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Abstract: Financial markets are known for complexity and volatility, and predicting the direction of price movement of
financial instruments is essential for financial market participants. This paper aims to use neural networks to
predict the direction of Apple’s share price movement. Historical stock price data on three Intraday timeframes
and technical indicators selected for each timeframe are used to develop and evaluate the performance of
various neural network models, including Multilayer Perceptron and Convolutional Neural Networks. This
research also highlights the importance of selecting appropriate technical indicators for different timeframes
to optimise the performance of the selected neural network models. It showcases the use of neural networks
within an ensemble architecture that tracks the directional movement of Apple Inc. share prices by combining
upward and downward predictions from the three short timeframes. This approach generates a trading system
with buy and sell signals for intraday trading.

1 INTRODUCTION

Historically, price movement predictions have re-
lied on statistical and mathematical methods, includ-
ing but not limited to Relative Strength Index (RSI)
(Singh and Patel, 2021), Fibonacci retracement (Chen
and Zhang, 2022) and moving averages (Gupta and
Sharma, 2023). The use of analysis methods using
technical indicators was widespread until the 2010s,
when advancements in computer power made it pos-
sible to manipulate market participants’ opinion using
false signals on popular technical indicators. Follow-
ing this, neural network based systems for analysing
financial markets began to emerge. However, they re-
quire significant computer power when analysing raw
transaction data for intraday trading (Lee and Chen,
2023).

Therefore, there is a need for more accurate,
and less labour-intensive methods of predicting price
trends, especially as financial markets face large in-
creases in data and transaction volume due to the ad-
vances in telecommunications technology as well as
market institutionalisation (Fabozzi et al., 2013). Ma-
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chine learning methods are widely used for their abil-
ity to handle large datasets and non-linearities in data
(Ogulcan E. Orsel, 2022).

This paper focuses specifically on predicting
the directional movements of prices for Apple Inc.
(AAPL) across multiple Intraday Trading (IT) time-
frames. Each timeframe is characterized by a dif-
ferent intraday trading frequency and employs a dis-
tinct Neural Network (NN) architecture. The goal
is to develop a system that uses combined analyses
from different timeframes to determine the accuracy
of optimal buy or sell decisions on an intraday basis.
This strategy aims to make use of volatility, thus in-
creasing the probability of compounding small prof-
its from minor price changes but many times. The
approach of multiple timeframes is inspired by the
Alexander Elder trading strategy, also known as the
triple-screen trading system. This strategy monitors
three timeframes of the same price trend data, differ-
ing in frequency, using appropriate technical indica-
tors to observe long, medium, and short-term trends
(Elder, 1993), thereby creating a more robust overall
trading strategy. The choice of using AAPL was made
because Apple Inc. is one of the most recognizable
and heavily traded securities on the stock market, pro-
viding an excellent use case for futures price move-
ment forecasting using neural networks. Also, Apple
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Inc. has been a publicly traded security for a long
period, hence historical price data spanning several
years is publicly available. The availability of data
makes AAPL ideal for developing and testing neural
network models for predicting price movements. Fi-
nally, the high liquidity and volatility of AAPL shares
represent opportunities for intraday trading, making
it a suitable subject for high-frequency trading strate-
gies. By focusing on AAPL, this study aims to pro-
vide insights that can be generalized to other securi-
ties and commodities in the futures market, thereby
contributing to the broader field of financial forecast-
ing and trading.

To achieve this aim, the following objectives have
been established:

• Develop and evaluate classification models in a
parallel ensemble architecture, utilizing historical
intraday data from the AAPL ticker across three
different timeframes.

• Explore the impact of different technical indica-
tors on the accuracy of the predictions.

• Demonstrate the use of the triple screen trading
philosophy of Dr. Alexander Elder (Elder, 1993)
using new capabilities provided by machine learn-
ing and neural networks.

• Combine the predictions from the parallel ensem-
ble architecture to calculate the final accuracy of
the trading system.

The rest of this paper is organised as follows: Sec-
tion 2 investigates the literature and state-of-the-art
studies on the topic; Section 3 describes the dataset,
the technical indicators and the Neural Networks em-
ployed for this research; Section 4 outlines the results;
Section 5 provides discussion about the results and
experiments; finally the conclusions are drawn in Sec-
tion 6.

