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Abstract: In computer security, the principle of least privileges or denial by default is a practical approach to mitigate the
risk against potential attacks. However, providing least-privileged applications is a challenge without source
code modification, system privilege, or configuration changes. In this paper, we introduce Leash, a transparent
application sandboxing supervisor for Unix systems designed based on FreeBSD’s Capsicum framework.
Leash provides required resources to programs based on sandbox restrictions and policies predefined by the
user without requiring root privilege. The approach is transparent to the code and the user, eliminating the
need for any source code modification and deep knowledge about the underlying security framework. We
evaluated this system by sandboxing a set of widely used Unix utilities and real-world installer scripts. Leash
is designed to be expandable for becoming a general-purpose sandboxing service for Unix. Our evaluations
show that the system achieves robust security while maintaining efficient performance.

1 INTRODUCTION

The principle of least privilege, also known as "deny
by default", is a fundamental strategy for mitigat-
ing security risks. For applications exposed to un-
trusted networks, enforcing least-privilege execution
enhances both the security of the application and the
underlying host system. However, implementing this
principle in applications is challenging, especially
without extensive code modifications or system con-
figuration changes.

In Unix, installing many applications involves
downloading files and executing shell scripts, often
with elevated privileges (i.e., root). This includes de-
velopment tools, libraries, and system management
utilities. Installer scripts are attractive targets for ma-
licious actors, particularly in open-source software.
Thus, protecting users and developers from harmful
installation scripts and supply chain attacks is essen-
tial.

In this paper, we present Leash, a system designed
for transparent sandboxing of applications in Unix en-
vironments without requiring root privilege. Leash
offers a lightweight sandboxing mechanism, that runs
an application with least privileges. It is built on Cap-
sicum, a sandboxing framework for FreeBSD. Leash
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establishes a user-level sandboxing environment with
Capsicum capabilities, granting only the essential ac-
cess privileges to the executing process. Leash pro-
vides two levels of transparency:

• Code transparency: Leash does not require modi-
fying the target’s source code.

• User transparency: Leash does not require users
to have in-depth knowledge of Capsicum.

This paper is organized as follows: Section 2 pro-
vides essential background information. Section 3
discusses key challenges in designing a transparent
sandboxing system. Section 4 describes the internal
design, including the framework and policies. Section
5 outlines our evaluation methodology and discusses
key findings. Related work is reviewed in section 6.
Future work is covered in section 7, and section 8
summarizes this study, including the conclusions.

2 BACKGROUND

Leash is designed based on FreeBSD, which features
a capability-based framework in its kernel called
Capsicum (Watson et al., 2010). Capabilities are un-
forgeable tokens of authority that authorize process
access to resources (Fabry, 1974; Dennis and van
Horn, 1975; Anderson, 1972).
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In capability-based systems, capabilities are tied
to resources, such as files. They are also known as
object capabilities. Different processes can have dif-
ferent access rights to the same resource. While pro-
cesses can pass capabilities to one another, they can-
not elevate them. Capabilities are unforgeable, allow-
ing the platform or kernel to verify their validity and
prevent unauthorized changes. So, capability-based
systems can enforce the principle of least privilege,
enabling fine-grained, flexible, and dynamic permis-
sion management.

2.1 Capsicum

In Capsicum, capabilities are implemented in the
structure of file descriptors that reference system re-
sources. In Capsicum’s capability mode, entered by
calling cap_enter(), access to global namespaces
will fail. Processes can only access resources for
which they have capabilities. This restriction will be
applied to the running process and its further descen-
dants.

Capsicum has three categories of system calls:
disallowed functions, conditionally allowed func-
tions, and allowed functions. System calls that try
to gain new access to global namespaces of the sys-
tem, such as open(2), connect(2), mkdir(2), and
wait4(3), are all disallowed. Conditionally allowed
functions are safe functions that can gain unsafe privi-
leges under some circumstances. For example, calling
open(2) with AT_FDCWD set as the file descriptor tries
to open a file in the current working directory.

