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Abstract: The increasing digitization of healthcare raises the concerns surrounding the patients’ privacy. Therefore, the
integration of privacy preserving technologies has proven imperative to curb the negative repercussions tied
to technology deployment in the medical sector and to provide trustworthy artificial intelligence healthcare
applications. Two raising approaches are promoted to the forefront of research and gaining momentum in
the realm of healthcare smart systems: Federated Learning and Differential Privacy. On one hand, Federated
Learning (FL) enables collaborative model training across multiple institutions without exchanging raw data.
Differential Privacy (DP), on the other hand, provides a formal framework for safeguarding data against po-
tential privacy breaches. The application of these approaches in healthcare settings ensures the protection of
sensitive patient informations. In this paper, we delve into the challenges posed by medical data to see how
FL and DP can be tailored to suit these requirements. We aim to strike a balance between technology deploy-
ment in the medical field and privacy preservation. To this end, we developed a Multi-layer Perceptron (MLP)
model to predict if a person is at risk to have heart diseases. The model, trained on different medical datasets
for heart diseases, reached an accuracy of 99.57%. The same model was trained in FL framework. It achieved
a FL averaged accuracy reaching 99.15%. In a third scenario, to enhance clients’ privacy, we deployed a DP
framework. The differentially private MLP achieved an accuracy extending to 97.07% in centralized settings
and averaged accuracy attaining 89.94% in FL settings, outperforming existing methods in heart diseases pre-
diction.

1 INTRODUCTION

Machine Learning (ML) (Jordan and Mitchell, 2015)
has the potential to transform healthcare industry by
enhancing diagnosis, treatment, and patients’ well-
being. It is of a paramount importance in the medical
field in diverse ways. One crucial area is diagnosis
and disease prediction. In fact, ML algorithms are
employed in drug discovery and development, where
they assist in finding potential avenues for new treat-
ments and improving existing medicines (Vamathe-
van et al., 2019; Brahmi et al., 2024). They also help
to, early, identify diseases, especially those not eas-
ily detectable at an initial stage. Additionally, ML is
used in medical imaging to aid pathologists in mak-
ing more accurate diagnostic judgments. It stream-
lines routine tasks, enabling healthcare professionals
to focus on essential aspects of patient care. It also

assists in robotic surgeries, and identifies prescription
errors (Kassahun et al., 2016).

However, these advancements come with hurdles,
including the need for large, trustworthy datasets, the
understanding of ML models, and ethical and regula-
tory issues. There are challenges that must be taken
care of prior to the widespread integration of ML into
clinical practice. The requirement for large, excellent
datasets that truly portray the patient population is one
of the main obstacles. Large amounts of patient data
are crucial for the training and accuracy improvement
of ML systems. Sensitive personal data, involving ge-
netic, biometric, and medical history, is frequently in-
cluded in this data. This brings up a number of issues
with control, access, and data security (Hameed et al.,
2021). There is a risk of re-identification and pri-
vacy breaches, given that individuals can potentially
be identified through their data. According to a study

Moulahi, W., Moulahi, T., Jdey, I. and Zidi, S.
Federated Learning Harnessed with Differential Privacy for Heart Disease Prediction: Enhancing Privacy and Accuracy.
DOI: 10.5220/0013188900003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 845-852
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

845



conducted in the journal Nature Communications, ap-
proximately 99.98% of americans in an anonymized
dataset could be re-identified (Rocher et al., 2019).

Furthermore, collaboration is needed between
healthcare providers, researchers, and data scientists
in order to collect and arrange data in a way that pre-
serves data integrity and patient confidentiality. This
is especially important in the medical field, where
decisions made can have life-or-death consequences.
To make well-informed judgments about patient care,
physicians and other healthcare professionals ought to
be able to trust and understand the decisions produced
by ML models. Building trust in the technology de-
pends on this transparency. Additionally, address-
ing regulatory and ethical considerations is crucial,
such as algorithms’ fairness, and protecting patient
data. Despite these challenges, the potential benefits
of ML in healthcare are significant, and with meticu-
lous planning and collaboration, these hurdles can be
overcome to improve patient care.