2 LITERATURE REVIEW

Traditional methods of financial market analysis de-
pend heavily on statistical analysis of historical stock
price data and other variables known as economic or
technical indicators and sentiment indicators (Bollen
et al., 2011). Methods such as time series analy-
sis and the concept of moving averages have reg-
ularly been used in stock price forecasting and are
still widely used for short-term forecasting (Smith
and Williams, 2022). Autoregressive Integrated Mov-
ing Average (ARIMA) models’ level out fluctuations
in pricing to identify trends present in the data (Pa-
tel and Verma, 2024), economic technical indicators

like Relative Strength Index (RSI) present percep-
tions of market movements which include upward
and downward trends (Garcia and Rodriguez, 2022).
The major problem, however, is traditional methods
have difficulty in interpreting nonlinear movements,
and this makes them sensitive to market fluctuations
(Lee and Chen, 2023). To this end, the use of ma-
chine learning methods has been employed exten-
sively over the years with the aim of accounting for
such fluctuations and achieving better predictive ac-
curacy(Dhruhi Sheth, 2022). Neural networks are
more effective than Traditional statistical methods in
handling nonlinear financial data (Shah and Kumar,
2022).

In (Manickavasagam et al., 2020), the authors ex-
plored hybrid modelling techniques to forecast the
future prices of WTI (West Texas Intermediate) and
Brent crude oil with the primary objective of improv-
ing the accuracy of crude oil price forecasting. The
experiments demonstrated that hybrid models com-
bined with certain model optimization techniques like
IPSO (Improved Particle Swarm Optimisation) and
FPA (Flower Pollination Algorithm) significantly im-
prove the accuracy of crude oil price forecasts. The
idea of deriving technical indicators from historical
price data and using them as inputs or features for
training was particularly useful and was adopted for
the purpose of our research.

Forecasting directional movements of stock prices
for intraday trading using Long Short-Term Memory
(LSTM) and Random Forests is presented in (Ghosh
et al., 2022). The authors’ goal was to outperform-
ing traditional market benchmarks by leveraging ad-
vanced machine learning techniques. The experiment
demonstrated that incorporating multiple features, in-
cluding opening prices and intraday returns, into the
ML models improved the prediction accuracy and
trading performance. Both LSTM networks and Ran-
dom Forests were effective in forecasting stock price
movements, with LSTM networks showing a slight
edge in performance. We found the concept of using
historical stock price data for the prediction of direc-
tional movements of stock prices to be valuable for
our research purposes.

Another interesting approach for forecasting stock
index futures intraday returns is presented in (Fu
et al., 2020). The authors have used a functional time
series model in combination with the Block Mov-
ing (BM) technique that provided superior dynamic
forecasting for stock index futures compared to tra-
ditional point prediction methods. This approach bet-
ter captures intraday volatility and market microstruc-
ture, enhancing forecasting accuracy. The paper em-
phasizes the advantages of functional data analysis in
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financial forecasting, particularly in high-frequency
trading environments, where traditional methods may
fall short. The dynamic nature of the model allowed
for more accurate and real-time predictions, crucial
for financial decision-making.

The potential of neural networks in forecasting
financial market volatility is also demonstrated in
(Hamid and Iqbal, 2004). The importance of data
pre-processing, variable selection and proper network
training in achieving accurate predictions are well
highlighted in the paper.

Despite many papers on forecasting financial in-
strument prices, there is a significant gap in simulta-
neous chronometer analysis of several time-frame sets
using neural networks. Solving this issue is the prin-
cipal scientific novelty of this paper.

3 METHODS

This section covers various aspects of this research,
including the dataset, the technical indicators used in
each timeframe, the labelling algorithm, and the neu-
ral networks employed.

3.1 Dataset

The dataset for this research consists of Apple Inc
(AAPL) data across the following three intraday time-
frames:

• 5-minute timeframe : 47,350 rows (70% of data)

• 15-minute timeframe: 15,963 rows (24% of data)

• 60-minute timeframe : 3,994 rows (6% of data)

The total number of rows is 68,307 with raw data
features including open, high, low, close and volume.
The data was accessed and downloaded from Alpha
Vantagethrough their API, selected for several rea-
sons, with the primary one being the ease of access
it offers, allowing for straightforward retrieval of data
through API calls.