Capsicum offers a secure, restricted environment
to enhance application safety. However, adapting to
Capsicum’s sandbox requires significant changes to
source code. Developers must replace unsafe global
namespaces access with least-privileged ones, which
also requires in-depth knowledge of the operating sys-
tem and Capsicum. Section 4 outlines our approach in
addressing these challenges, and describes how Leash
balanced security and functionality to enable more ap-
plications to run safely within Capsicum’s sandbox.

2.2 Linux Capabilities

Linux uses the term "capability" to refer to dis-
tinct units of privilege, which subdivide the tradi-
tional superuser (root) privileges into a more gran-
ular model. This allows root users to be granted
different levels of access to critical system re-
sources (Linux man-pages project, 2024; Linux man-
pages project, 2022). For example, capabilities like
CAP_AUDIT_READ, CAP_KILL, and CAP_CHOWN enable
a process to read audit logs, terminate other pro-

cesses, and change file ownership, respectively. Set-
ting Linux capabilities needs root privilege. This is
an entirely distinct concept from the object capabil-
ities described above, which refer to individual ob-
jects, such as files, and do not require root privilege to
use.

3 CHALLENGES IN DESIGNING
SANDBOXING SYSTEMS

Designing a sandboxing system is challenging. As
the primary concern, the sandboxing system should
isolate the target program by making an adequately
confined environment that is not circumventable. As
described in section 6.1, existing sandboxing tools
are either not capable of providing such security or
need invasive modifications and complicated configu-
rations. Many existing tools and OS features provide
isolation by restricting the program to a specific file
system hierarchy. However, file system restriction is
not enough for sandboxing applications that can ac-
cess other resources, such as the network.

Many existing applications have not been de-
signed with security in mind. Securing such applica-
tions with existing sandboxing features is either im-
possible or needs modifications on the source code,
which is a challenge for those with massive code
bases. Hence, transparent sandboxing is required.

Here are the most important problems we resolved
during the design and implementation of Leash:

1. Process management: The target process should
be able to fork, execute, and wait for its descen-
dants. The significant point is that the forked
or executed processes should also operate in the
sandbox mode. The challenge is that the super-
visor cannot control the target’s descendants be-
cause they are not processes forked by the super-
visor directly. However, the supervisor can be in-
formed of such function calls to prepare for future
requests and an under-control environment. Sec-
tion 4.1 explains more details about this issue and
our solution to control it.

2. Remote connections: One challenge in control-
ling the target’s connections is the complexity of
connecting to remote servers, such as connect-
ing to the internet. DNS resolving and internet
communications can take more time, and manag-
ing TCP/IP communication should be handled on
the server side. The inter-process communication
(IPC) between the supervisor and the target pro-
cess should be carefully designed to take these
considerations into account.
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3. Circular dependencies in GNU Standard C Li-
brary (libc): in section 4.4, we described how we
handled transparent behaviour changing through
function interposition. However, the design of an
interposition technique can be limited based on
various reasons. One of these challenges is the
existence of circular dependencies in the targeted
set of functions.

4. Process context limitations: Each process has a
distinct context and a set of environment vari-
ables, which may be inherited from its parent pro-
cess. One management problem for the supervisor
process is the changes that happen to this context,
such as changing the current working directory or
re-initialization of global variables that happens
after calling exec() functions. The supervisor
process needs to be updated about these changes
to update the assumptions for further required
decision-making. We handled these cases in the
interposition library described in section 4.4.

4 DESIGN AND
IMPLEMENTATION

In this section, we explain the internal design of
Leash, and development challenges. Figure 1 shows
an abstraction of Leash’s main modules integrated to
form a system for executing the client program in
Capsicum’s sandbox mode. Our design is divided into
four main modules: the supervisor server, the policy
management module, the command handler, and the
interposition library.

The supervisor process calls the policy manager
to initialize the policies defined for the client pro-
gram specifically. The loaded definitions will be used
to provide necessary environment variables and re-
sources, including pre-loaded files and libraries, prior
to executing the target(client) program. The super-
visor establishes an IPC1 mechanism between itself
and the client for further expected communications.
Finally, the supervisor executes the client program in
the sandbox mode. From this point on, every disal-
lowed function will be either interposed and proxied
to the supervisor for decision-making or fail due to
capability violations.