As the medical community continues to lever-
age data-driven approaches for improved diagnos-
tics and treatment, the implementation of FL and DP
emerges as a pivotal strategy to uphold the confi-
dentiality and trustworthiness of patient informations.
This work contributes to the ongoing discourse on pri-
vacy in healthcare by shedding light on the potential
of cutting-edge technologies to revolutionize medical
research and practice while steadfastly safeguarding
individual privacy.

According to the World Health Organisation, the
cardiovascular diseases are, globally, the leading
cause of death. Each year, 17.3 millions of people
die due to heart diseases1.

Towards the aforementioned concerns, in this re-
search paper:

1. We developed an efficient Multilayer Perceptron
to predict whether a person is at risk to have heart
diseases.

2. We enhanced the privacy of the approach by de-
ploying it in a FL framework.

3. We optimized the privacy preservation by deploy-
ing DP approach.

The remaining parts of this paper are organized as fol-
lows: in section 2, we summarize the related work. In
section 3, we outline the problem statement. Section
4 introduces the proposed contribution. The results of
our approach are presented and discussed in section
5, and we conclude with section 6.

1https://www.who.int/health-topics/cardiovascular-
diseases#tab=tab 1

2 RELATED WORK

Several privacy preserving smart frameworks were
developed to tackle medical problems while main-
taining a balance between ML efficiency and privacy
preservation in smart healthcare systems. Table 1
summarizes some of these frameworks.

(Wang et al., 2024) proposed a Differentially Pri-
vate Federated Transfer Learning Framework using
MLP for stress detection. This approach combines
DP with FL. Its accuracy was reported to be 53%.
One limitation of this approach could be the relatively
lower accuracy of 53% achieved in stress detection.

(Savić et al., 2023) proposed ML techniques to
predict Quality of life (QoL) indicators for cancer pa-
tients using centralized and FL scenarios for model
training on ORB and BcBase datasets. Different ML
models were used for classification and regression
tasks. Centralized and federated models show com-
parable predictive power for QoL. Optimal privacy
values for regressors show steady mean absolute er-
ror (MAE) value decrease.

The work of (Babu Nampalle et al., 2023) in-
tegrated DP into FL for medical image classifica-
tion. The developed model was based on noise
calibration, adaptive privacy budget strategy, and
privacy-utility trade-off analysis. It used the Mo-
bileNetV2 pre trained model on HAM10000 Skin Im-
age Dataset, four discrete datasets from the Cancer
Imaging Archive, PH2 and Memorial Sloan Kettering
datasets for skin images. The proposed framework
achieved the following results of accuracy: 90.68%,
88.21% and 84.64%.

(Letafati and Otoum, 2023) proposed a distributed
DP mechanism for metaverse healthcare using ’mix-
up’ noise. The model was evaluated on Breast Cancer
Wisconsin Dataset addressing privacy-utility trade-
off and diagnosis accuracy. The authors conducted
the research over different numbers of clients for dif-
ferent levels of privacy and compared private scheme
with non-private centralized setup for diagnosis accu-
racy.

(Liu et al., 2024) proposed a Record-Level Per-
sonalized DP (rPDP-FL) FL framework. It was
applied on two datasets namely Fed-Heart-Disease
and MNIST. For Fed-Heart-Disease, the accuracy re-
ported varies between 77.17% and 81.89%. On the
MNIST dataset, the accuracy varies between 84.11%
and 94.77%.
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Table 1: Privacy preserving frameworks applied in the medical field.

Ref Method used Results Limitation
(Wang
et al.,
2024)

A differentially private federated
transfer learning framework us-
ing MLP for stress detection

Accuracy: 53% ROC Curve:
NON-DP : Area=0.59 Epsilon=1
: Area=0.56 Epsilon=0.5 :
Area=0.54

Relatively low accuracy
of 53% achieved in stress
detection.

