Q) = ∥ log(P)− log(Q)∥F , (6)

where ∥ · ∥F denotes the Frobenius norm.
While LEM is computationally simpler and faster
to compute than AIRM, it may not preserve cer-
tain affine-invariant properties, making it less suit-
able for tasks requiring such invariance (Arsigny
et al., 2007).

2.3 Frechet Mean on the SPD Manifold

The Frechet mean, introduced by Frechet (Fréchet,
1948), generalizes the concept of averaging from
Euclidean spaces to Riemannian manifolds. For a
set of symmetric positive definite (SPD) matrices
{P1,P2, . . . ,Pk}, the Frechet mean Pµ is defined as the
matrix that minimizes the expected sum of squared
distances under a specified metric, such as the Affine-
Invariant Riemannian Metric (AIRM).

Mathematically, the Frechet mean can be ex-
pressed as,

Pµ = argmin
P

k

∑
i=1

d(P,Pi)
2, (7)

where d(·, ·) denotes the geodesic distance between
SPD matrices. The computation of Pµ typically re-
lies on iterative optimization techniques, like gradient
descent.

This intrinsic mean provides a robust statistical
measure within the context of SPD matrices, effec-
tively capturing the manifold geometric structure.

3 PROPOSED EVALUATION
PROTOCOL

This section outlines the proposed evaluation proto-
col. We begin by reviewing the linear and non-linear
dimensionality reduction methods considered in this
work, followed by a detailed description of the vari-
ous data distribution configurations employed in our
experiments.
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3.1 Linear Dimensionality Reduction
Methods

3.1.1 Classical PCA

The traditional PCA approach involves the following
steps:

• Step 1 (Centering the Data). The first step is to
center the data by calculating the mean µ of the
dataset. Then, for each data point Xi, subtract the
mean µ to center the data around the origin as fol-
lows,

X′
i = Xi −µ. (8)

• Step 2 (Calculate the Covariance Matrix of the
Centered Data). The covariance C of the cen-
tered data is computed as follows,

C =
1
N

N

∑
i=1

X′
i(X

′
i)
⊤, (9)

where N is the number of data points.

• Step 3 (Eigen Decomposition). Perform eigen
decomposition of the covariance matrix C to ob-
tain the principal components. The covariance
matrix C can be decomposed as,

C = USU⊤, (10)

where U contains the eigenvectors (principal di-
rections), and S contains the eigenvalues.

• Step 4 (Data Projection). Step 4 (Data projec-
tion): Projecting the Data X′

i after obtaining the
principal components onto the principal directions
as described below,

Yi = V⊤X′
i (11)

where Yi represents the data in the new reduced
space. In our experiments, the SPD matrices are
flattened to match the linear requirements of the
traditional PCA.

3.2 Autoencoder on SPD Manifolds

As an alternative to PCA, a deep-learning based
strategy called auto-encoder has been introduced in
(Vincent et al., 2008) It aims at learning a lower-
dimensional latent representation by first encoding
the data in a lower dimensional space and then recon-
structing it through a decoder. The parameters of the
encoder and decoder are then learned by optimizing a
reconstruction error.
Autoencoder Architecture. The architecture that is
used in this paper is designed as follows (Hinton and
Salakhutdinov, 2006):

• Input Layer. Takes flattened SPD matrices as in-
put vectors. In our experiments, we consider only
3x3 matrices. Hence, the dimension of the input
vector is equal to 9.

• Encoding Layers. Four consecutive layers com-
press the input vectors down to the target dimen-
sion of 2. This is done progressively, with dimen-
sions reducing from 9 → 8 → 6 → 4 → 2. A
ReLU activation function is used at each layer to
introduce non-linearity.

• Decoding Layers. The decoding layers symmet-
rically reconstruct the compressed data back to its
original dimension. The process involves increas-
ing the data from 2 → 4 → 6 → 8 → 9 dimensions
without using an activation function at the output
layer.

Training Process. The Autoencoder is trained us-
ing the Mean Squared Error (MSE) as loss function,
which measures the reconstruction error. The Adam
optimizer is applied, and the network is trained over
100 epochs with a batch size of 32.
Dimensionality Reduction Results. After training,
the encoder part of the network is used to reduce the
SPD matrices to two dimensions. This compressed
representation forms the input for subsequent classifi-
cation tasks.