4.1 Supervisor Server

The main thread of the supervisor process is responsi-
ble for providing required environment variables, pre-
opening the necessary libraries and a pre-established

1Inter Process Communication

Figure 1: Leash’s different modules and their integration.

connection for communication between the supervi-
sor and the client processes, loading the policies, and
serving commands proxied to the command handler
threads. Figure 2 demonstrates this procedure.

After the supervisor fetches all the required infor-
mation for executing the target program, it forks. The
parent process continues to initiate a server thread,
and the child process goes on and enters the sandbox
mode by calling cap_enter() and executes the target
program. From this point on, every disallowed func-
tion will be either interposed or failed. The disallowed
system calls that are not supported in the current de-
sign will fail due to capability violations. Those sup-
ported will be interposed by the interposition library,
which determines whether to wrap or proxy them. Ta-
ble 1 lists all the supported system calls in the current
design. The proxied requests will be considered as
commands, described in section 4.2.

The server can handle parallel commands as
demonstrated in fig. 2. The reason is that the client
process can fork in capability mode, and the de-
scendants are as restricted as their parent processes.
The supervisor server initializes a new connection
and command handler for each new process. Hence,
Leash can support the target and its descendants sep-
arately, also handles process management requests.

4.2 Command Handler

When the interposition library intercepts a disallowed
function call, it will be proxied to the Supervisor
Server if it cannot be handled on the client’s side. We
refer to a proxied call as a command delegated to the
server. The Command Handler module extracts a new
command from the received information. To manage
the request, the newly made command checks the re-
quest with the Policy Manager module, interacts with
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Figure 2: The supervisor multi-threaded request handling.

the user if needed, and will do the changes required
on behalf of the client process if:

1. The request does not conflict with any of the pre-
defined policies.

2. The user allows the program to proceed if asked.

When the command is resolved and done, the out-
put will be returned to the client as feedback, and the
serving thread will be prepared to handle the follow-
ing probable command. The supervisor process does
not change the functionality of received commands
but may update policies based on served requests.

4.3 Policy Management

Leash is designed to be an interactive system de-
pending on how it is specified by the user as poli-
cies. The policies are meant to be defined in a file
written in UCL format (UCL Documentation, 2014).
Leash loads the policy file, defines the required envi-
ronment variables, and pre-opens necessary libraries
before executing the target program in the sandbox.

The policy file is expected to include three main
sections for accessing pathnames, networking, and
system control requests. These sections should be la-
belled as path, net, and sysctl, respectively. Each sec-
tion of the policy contains the resources that are ad-
dressed by a unique name, such as an absolute address
to a file. The minimum required access privileges
are specified following the resource name. When a
request is received from the client process, the be-
haviour will be determined based on the loaded poli-
cies. Each section should include an entry labelled as
"others", which determines the behaviour of the sys-

Listing 1: Sample policy specification for sandboxing
curl(8) by Leash.

paths {
" ./ curl_cmd.sh" :

open|read | write | exec | lookup|seek;
" /dev/ crypto" :

open| create | read | write | exec | lookup|seek;
" / usr /bin / curl " : open|read ;
others : ask;

}

net {
"172.217.13.100": connect ;
others : ask;

}

sysctl {
"net . inet . ip . forwarding": read ;
"hw.cachesize" : read ;
others : deny;

}

tem in case the resource is not listed in the policy file.
Hence, we can define different default actions for cat-
egories of resources. When the target process tries to
access to unspecified resources, the system behaves
based on the policy defined for "others" in the corre-
sponding section, as explained below:

• ALLOW: The supervisor allows the command to
proceed with the command.

• DENY: The supervisor denies the command and
returns a failure message to the target process.

• ABORT: The supervisor kills the client process.

• ASK: The supervisor asks the user if the request
is allowed to proceed.

Listing 1 includes a sample used for curl(8) command
to download a file. At the current state, we need to ad-
dress every single required pathname, explicit IP ad-
dresses, and system control variable names. However,
as described in section 7, one of the future work to do
is making policy definition more convenient in Leash.