(Savić
et al.,
2023)

Application of ML techniques to
predict the quality of life features
for patients diagnosed with can-
cer

The accuracy varies between
51.6% and 71.4% among the dif-
ferent datasets and the different
ML models. The MAE values
vary between 5.1055 and 6.7250
for different values of DP and
different regressors

The performances of
the models could be
enhanced.

(Babu Nam-
palle et al.,
2023)

FL framework with integrated
DP for medical image classifi-
cation using MobileNetV2 archi-
tecture

Accuracy: Baseline: 90.68% ,
FL: 88.21% , DP FL: 84.64%

The system could be im-
proved to enhance perfor-
mance, privacy and secu-
rity.

(Letafati
and
Otoum,
2023)

Distributed Differential Privacy
for the metaverse healthcare sys-
tems for breast cancer diagnosis

ε= 20: 62% of accuracy. ε= 60:
90% of accuracy.

The system performance
is enhanced on behalf the
privacy. Find a trade-
off between accuracy and
privacy budget.

(Liu et al.,
2024)

Federated Learning frame-
work based on record-level
personalized Differential Pri-
vacy(referred to as rPDP-FL)
applied on two datasets.

Fed-Heart-Disease: Accu-
racy: from 77.17% to 81.89%
. MNIST: Accuracy: from
84.11% to 94.77%

The performances of the
FL could be enhanced.

3 PROBLEM STATEMENT

Two key approaches are the pillars of our research:
FL and DP.

3.1 Federated Learning

FL is a game-changing concept in ML. Unlike tra-
ditional methods that rely on centralized data, it al-
lows multiple devices to collaborate on training mod-
els. This approach is particularly valuable in scien-
tific domains because it protects privacy by keeping
data on local devices instead of being shared (Moulahi
et al., 2023). Depending on clients’ interaction with
the process, FL can be conducted in three modal-
ities: synchronous FL, asynchronous FL and semi-
synchronous FL.

In FL, the participating devices might have hetero-
geneous computation potentials. The synchronous FL
does not consider how heterogeneous these devices
are. The lowest device determines the speed of the
process. The devices with the highest computational
resources remain idle until the other devices achieve
their local training (Feng et al., 2021; Stripelis et al.,
2022).

In contrast, the asynchronous FL does not syn-
chronise the communication between the different
participating devices. Once it achieves its training,
each device uploads its local updates and downloads
the new updated model without waiting the other de-
vices (Feng et al., 2021; Stripelis et al., 2022).

Semi-synchronous FL combines features of syn-
chronous and asynchronous methods. It allows de-
vices to synchronize periodically with a central server
or each other. Semi-synchronous FL balances speed
and synchronization in FL (Feng et al., 2021; Stripelis
et al., 2022).

3.1.1 FL Security and Privacy Issues

FL faces challenges which call its efficiency into
question. One of these threats are Data poisoning at-
tacks which aim to degrade the model performances.
It consists to inject carefully crafted samples in the
dataset to mislead the model behaviour. These sam-
ples could be injected in the training dataset or in the
testing dataset (Sun et al., 2022). The Model poi-
soning attacks aim to modify the model parameters
and learning rule. These attacks could be injected by
a malicious client or a malicious server (Sun et al.,
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2022). Inference attacks are adversarial algorithms
that trace back the samples in the training dataset.
They aim to divulge the private informations of par-
ticipants (Jdey, 2022). Byzantine attacks aim at de-
grading the global model convergence. Malicious
clients falsify the data or the model updates so that
the model converges slowly (Prakash and Avestimehr,
2020). Free-riding attacks intend to obtain the final
global model without participating in the training pro-
cess (Bouacida and Mohapatra, 2021).

3.2 Differential Privacy

DP is a way to keep data private in data analysis
and ML. It consists of adding an amount of noise to
the data or the results of algorithms (Dwork, 2006).
Technically, DP is based on the idea of ”neighbor-
ing datasets.” Two datasets are considered neighbors
if they only differ by one entity.