The technical indicators were extracted from the
raw dataset and used as derived features. In this
research, the following technical indicators are also
included in the input data: momentum, volume,
moving averages, and directional indicators. These
technical indicators are distributed across three time
frames.

Short-Term Timeframe (5 Minutes)
This timeframe is used for analysing charts that focus
on shorter-term movements, typically on an intraday
or very high-frequency basis, such as hourly or every

couple of minutes (Achuthan and Hurst, 2021). The
aim of these charts is largely for determining the most
precise entry and exit points form the trends. Price
action (i.e. logic) is usually tested on the short-term
timeframe for the timing of trades (especially on an
intraday basis). For the purpose of this research, the
technical indicators On-Balance volume, parabolic
stop and reverse (parabolic SAR) and Williams Per-
cent Range (Williams%R) of the closing prices were
chosen for the short-term timeframe.
Medium-Term Timeframe (15 Minutes)
This timeframe is used for analysing charts that are
typically medium-term (i.e. daily charts) (Achuthan
and Hurst, 2021). The aim of these charts is largely
for determining the potential entry points based on
long-term trends seen in the longer term charts. For
the purpose of this research, the technical indicators
Exponential Moving Average, Alligator, Average Di-
rectional Index and Stochastic Oscillator of the clos-
ing prices were chosen for the medium-term time-
frame.
Long-Term Timeframe (60 Minutes)
As the name implies, this timeframe is used for
analysing charts that are typically longer term (i.e.,
weekly or monthly charts). The purpose of these
charts is largely to determine the long-term trends
(Achuthan and Hurst, 2021). For the purpose of
this research, the technical indicators Moving Aver-
age Convergence Divergence, Relative Strength In-
dex, Bollinger Bands and On-Balance-Volume of the
closing prices were chosen for the long-term time
frame.

The choice of these sets of technical indicators for
each of the above timeframes was determined by the
analysis of numerous empirical experiments that are
not of significant value to this paper.

3.2 Labelling Algorithm

The labelling algorithm is defined to classify the
movements of closing prices at each time interval
and for each timeframe into three categories: upward
(up), no action (wait) and downward (down) move-
ments. In order to achieve an accurate labelling al-
gorithm for the closing prices of each interval, there
are a number of inputs, with the first being the take
profit and stop loss levels denoted as take profit and
stop loss. In addition to these inputs, we include the
Returns, std deviation of asset returns (interpreted
as typical volatility(σ)), the Multiplier (a function
of individual risk appetite) and future returns (the
price change between the current closing price and
the closing price of the immediate future interval).
The multipliers are usually determined by the risk ap-
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petite of the individual investor and are used to arrive
at the take-profit or stop-loss figure as a multiple of
the volatility.

Equations 1 - 4 are the mathematical interpreta-
tions of the labelling algorithm:

Rt =
Pt −Pt−1

Pt−1
(1)

where Rt is the Return at time t, t is the time of the
current interval, t −1 is the time at the previous inter-
val, and P is the price of the asset at t.

σ =

√
1

N −1

N

∑
i=1

(Ri − R̄)2 (2)

where σ denotes the Volatility, Ri is the Return at the
current interval, R̄ is the mean of the returns and N
is the number of returns or the number of intervals
per timeframe. Thus volatility in this context refers to
the degree of variation of trading price from the mean
over time.

FCt =Closet+1 (3)

FCt is the Future Close Price, t is the time at the cur-
rent interval and t + 1 is the time at the immediate
following interval.

PCt =
FCt −Closet

Closet
(4)

where PCt denotes the Price Change at time t, t is the
time at the current interval.

The aim of this labelling approach is to hit as
many take-profit points as possible within the trad-
ing day while minimising the probability of loss. To
achieve this, different multipliers are used for take-
profit and stop-loss points, indicating a higher risk
associated with stop-loss compared to take-profit.A
greater number of take-profit points reflects the ob-
jective of maximising profit settlements, whilst fewer
stop-loss points suggest a willingness to take on more
losses but less frequently. Thus:

stoploss =−multiplier ∗ volatility(σ) (5)

and

takepro f it = multiplier ∗ volatility(σ) (6)

For the purpose of this research, stop-loss value
is a magnitude of 2 higher (as a number and not in
value) than take-profit.