4.4 Function Interposition

The interposition library is one of the resources pro-
vided by the supervisor process for the target pro-
gram. The supervisor sets the LD_PRELOAD environ-
ment variable to address the interposition library. By
setting the LD_PRELOAD environment variable, the pri-
ority of the runtime linker (RTLD) for resolving the
functions changes. So, in the procedure of function
resolving, the pre-loaded library will be considered
first. This mechanism provides an opportunity for in-
tercepting disallowed functions in Capsicum’s capa-
bility mode at runtime. In the interposition library,
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disallowed functions will be replaced by either a safer
version or a proxy function. The proxy functions send
the call information as a command to the supervisor
and extract the result from its response. The interpo-
sition library returns all the expected results and data
required to maintain the functionality of the function
calls and does not change the functionality or returned
data.

5 EVALUATION

In this section, we describe our methodology and ob-
served results of evaluating the behaviour and perfor-
mance of Leash on real-world examples. We selected
the installer script of Ruby Version Manager(RVM)
as our primary target (RVM, 2009). To install RVM,
the user needs to download the installer script and ex-
ecute it using Bash(1) command, as recommended
by the providers. To succeed, every command the
script calls should inevitably be sandboxed. There-
fore, along with RVM’s installer script, we sandboxed
other utilities including Curl, Fetch, Gtar, and Gzip.
Moreover, 21 of other Unix’ simple commands were
sandboxed as shown in Table 3.

5.1 Platform

Leash is designed and implemented on FreeBSD
13.2-RELEASE as the base OS. However, to achieve
our objectives, we applied some modifications to the
OS source code, including the kernel. We added
the system call wait6(2) to the allowed functions
in capability mode for the cases where it is called
on any child processes. The evaluations were done
on an amd64-based machine with an 8-core CPU
of the model Intel(R) Xeon(R) CPU E3-1240 v5 @
3.50GHz. To obtain the actual time taken for the ex-
ecuted commands and the memory usage, we used
FreeBSD’s time(1) and ps(1) commands.

5.2 Discussion

As mentioned, to install RVM in the sandbox, we
sandboxed all the utilities this installer called. To
achieve this goal, we interposed all the disallowed
functions called by the installer scripts or the cor-
responding commands, which resulted in the system
calls categorized in Table 1. Along with the main sys-
tem calls, their other versions that were limited in ca-
pability mode needed to intercept. These versions in-
clude internal definitions of the disallowed functions
such as _open(), and the versions that are usually

Table 1: Interposed system calls for sandboxing RVM’s in-
staller script and the commands it called.

System callsPurpose Main Version Other Versions

File System
Access

open()
stat()

statfs()
readlink()
mkdir()
chdir()

eaccess()
unlink()
rename()
utimes()
chmod()

symlink()

openat(), _open()
fstatat(), lstat()

mkdirat()
fchdir()

eaccessat()
unlinkat()
_rename()

utimensat(), _utimes()
fchmodat(), _chmod()

symlinkat()
System Control sysctl() __sysctl()

Process Management
execve()

fork()
wait4()

_execve()
vfork(), _fork()

waitpid(), _wait4()
Networking connect() _connect()

allowed with some exceptions such as openat(2)
called with AT_CWDFD as the first argument.

The performance overhead added by executing
programs under Leash is directly related to the num-
ber of intercepted system calls, especially those prox-
ied to the server. So, the interposition library will add
most of the overhead. This overhead can increase de-
pending on the functionality of the target program.
For example, remote connections or massive manipu-
lations on the file system can result in more than one
intercepted system call and higher overhead. How-
ever, our observations show that this overhead is prac-
tically acceptable and tolerable.

Tables 2 and 3 lists applications and Unix com-
mands executed in Leash’s sandbox. Table 2 sepa-
rates the heavier applications in terms of the volume
of calls, interaction with the system, and longer exe-
cution time and provides more details about the ob-
served performance overhead. Table 3 demonstrates
the commands that are lighter, and their execution
time and overhead were at the scale of milliseconds.
The chart presented in fig. 3 compares the perfor-
mance of the native command vs. the sandboxed ex-
ecution. Although the user cannot sense the sand-
boxing overhead on these utilities, our measurements
show that the slowdown that happened to them by
sandboxing is more significant than the applications
listed in Table 2. This observation shows that the cost
of running the supervisor program, runtime interposi-
tion, proxying commands, and supervisor command
handling is more observable with fewer system calls.
While in programs with larger code bases and more
functionalities, the cost of allowed function pervades
the sandboxing overhead.