DP is a privacy-preserving method that quantifies
how much privacy is lost. It’s measured by a parame-
ter called epsilon (ε), which represents the maximum
privacy loss allowed (Lee and Clifton, 2011). A larger
ε means less privacy but more useful data. DP helps
strike a balance between using data to learn meaning-
ful insights and protecting the privacy of individuals
represented in the dataset (Dwork et al., 2014).

4 PROPOSED CONTRIBUTIONS

4.1 Contributions Description

Our approach comprises three distinct processes
aimed at predicting heart diseases while preserving
privacy.

The first process consists of developing an effi-
cient MLP model on different heart disease datasets
to generate predictive insights regarding the likeli-
hood of heart diseases occurrence in individuals. Two
tasks are targeted : binary classification and multi-
class classification.

Following the initial MLP modeling, we em-
bark on the second process, which employs FL ap-
proach. We tend to preserve clients’ privacy through
collaborative learning, each data source contributes
knowledge to the model without exposing individual
records. During this process, several communication
rounds take place. A single cycle consists of clients
carrying out local computations on their data and then
transmitting the updates to the central server for ag-
gregation.

In the final process, to optimize privacy preserva-
tion, we integrate DP mechanism. We apply DP on

the MLP model in centralized settings. This involves
adding noise to the model parameters to protect them
against attacks and preserve the data privacy. The dif-
ferentially private MLP model is then used for making
predictions, while still preserving data stakeholders’
privacy.

The DP technique is, then, extended to FL where
the MLP model is trained across the different clients.
We ensure, thereby, protecting the confidentiality of
sensitive information while allowing effective model
training and prediction. We are applying a local DP
where noise is added locally on each client model pa-
rameters before sending them to the central server for
aggregation.

The results of our approach are discussed compre-
hensively, considering both predictive performance
and privacy preservation. We analyze the accuracy
and robustness of the MLP model trained on different
heart disease datasets, evaluating its efficacy in iden-
tifying individuals at risk of heart diseases. Addition-
ally, we assess the impact of FL and DP on model per-
formance and privacy preservation, highlighting any
trade-offs and benefits observed. Figure 1 presents
the approach our research adopted.

4.2 Suggested Scenarios

4.2.1 Process 1: Centralized Learning

A main goal of our research is to ensure privacy
preservation. Therefore, the datasets we used are
medical datasets for heart diseases:
Heart 1:www.kaggle.com/datasets/johnsmith88/
heart-disease-dataset.
Heart 2:https://www.kaggle.com/datasets/
sid321axn/heart-statlog-cleveland-hungary-final.
Heart 3:https://archive.ics.uci.edu/dataset/193/
cardiotocography.

These datasets are used to train a supervised MLP
model (Popescu et al., 2009). Its parameters are de-
scribed in Table 2.

4.2.2 Process 2: Federated Learning

Our collaborative model involves different numbers
of clients. In a scenario, on the first dataset ( Heart 1),
five clients are involved. In an other scenario (
Heart 2), we involved two clients, and in the last sce-
nario ( Heart 3), three clients were involved. The
training process goes through 10 rounds. For aver-
aging updates coming from clients, we used FedAvg
as an aggregation algorithm (Issa et al., 2023). All
clients participate in each communication round si-
multaneously. This synchronous approach ensures
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Figure 1: The proposed Approach which comprises three processes: centralized Learning, FL and DP integration.

Table 2: MLP hyper-parameters values.

Hyper-parameter Heart 1 Heart 2 Heart 13
Input layers 13 11 20
Hidden layers 9 9 9
Optimizer Adam Adam Adam
Loss Function Binary crossentropy Binary crossentropy Sparse categorical crossentropy
Epochs 20 20 20
Activation function Relu, Sigmoid Relu, Sigmoid Relu, Softmax
Classes 2 2 3
Task Binary classification Binary classification Multi-class classification

that all clients are updated with the latest global model
before proceeding to the next round.