3.3 Non-Linear Dimensionality
Reduction Methods

3.3.1 Tangent PCA

Classical PCA does not account for the non-linear
geometry of the SPD space. Tangent PCA (tPCA)
(Fletcher and Joshi, 2004) addresses this limitation
by projecting data onto the tangent space of the man-
ifold at a reference point, typically the Frechet mean.
The tangent space serves as a linear approximation of
the manifold around this reference point, enabling the
application of standard linear techniques like PCA in
this locally flat space. The results are then interpreted
in the context of the original manifold. Below, we de-
tail the steps for implementing tPCA for Symmetric
Positive Definite (SPD) matrices:

• Step 1 (Compute the Frechet Mean). Given a
set of SPD matrices {Xi}N

i=1, compute the Frechet
mean µ using the iterative algorithm described
earlier.

• Step 2 (Map to Tangent Space). For each SPD
matrix Xi, map it to the tangent space at µ using
the logarithmic map: Yi = log(µ−1/2Xiµ−1/2).
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• Step 3 (Apply PCA). Perform PCA on the set
of tangent vectors {Yi}N

i=1 to obtain the principal
components and reduce the dimensionality.

• Step 4 (Map Back to the Manifold). Project the
reduced data back to the SPD manifold using the
exponential map: Zi = µ1/2 exp(Yi)µ1/2.

3.3.2 Harandi’s Method

In our work, we employ the supervised dimensional-
ity reduction method proposed by Harandi et al. (Ha-
randi et al., 2018), which projects high-dimensional
SPD matrices onto a lower-dimensional SPD mani-
fold while preserving class-specific structures. This
approach learns a transformation matrix W ∈ Rn×m,
where m < n, to map each X ∈ S n

++ into a lower-
dimensional SPD matrix WT XW ∈ S m

++. The lower-
dimensional representations retains critical informa-
tion for classification tasks. The mapping function
fW(X) = WT XW ensures that the transformed matri-
ces remain SPD, while the optimization process aims
to minimize intra-class distances and maximize inter-
class distances. To achieve this, affinity functions
gw(Xi,X j) (for within-class similarity) and gb(Xi,X j)
(for between-class dissimilarity) are used to define
an overall affinity function a(Xi,X j) = gw(Xi,X j)−
gb(Xi,X j). This affinity function drives the loss func-
tion L(W), which is optimized over the Grassmanian
manifold G(m,n), ensuring that W satisfies the uni-
tary constraint WT W= Im, preserving full-rank prop-
erties. The distances between SPD matrices are mea-
sured using metrics such as the Affine-Invariant Rie-
mannian Metric (AIRM), Stein divergence, or Jeffrey
divergence.

3.4 Data Generation Methodology

SPD matrices are generated through a controlled pro-
cess that begins by sampling points from a uniform
distribution within the tangent space of the SPD man-
ifold. The tangent space, being Euclidean, allows for
easier manipulation of data before projecting it back
onto the SPD manifold using exponential map. This
ensures the resulting symmetric matrices are valid
SPD matrices, adhering to the geometric constraints
of the manifold. The process is mathematically de-
fined as,

Ai = exp(Si), (12)
where

Si =
1
2
(M+MT ), and Mi, j ∼ U(a,b). (13)

Here, Si is a symmetric matrix sampled from a uni-
form distribution between bounds a and b, and exp de-

notes the matrix exponential. By varying the bounds
a and b, we control the variability and distribution of
the generated matrices.
Configurations of SPD Data Distributions. We de-
fine three distinct configurations to evaluate the meth-
ods under varying degrees of overlap between two
distributions (each one corresponding to one class) by
replacing a and b from Equation (13):

• Case 1 - Distant Distributions.

- Distribution 1: a=1,b=2
- Distribution 2: a=0,b=1

The clusters of SPD matrices are well-separated,
making this configuration ideal for testing dimen-
sionality reduction in clear-cut classification sce-
narios.

• Case 2 - Moderately Overlapping Distribu-
tions.