The most time-consuming mode of Leash is the
one in which every single disallowed function will
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Figure 3: Unix utilities executed in Leash’s sandbox and
their performance overhead.

Table 2: The performance of the sandboxed applications
and utilities under Leash’s supervision.

Average Time
(Second)Application Interposed

System Calls
Original Sandboxed Slowdown

RVM 17433 5.68 6.25 10%
curl 31 0.30 0.35 16%
fetch 22 0.24 0.25 4.17%
gtar 11055 0.30 0.31 3.33%
gzip 724 1.55 1.59 2.6%

Table 3: Unix utilities sandboxed during the procedure of
sandboxing RVM’s installer script.

Unix Utilities/Commands
File System Privilege Lookup and Search Others

mkdir
mktemp

rm
date

uname
cp

chmod
chown

Which
cat
file
grep
find
sort

tee
awk
head
stat
sed

xargs
df

be proxied to the supervisor process. The evalua-
tions show that in the most time-consuming mode, the
sandboxed version of RVM’s installer, as our heaviest
case of study, is 10% slowed down.

The focus of this study was on installer shell
scripts and the corresponding utilities, which are not
in the category of time-sensitive applications like real-
time systems. Therefore, this performance is accept-
able, considering that robust security is achieved as
the supervisor executes the target program in the least
privileged environment. In case of being compro-
mised, the violating call will fail due to capability vi-
olations or failure in accessing the asked information,
which ends up with process termination in the worst
case, and no system corruption or information leakage
would threaten the system.

5.2.1 Comparison with Unix Technologies

In this section, we compare Leash with similar
lightweight application-level systems that are able to
transparently sandbox one application in Unix. Table
4 shows the results obtained from isolating RVM’s in-
staller script using FreeBSD’s Jail (FreeBSD Founda-
tion, 2000), compared to Leash. Jail is a container-
based isolation system for Unix that does not boot a
new OS on the host OS but simulates the file system
and its environment mainly based on the idea behind
chroot(2). In terms of the complexity of setup and
configuration, Jail needs a container, an instance of
the OS, to be made even for isolating just one applica-
tion. It also requires root privilege for setups. In terms
of the required system resources, jails occupy consid-
erable disk space, as shown in Table 4. This can be a
barrier to using them for trivial cases or when there is
a lack of space. Starting a Jail service and executing
an application inside it is much slower, 3.43 times in
our test cases, than sandboxing by Leash. However,
Jail cannot be applicable for some cases, such as up-
dating or installing changes to the home directory.

We also compared Leash with CapExec (Jadidi
et al., 2019). CapExec was a prototype that demon-
strated limited transparent sandboxing on Unix. How-
ever, as it was tightly dependent on libcasper(8) in
terms of the supported services, it was incapable of
sandboxing many of the utilities and applications that
are sandboxed in this study. CapExec was tested on
small utilities such as cat(8) and traceroute(8)
and demonstrated an average of 28% slowdown.
It showed faster than Leash for smaller programs
(fig. 3), but less capable and incomplete to be con-
sidered as a generic sandboxing system.

5.2.2 Comparison with Linux Technologies

As outlined in section 2.2, the implementation of "ca-
pabilities" in Linux differs significantly from true ob-
ject capabilities. Consequently, there is no direct
equivalent to Capsicum or Leash on Linux, though
several sandboxing tools exist.

AppArmor, integrated into Ubuntu in 2007, is a
Linux security model for defining Mandatory Ac-
cess Control (MAC) rules(Gruenbacher and Arnold,
2007). Unlike Leash, AppArmor requires root priv-
ilege and static configuration. For application sand-
boxing, AppArmor is less flexible and more compli-
cated to configure than Leash.