Finally, in differentiating the upward and down-
ward signals, we define certain rules in the code as it
can be seen in the pseudo-code 1

After the labels are created, they are further clas-
sified in two ’attention’ and ’wait’ categories where

while PCt > takepro f it do
signal = UP;
if PCt <= stoploss then

signal = DOWN;
else

Signal = WAIT;
end

end
Algorithm 1: Labelling Algorithm.

attention consists of the upward and downward sig-
nals. These are then used in the first phase of training
and testing as two classes. Figure 1 represents the re-
sults on closing prices after the labelling Algorithm 1
is applied.

Figure 1: Result of Labelling algorithm on closing price as
interval (5 minute interval).

In the second phase of training and testing, only
the attention class from the previous phase is con-
sidered. This class is further split into up and down
classes which are then trained and tested on a set of
three neural networks, each corresponding to a differ-
ent timeframe.

3.3 Neural Network Architecture

The neural network models used in this research in-
clude Multi-Layer Perceptrons (MLP) and Convolu-
tion Neural Networks (CNN). Table 1 shows the neu-
ral networks used in this research and some of their
properties.

Table 1: First and second phase Neural Network character-
istics.

Timeframe Model Num of Features Resampling Method Loss Function

5 min CNN 5 SMOTE Binary cross-entropy
15 min MLP 6 SMOTE Binary cross-entropy
60 min CNN 6 SMOTE Binary cross-entropy

The authors conducted several experiments with
different sets of hyperparameters for each of the neu-
ral network architectures used. The combinations of
hyperparameters that showed the highest results are
described below.
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Multi-Layer Perceptrons (MLP)
The MLP models used are feed-forward neural net-
works consisting of three dense layers with 64 neu-
rons each, and the Rectified Linear Unit (ReLU) as
the activation function. The Keras API with Tensor-
Flow backend was used for implementation with a bi-
nary cross-entropy loss function. Dropout layers set
20% of the neurons to 0 during training to prevent
overfitting. MLP models were used in the 15-minute
timeframe.
Convolutional Neural Networks (CNN)
The CNN’s layers include convolutional, pooling,
flattening, dense and dropout layers as described be-
low.
Convolutional Layers: These layers extract features
from the input data using filters. The first convolu-
tional layer has 64 filters and a kernel size of 1. Sub-
sequent layers use 128 filters and apply the ReLU ac-
tivation function for non-linear feature extraction.
Pooling Layers: Two pooling layers with a pool size
of 2 are used to reduce the dimensionality of the fea-
ture maps, allowing the network to focus on the most
significant features.
Flatten Layer: Converts the pooled feature maps into
a one-dimensional vector, which is fed into the dense
layers. Dense Layers: These fully connected lay-
ers consist of 64 neurons that use the ReLU acti-
vation function and perform the final classification
tasks. Dropout Layer: A dropout layer with 50%
dropout is applied to prevent overfitting by randomly
disabling half of the neurons during each training it-
eration. Output Layer: The final layer uses a sigmoid
activation function for binary classification tasks, pro-
ducing a probability for each class.

4 RESULTS

4.1 First Phase Results (Attention &
Wait Signals)

In the first phase, each individual model’s ability to
precisely detect Attention and Wait signals is tested.
Since the original dataset after the labelling process
is unbalanced, precision (see equation 7) the primary
metric used for evaluation.

precision =
(T P)

(T P+FP)
(7)

The precision values of each Attention and Wait
classes in the ensemble architecture as well as the
overall precision values for each neural network were
recorded. When Attention values are matched across

all three timeframes, the Attention output from the
first stage was accepted. This led to a significantly
reduced input for analysis in the second stage, which
no longer contained imbalance, which is more preva-
lent in the Attention and Wait datasets, resulting in a
more realistic outcome (Jin et al., 2022).

Tables 2, 3, 4, and 5 show the results of perfor-
mance metrics from the training (60%) and test(40%)
sets of the Attention (0) and Wait(1) phases, as well as
the overall results for the training and test sets. Figure
2 represents the visualisation of the precision scores
on the test sets.

Table 2: Class performance of models in the Attention and
Wait classification training sets.