- Distribution 1: a=0,b=1
- Distribution 2: a=0.25,b=1.25

In this case, the distributions exhibit partial over-
lap, providing a moderately challenging classifi-
cation task with reduced separability.

• Case 3 - Highly Overlapping Distributions.

- Distribution 1: a=0 , b=1
- Distribution 2: a=0.125 , b=1.125

This setup represents the most complex scenario,
with significant overlap between distributions,
posing substantial challenges for dimensionality
reduction and classification.

For each configuration, 1000 data points per distri-
bution are generated, yielding a balanced dataset of
2000 matrices for training and evaluation. This en-
sures statistical significance and provides a compre-
hensive basis for assessing performance across differ-
ent methods.
Data Visualization. To provide a more intuitive il-
lustration of the data generation process, we visual-
ize the three SPD matrix distributions after projecting
them into a two-dimensional space as shown in Fig-
ure 1. The figure illustrates the degree of separation
or overlap across the three configurations. In case 1,
the clusters are clearly separated, while in the mod-
erately overlapping and highly overlapping cases, the
degree of entanglement becomes progressively more
pronounced. These visualizations highlight how vary-
ing the configuration affects the separability of data,
providing an intuitive understanding of the challenges
posed by each scenario.
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Figure 1: Visualization of the three distribution cases: (1)
Distant, (2) Slightly interwoven, and (3) Strongly interwo-
ven.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

This section outlines the experimental setup used to
evaluate the classification performance of dimension-
ality reduction techniques under different configura-
tion.

For classification, we employ the k-Nearest
Neighbors (k-NN) algorithm on datasets after apply-
ing each dimensionality reduction technique. The
classification performance is evaluated using accu-
racy, precision, recall, and F1-score with each experi-
ment repeated 10 times to compute the mean and the
standard deviation. The dataset is split into 80% for
training and 20% for testing. We leverage the Ge-
omstats library for the generation and manipulation
of SPD matrices, which provides a robust framework
for geometric learning and processing on Riemannian
manifolds (Miolane et al., 2020). Additionally, for
testing Harandi’s method, we use the official code re-
leased by the authors (Harandi et al., 2018; Boumal
et al., 2014).

5 RESULTS AND DISCUSSION

5.1 Method Comparison

Table 1 presents the classification performance of the
tested methods under the three considered data dis-
tribution cases. Note that in this table, Harandi’s ap-
proach is based on the Log-Euclidean distance. In

case 1, where the distributions are distant, all meth-
ods achieve 100% accuracy. In case 2, the results are
comparable across different methods where the dis-
tributions are slightly interwoven. Specifically, tan-
gent PCA and the Autoencoder show slightly higher
performance, with mean accuracies of 88.20% and
89.42%, respectively. On the other hand, classic PCA
and Harandi’s approach reach 88.03% and 86.69% of
mean accuracies, respectively. This slight discrep-
ancy indicates that, although all methods are effec-
tive, tangent PCA appears to slightly outperform other
approaches. In case 3, where the distributions are
strongly interwoven, the performance of the methods
significantly decreases. Tangent PCA exhibits a mean
accuracy of 69.33%, while Classic PCA, the Autoen-
coder and Harandi’s method record mean accuracies
of 69.40%, 70.80%, and 65.67%, respectively. Fig-
ure 2 shows the 2D visualization of the SPD matrices
after applying the various dimensionality reduction
techniques, demonstrating that the distribution con-
figurations are preserved, highlighting the need for
approaches that can better handle overlapping distri-
butions.

Figure 2: 2D Visualization of SPD matrices after dimen-
sionality Reduction.

5.2 Impact of the Metrics on Harandi’s
Method

In Table 2, we present the results of using Harandi’s
method with different metrics across the three config-
uration cases. The values for AIRM, Stein, Jeffreys,
Log-Euclidean, and Euclidean show a significant de-
crease in performance in Cases 2 and 3, highlighting
the challenges associated with highly overlapping dis-
tributions. For instance, the AIRM value for Case 3
drops to 0.656, indicating a loss of information when
projecting the data into tangent space. Overall, the
results are stable for the different metrics.
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Table 1: Comparison of Method Performance Across Different Cases.