Decap, designed based on Linux "capabilities", is
a tool for analyzing binaries to remove unnecessary
privileges and enforce required "capabilities" by ex-
amining likely system calls (Hasan et al., 2022). It
helps ensure that applications execute with only the
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Table 4: Comparison on Leash and FreeBSD’s Jail in sandboxing RVM’s installer script.
Execution of RVM’s installer

with isolation
FreeBSD’s JailPerformance

Details Usage Details Execution of RVM’s installer
(Native Program) Leash Starting jail Installation by jexec Stoping the jail

Memory Usage

Maximum Resident Set Size
Average Shared Memory Size
Average Unshared Data Size
Average Unshared Stack Size
Page Reclaims
Page Faults
Swaps
Block Input Operations
Block Output Operations
Messages Sent
Messages Received
Signals Received
Voluntary Context Switches
Involuntary Context Switches

12196
269
33
128
276994
0
0
0
2122
15337
7912
0
16177
3

90324
97
6
106
262932
0
0
0
1806
57209
71388
0
45514
6

7044
91
24
128
17260
0
0
0
29
204
2051
1
799
7

9924
228
26
122
325479
0
0
0
1747
7514
6803
0
9891
6

6620
65
10
128
13236
0
0
0
5
168
7010
0
566
0

Time (second) 5.68 6.25 15.39
Required

Disk Space
(Container)

0 0 4.0 G

necessary privileges, reducing attack surfaces. Like
Leash, Decap is based on mapping system calls to re-
quired Linux "capabilities".

Similar to Decap, LiCA (Sun et al., 2022) is
another Linux "capability" framework that identi-
fies excessive "capability" assignments by analyzing
code flow through LLVM Intermediate Representa-
tion (LLVM IR). Unlike Decap, LiCA does not of-
fer "capability" enforcement, and to employ LiCA’s
result, the source code should change accordingly.
LiCA and Decap do not address the problem of
generic transparent sandboxing, and neither system
defines the isolation mode, the disallowed behaviours,
and resource access policies.

6 RELATED WORK

In this section, we review the alternative approaches
for secure software installation, along with examples
of sandboxing systems and Unix security features that
facilitate application-level sandboxing.

6.1 Unix Sandboxing Tools

The chroot(2) system call is a key feature for pro-
cess isolation in Unix-like systems, restricting a pro-
cess to a specified file system hierarchy. This laid the
foundation for later sandboxing tools like OpenBSD’s
unveil() and FreeBSD’s Jail(8). While unveil()
is similar to chroot(), it improves security by allow-
ing developers to set specific permissions for the root
directory.

RLBox is a C++ framework integrated with the
Clang compiler, designed to facilitate the creation of

a secure memory boundary for applications. It pro-
vides API support, type checking, and data marshal-
ing to control data flow to and from sandboxed li-
braries (Narayan et al., 2021). One of RLBox’s no-
table features is its API for cross-sandbox commu-
nication, allowing secure interactions between differ-
ent sandboxed contexts. Central to this framework
are "tainted types," which drive a type-safe approach;
however, it requires modifications to existing code
and emphasizes memory safety.

Other approaches to sandboxing include
OpenBSD’s Pledge and Linux’s Seccomp-BPF,
both of which impose restrictions based on a defined
set of allowed system calls (Hughes, 2015; Linux
Kernel Documentation, 2012). Developers can
specify which system calls a target program can
use, enhancing security by reducing potential attack
surfaces. When a process calls pledge(), it enters
a restricted environment where only the designated
system calls are permissible. In contrast, while
Seccomp-BPF provides a more complex and flexible
mechanism for defining non-blocking system calls, it
also allows for redefinition and replacement of calls,
effectively acting as a static interposition mechanism.
Despite its flexibility, both Pledge and Seccomp-BPF
necessitate modifications to the application’s code.

FreeBSD’s Capsicum framework takes sandbox-
ing a step further by establishing a robust sand-
box mode that limits global namespaces, ensur-
ing that these restrictions cannot be bypassed once
cap_enter() is called (Watson et al., 2010; Ander-
son, 2017). Utilizing Capsicum requires significant
code redesign, but it offers enhanced security by pre-
venting unauthorized access to resources.