Class (timeframe) Model Precision % Recall % F-score %

0 Attention (5-min) CNN 72 78 75
1 Wait (5-min) CNN 76 70 73
0 Attention (15-min) MLP 52 55 54
1 Wait (15-min) MLP 52 49 50
0 Attention (60-min) CNN 50 61 55
1 Wait (60-min) CNN 47 37 41

Table 3: Class performance of models in the Attention and
Wait classification test sets.

Class (timeframe) Model Precision % Recall % F-score %

0 Attention (5-min) CNN 72 77 74
1 Wait (5-min) CNN 76 70 73
0 Attention (15-min) MLP 57 52 54
1 Wait (15-min) MLP 56 61 59
0 Attention (60-min) CNN 69 58 63
1 Wait (60-min) CNN 64 74 69

Table 4: Overall performance of models in the Attention
and Wait classification training sets.

Model (timeframe) Precision % Recall % F-score % Accuracy %

CNN (5-min) 74 74 74 74
MLP (15-min) 52 52 52 52
CNN (60-min) 49 49 48 49

Table 5: Overall performance of models in the Attention
and Wait classification test sets.

Model (timeframe) Precision % Recall % F-score % Accuracy %

CNN (5-min) 73 73 73 73
MLP (15-min) 55 54 54 54
CNN (60-min) 66 66 66 66

As it can be seen from Tables 3 and5 and Figure
2, the highest precision of recognition of Attention
and Wait signals is demonstrated on 5-minute and 60-
minute time frames during validation on test sets.

4.2 Second Phase Results (Upward &
Downward Signals)

The training and testing evaluation metric measured
for the NNs in this phase is accuracy (see equation 8).

accuracy =
(T P+T N)

(T P+T N +FP+FN)
(8)
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Figure 2: Precision values on Test sets of Attention and Wait
classification NNs.

The accuracy values of each Up and Down class in
the ensemble architecture of the second phase, as well
as the precision and recall values for each neural net-
work were recorded. Macro average values were se-
lected for the overall values recorded, as they account
equally for each class in the classification task. This
approach is appropriate since the imbalance in the Up
and Down datasets is far lower than in the Attention
and Wait datasets. (Jin et al., 2022). Tables 6, 7,
8, and 9 represent the results of performance metrics
achieved for the training(60%) and test(40%) sets of
the Up(0) and Down(1) phase as well as the overall
results for the training and test sets.

Table 6: Class performance of models in the Up and Down
classification training sets.

Class (timeframe) Model Precision % Recall % F-score %

1 Up (5-min) CNN 61 50 55
0 Down (5-min) CNN 59 70 64
1 Up (15-min) MLP 56 61 59
0 Down (15-min) MLP 58 53 56
1 Up (60-min) CNN 64 68 66
0 Down (60-min) CNN 68 64 66

Table 7: Class performance of models in the Up and Down
classification test sets.

Class (timeframe) Model Precision % Recall % F-score %

1 Up (5-min) CNN 60 43 50
0 Down (5-min) CNN 53 70 61
1 Up (15-min) MLP 56 61 59
0 Down (15-min) MLP 57 52 54
1 Up (60-min) CNN 64 61 62
0 Down (60-min) CNN 62 61 62

Table 8: Overall performance of models in the Up and
Down classification training sets.

Model (timeframe) Accuracy % Recall % F-score % Precision %

CNN (5-min) 60 60 60 60
MLP (15-min) 52 52 52 52
CNN (60-min) 66 66 66 66

Figure 3 represents the visualisation of the accu-
racy metric on the test sets for each timeframe in the
second (Up & Down) phase.

Table 9: Overall performance of models in the Up and
Down classification test sets.

Model (timeframe) Accuracy % Recall % F-score % Precision %

CNN (5-min) 53 56 56 57
MLP (15-min) 52 57 56 57
CNN (60-min) 56 63 63 63

Figure 3: Visualization of the accuracy values for test sets
of Up and Down classification neural networks.

As seen from the Tables 7, 9 and Figure 3, the
overall accuracy on test sets is reduced; however,
combining the predictions using ensemble of the
triple timeframe increases final accuracy significantly.