Case Method Mean Accuracy (%) Standard Deviation (σ)
Case 1: Distant Distributions Tangent PCA 100.00 -

Classic PCA 100.00 -
Autoencoder 100.00 -

Harandi’s Method 100.00 -
Case 2: Slightly Interwoven Tangent PCA 88.20 1.09

Classic PCA 88.03 1.56
Autoencoder 89.42 1.67

Harandi’s Method 86.69 1.86
Case 3: Strongly Interwoven Tangent PCA 69.33 1.71

Classic PCA 69.40 1.99
Autoencoder 70.80 1.13

Harandi’s Method 65.67 3.10

Table 2: Performance of Harandi’s Method Across Different Metrics.

Case AIRM Stein Jeffreys Log-Euclidean Euclidean
Mean (%) Std. Dev

(σ)
Mean (%) Std. Dev

(σ)
Mean (%) Std. Dev

(σ)
Mean (%) Std. Dev

(σ)
Mean (%) Std. Dev

(σ)
Case 1 100.00 - 100.00 - 100.00 - 100.00 - 100.00 -
Case 2 86.56 1.47 86.69 1.86 86.66 1.48 86.03 1.60 85.74 1.61
Case 3 65.10 3.42 65.47 2.95 65.49 2.24 65.67 3.10 62.49 3.58

5.3 Classification Error According to
the Eigenvalue Range

In this section, we analyze the classification error
based on the minimal eigenvalue ranges of the Sym-
metric Positive Definite (SPD) matrices. The goal is
to explore the relationship between the geometry of
the SPD space, particularly the structure of its convex
cone, and the performance of dimensionality reduc-
tion methods, specifically classic PCA and tangent
PCA. By segmenting the data into minimal eigenvalue
ranges, we aim to evaluate how these methods per-
form across different regions of the SPD space, par-
ticularly in areas closer to the cone boundaries (where
non-linearity is more pronounced) versus more inter-
nal regions that are almost linear due to the convexity
of the SPD space.

To perform this analysis, we first calculate the
minimal eigenvalue of each SPD matrix, which in-
dicates how ”close” a matrix is to the boundary of
the convex cone. Matrices with smaller minimal
eigenvalues are closer to the boundary, where non-
Euclidean curvature is stronger. Conversely, matri-
ces with a larger minimal eigenvalue reside in regions
where the geometry of the space is locally Euclidean.
Then, we report in Figure 3 a histogram including
the classification error according to the range of min-
imum eigenvalues for case 2 and case 3.

The classification error is generally lower in the
bins corresponding to the largest minimal eigenval-
ues, indicating that classic PCA performs better in re-
gions of the cone where the geometry is almost linear.
This might be explained by the fact that the space SPD
is convex. But, surprisingly, classic PCA slightly out-

Figure 3: Classification Errors as a Function of Minimal
Eigenvalues Intervals.

performs tangent PCA in regions with very low mini-
mal eigenvalues. This might be due to the fact that nu-
merical issues may occur when computing the matrix
logarithm of SPD matrices with very small eigenval-
ues. Tangent PCA, on the other hand, outperforms its
classic counterpart for moderately low minimal eigen-
values.

In conclusion, while classic PCA excels in certain
scenarios, tangent PCA’s performance is notably in-
fluenced by the geometric properties of the data. This
study highlights the importance of understanding the
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underlying structure of data distributions when select-
ing dimensionality reduction techniques, particularly
in complex scenarios where traditional methods may
struggle.

6 CONCLUSION

In this study, we explored various dimensionality re-
duction techniques for Symmetric Positive Definite
(SPD) matrices, including both linear and non-linear
approaches. The results highlight the lack of robust-
ness of existing methods in handling overlapping dis-
tributions in a classification context. Interestingly,
linear and non-linear methods showed similar perfor-
mance with SPD matrices. Two possible explanations
could be: the convexity of the SPD space and the nu-
merical issues raised by the logarithmic calculation.

In future work, a deeper analysis of these methods
according to the local geometry of the SPD space is
needed to discard or validate these hypotheses. In-
vestigating dimensionality reduction in non-convex
spaces is also extremely relevant. Finally, we aim
to extend the dimensionality reduction methods for
SPD matrices to more complex configurations, such
as highly overlapping distributions.
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