Additionally, FreeBSD’s libcasper(8), a li-
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brary derived from Capsicum, provides a suite of
widely-used services designed to operate within Cap-
sicum’s sandbox. These services include Capsicum-
compatible APIs for networking, DNS resolu-
tion, file handling, and specific system calls like
getgrent(3), getpwent(3), sysctlbyname(3),
and syslog(3). While libcasper(8) simplifies the
developer experience, it still confines users to a lim-
ited set of features.

Several sandboxing methodologies focus on track-
ing and interposing system calls. For instance, Li et
al. proposed a model for intrusion detection that re-
lies on system call interception, control, and data flow
assessment (Li et al., 2010). Their system intercepts
each system call, evaluating it against a predefined
policy to ensure it aligns with expected behaviour.
While effective in capturing system call contexts with
manageable overhead, it faces challenges with policy
complexity and performance for larger applications.
Similarly, Ul Haq et al. described an isolation sys-
tem for Linux that integrates Seccomp-BPF, AppAr-
mor, Dune, and ptrace to restrict application access
to system resources (Linux Kernel Documentation,
2012; Gruenbacher and Arnold, 2007; Belay et al.,
2012). Their approach translates defined restrictions
into Dune, leveraging hardware virtualization exten-
sions (Intel VT-x) for a virtual machine-like isolation.
The policy definition is complex, requiring extensive
kernel interaction and high-level privileges, which in-
creases performance overhead. In contrast, the ap-
proach adopted in Leash eliminates the need for hard-
ware involvement. It simplifies policy definition using
available resources, eliminating the need for complex
translations or additional instructions. This frame-
work prepares resources for the sandbox without re-
quiring further verification.

Unix containers, such as FreeBSD’s Jail(8), of-
fer a form of sandboxing by creating isolated execu-
tion environments that mimic the host OS. While they
provide good isolation, containers incur high mem-
ory and disk overhead, making them inefficient for
sandboxing individual applications, especially when
secure modifications to the host system are needed.
Additionally, securing host machines against exploits
originating from containers or hyper-visors remains a
challenge as described in recent studies(Bhanumathi
et al., 2023; Win et al., 2017). This ongoing debate
highlights that, while containers offer isolation, they
do not provide the same level of security as sandbox-
ing, particularly in protecting the host from guest ap-
plications and vice versa.

In summary, sandboxing encompasses a range of
defensive strategies designed to impose behavioural
restrictions on programs, thereby mitigating risks and

potential damages to systems from exploits. The pri-
mary objective is to prevent or minimize future harm
and information leakage resulting from vulnerabilities
in applications. Approaches addressing issues such as
malicious code, application restrictions, confinement,
and program compartmentalization all are counted in
this category (Greamo and Ghosh, 2011). Design-
ing a sandboxing mechanism targets specific vulner-
abilities, defining limitations that prohibit certain be-
haviours through instructions, system calls, and ac-
cess controls (Ansel et al., 2011; Watson et al., 2010).
Variations in resource protection, behaviour defini-
tions, and limitations lead to different sandboxing
mechanisms with distinct purposes and effectiveness.

6.2 Secure Package Management

This study primarily was focused on enhancing the se-
curity of installer applications, which are critical com-
ponents in software deployment. In this section, we
delve into various security mechanisms that have been
implemented in package managers on Linux and Unix
systems. Package managers are crucial for verify-
ing software integrity and auditing known vulnerabili-
ties before installation, thus ensuring system security.
Copper et al. provide an in-depth analysis of these
security mechanisms (Cappos et al., 2008). While
Unix and Linux package managers were not initially
security-focused, they have evolved to address vari-
ous concerns. For example, the Advanced Packag-
ing Tool (APT) in Debian-based distributions uses Se-
cure APT, which authenticates repositories with cryp-
tographic signatures to ensure packages come from
trusted sources. However, this mechanism lacks a
confinement-based model, potentially limiting its ef-
fectiveness in certain scenarios.