4.3 Final Phase Results (Overall
Upward & Downward Prediction)

Finally, the total accuracy of the triple timeframe sys-
tem (5-min, 15-min and 60-min) is calculated by syn-
chronising the predictions in each timeframe and di-
viding the final number of upward signals by the total
number of signals on a given trading day, and convert-
ing the answer to a percentage. Upward signals on a
given trading day are correct responses, considering
the predictions of the triple timeframe system up dur-
ing this day. Figure 4 represents the visualisation of
the final up and down data points from which final
accuracy is determined.

Figure 4: Visualisation of buy and sell signals for 1st trading
day.

Figure 4 show a total of 25 (22 Buy (green dots)
and 3 Sell (red crosses)) signals for the given trading
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day. The accuracy of the system on this trading day is
88%, as calculated in equation 9.

Accuracy =
22
25

∗100 = 88% (9)

Using a single time frame as input usually demon-
strates lower levels of accuracy; for example, 61% ac-
curacy was shown in (Qin, 2024) to predict the AAPL
stock trend.

5 DISCUSSION

This section outlines the rationale behind key deci-
sions made regarding the overall research direction.
It covers several aspects including the use of tech-
nical indicators, historical stock price data for deriv-
ing technical indicators and the multiple timeframe
ensemble architecture which was modelled after the
triple screen trading strategy of Dr. Alexander Elder
(Elder, 1993).

5.1 Triple Timeframe Predictive
Ensemble Model

Technical indicators are used in addition to price data
in training different neural networks across three dif-
ferent timeframes and two phases of training. The
first phase classifies signals into classes suggesting
action (Attention) and inaction (Wait), whilst the sec-
ond phase focuses on classifying the attention signals
into two classes predicting upward or downward price
movement. This approach is novel, as although pre-
vious studies have employed the triple screen trading
strategy of (Elder, 1993), which inspired the use of
three timeframes, the combination of multiple train-
ing phases for different specific purposes and the use
of technical indicators as features, has not been ex-
plored. Additionally, it is worth mentioning that the
signals, which were used for the labelling of the up-
ward and downward movement of the prices, were en-
tirely derived from the closing price volatility, mak-
ing another unique aspect of this research. Typically,
volatility is determined using concepts such as bid-
ask spread (Milke, 2023), Average True Range (ATR)
and True Range (TR) (Team, 2022).

5.2 Final Accuracy

The approach explored in this research involves
analysing the predictions made by each neural net-
work model across different timeframes in a time-
synchronised manner. Following this, a decision is
made by determining whether the predictions at each

time step in each timeframe coincide with those on
the other two timeframes. If the answer is yes, then
the uniformity suggests a ’Buy’ signal (final ”1”) or a
‘Sell’ signal (final ”0”). If the answer is no, the lack of
uniformity across the timeframes indicates inaction.
Thus, the final accuracy is calculated by dividing the
number of ‘buy’ signals by the total number of signals
and the result is the probability of accuracy.

This ensemble approach to making a final deci-
sion allows for an increase in the forecast accuracy
of the direction of the future movement of the stock
and, therefore, reduces the risk of an incorrect deci-
sion. Focusing on many small profits accelerates the
capital increase, just as small daily interest payments
increase capital many times over due to the compound
interest formula.

6 CONCLUSIONS

This paper explores the use of neural networks to pre-
dict the directional movement of stock prices on intra-
day trading using an Apple Inc. case study. The pa-
per describes the integration of multiple timeframes
of intraday data, using technical indicators as features
for several neural networks, such as CNN and MLP,
within an ensemble architecture. The use of stock
price data to predict the directional movement of fu-
tures introduces some limitations, as futures market
data have distinct properties that are not captured in
stock price data. As such, further refinements are
needed, in line with future work, to optimize perfor-
mance for practical trading applications. Overall, this
paper offers novel findings into the use of neural net-
works for financial forecasting in intraday trading.

A potential future direction for this research is
scalability across other securities and using a more
robust measure of volatility, such as Average True
Range (ATR) or True Range (TR) in order to account
for the full range of price volatility. The exploring of
price movement patterns can be done with Japanese
candlesticks (Milke, 2023). This approach cold be
also applied to futures contracts as well as other fi-
nancial instruments other than stocks, thus account-
ing for the difference in structure of futures data and
other financial instruments.
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