FreeBSD’s package manager includes key secu-
rity features, such as auditing archives for known vul-
nerabilities, verifying package checksums, and issu-
ing warnings about installation privileges (FreeBSD
Foundation, 2023). The pkg(8) utility also oper-
ates within a sandbox using Capsicum, adding pro-
tection by isolating package management operations.
However, these security measures are limited by the
repositories supported and the vulnerabilities already
identified. Poudriere is another package builder for
FreeBSD that enables users to compile packages for
multiple architectures on a single machine (Seaman,
2011). It enhances security by compiling packages
within jails preventing unwanted remote connections.
This approach ensures a clean build process, includ-
ing only the necessary dependencies for the package’s
functionality. Nix, a non-native package manager, ad-
dresses the challenges of managing varying depen-
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dency versions (Kowalewski and Seeber, 2022). Orig-
inally designed for this purpose, it has evolved into a
platform offering isolated, atomic, and reproducible
package builds. Nix uses cryptographic hashes for
each building entity, enabling users to detect any ma-
licious alterations to source code before installation,
thereby improving software management security.

In addition to package managers, several tools
specialize in scanning and auditing software pack-
ages, such as Package Analysis, NPM Audit, Git-
Lab’s Dependency Scanning, and Container Scanning
(GitHub Team, 2020; NPM Documentation, 2018;
GitHub Team, 2018b; GitHub Team, 2018a). These
scanners perform static analysis to validate software
and its dependencies, identifying vulnerabilities and
security risks. However, none of these studies have
examined the dynamic analysis and monitoring of in-
stallation programs, which could offer valuable in-
sights into real-time security during software instal-
lation.

7 FUTURE WORK

From a software engineering perspective, there are
opportunities to enhance Leash into a general-purpose
transparent sandboxing system on FreeBSD that can
support a wide range of applications. This can be
achieved by interposing the whole set of system calls
prohibited under Capsicum’s sandboxing mode. Cur-
rently, Leash supports applications whose disallowed
functions are a subset of the list showed in Table 1,
redirecting such calls to a supervisory module, except
when they can be resolved based on the working di-
rectory.

In addition to supporting more functions, optimiz-
ing the policy specification could reduce communi-
cation overhead and improve system call handling,
ultimately leading to better performance. Currently,
Leash operates based on user-defined policies, which
can become a usability bottleneck. While Leash’s
logging mode helps by providing a list of disallowed
calls to restricted resources, user verification is still
required. Our goal is to simplify this process and en-
hance user transparency through more readable and
convenient policy specification. This area could be a
focus of future improvements, where we could also
explore the integration of AI technologies. In sum-
mary, by extending support for system calls, opti-
mizing policies, and improving user interface clarity,
Leash has the potential to become a robust, flexible,
and user-friendly sandboxing solution for Unix.

8 CONCLUSION

In this paper, we described the design and behaviour
of our prototype towards a general-purpose sandbox-
ing supervisor for Unix. Leash is designed based on
FreeBSD’s capability-based security platform, Cap-
sicum. To our best knowledge, this is the first trans-
parent sandboxing supervisor designed for FreeBSD,
which executes the target program in the sandbox
mode without needing code modification and high ac-
cess privileges such as root.

Compared to previously Capsicum-derived mod-
ules, such as libcasper(8) and CapExec (Jadidi
et al., 2019), Leash provides new features and im-
provements. The system is a user-interactive frame-
work designed for risk mitigation according to pro-
grams behaviours. Leash categorizes programs’ be-
haviours into four primary domains: file system re-
quests, network communications, system control re-
quests, and process management.

We have evaluated the behaviour of Leash by
sandboxing the installer script of Ruby Version Man-
ager (RVM), and some utilities including Curl, Fetch,
Gzip and Gtar, as real-world examples. During the
sandboxing of RVM’s installer, there were other Unix
commands needed to be sandboxed inevitably. So,
this investigation ended up with sandboxing 21 of
other Unix commands, all described in section 5.
Leash supports the interposition and functionality
maintenance of the disallowed system calls listed in
Table 1. Our evaluation shows that the sandboxed
RVM’s installer, as our most complicated case study,
is 10% slower than the original version by average.
This overhead contains managing 1009 forked pro-
cesses, which had to run in the sandbox, too. In to-
tal, 17433 system calls were interposed, from which
12191 were proxied and managed by the supervisor
process. This study shows that, despite the inten-
sive restrictions that Capsicum applies, Leash makes
transparent sandboxing achievable and provides prac-
tically efficient service to secure untrusted applica-
tions.
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