4.2.3 Process 3: Differential Privacy Integration

The DP integration process takes place using different
DP parameters (Table 3). We used the PyTorch Opa-
cus library for DP deployment. The performances of
the differentially private MLP model in both central-
ized and federated settings are then analysed to mea-
sure the trade-off between model accuracy and the
level of privacy achieved. The results provide insights
into the effectiveness of the proposed DP technique
in preserving privacy while maintaining model per-
formance. “Small” ε values (canonically, ε ≤ 1) tend
to exhibit great privacy guarantees but often severely
impact performance. ”Medium” and ”large” ε val-
ues (canonically, ε ∈ [1,10] and ε ≥ 10, respectively)
provide more relaxed privacy guarantees, but increase
utility (Lee and Clifton, 2011)

5 RESULTS AND DISCUSSION

5.1 Results

To evaluate the performances of our approach, we
used the following metrics: accuracy, precision, re-
call, F1 score, F-beta score and Receiver Operation
Characteristic curve (ROC Curve) (Awad and Has-
sanien, 2014).

After implementing the previously proposed ap-
proach, it achieved the following results: Table 4
shows the performances of the MLP model trained
on the selected datasets in centralized settings as
well as in federated settings. Figure 2 depicts the
ROC Curves of the three datasets in centralized set-
tings. Figure 3 depicts the ROC Curves of the three
datasets in centralized settings after applying DP us-
ing different DP parameters values. Table 5 highlights
the model performance after applying DP in cen-
tralized and federated settings on the three datasets.
It presents the model accuracy and privacy budgets
spent for different parameters.
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Table 3: DP parameters.

Parameter Description
Noise multiplier (σ) Amount of noise added to gradients
Delta (δ) Desired upper bound on the probability of information leakage
Alpha (α) Level of privacy protection
Epsilon (ε) Privacy budget

Table 4: MLP performances in centralized settings and federated settings on different datasets.

Dataset Heart 1 Heart 2 Heart 3
Metric Centralized FL Centralized FL Centralized FL
Accuracy 99.51% 98.86% 99.57% 99.15% 98.82% 97.08%
Precision 98.98% 99.23% 100% 100% 99.16% 97.29%
Recall 100% 98.45% 99.20% 98.35% 99.12% 98.13%
F1 score 99.49% 98.81% 99.59% 99.17% 99.13% 98.01%
F Beta score 99.19% 99.05% 99.83% 99.66% 99.15% 98.75%

Figure 2: ROC curves of, respectively, Heart 1, Heart 2, Heart 3.

Table 5: Model performance for different datasets and different privacy budgets with δ = 1e−5 and sample rate (q)=0.01.

Parameters σ = 1.3 α = 5 ε = 2.25 σ = 1.3 α = 10 ε = 0.91
Dataset DP Centralized DP FL DP Centralized DP FL
Heart 1 92.68% 70.12% 97.07% 75.95%
Heart 2 86.97% 89.04% 86.97% 88.94%
Heart 3 95.06% 89.94% 94.12% 89.71%

Figure 3: ROC curves of, respectively, Heart 1, Heart 2, Heart 3 in centralized settings after applying DP mechanism with
different values of DP parameters.

5.2 Discussion

Building upon the results presented in the previous
section, the developed MLP model shows efficient re-
sults in terms of accuracy, precision, recall, F1 score
and F-beta score and ROC Curve. The high values

of these performance metrics indicate that the MLP
model achieved reliable results in predicting heart dis-
ease risk with a high degree of accuracy and reliabil-
ity. Along with, the accuracy of 99.57%, which mea-
sures the model’s ability to make correct predictions
out of the total predictions, signifies that our MLP has
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excellent discriminatory power.
Furthermore, in federated settings, deploying the

MLP model helps preserving clients’ privacy without
sacrificing the model performances. Despite the dis-
tributed nature of data, the FL still achieves competi-
tive accuracy, showcasing the effectiveness of collab-
orative model training and its ability to maintain high
performance levels across repeated interactions and
updates during the FL process. Additionally, figure
4 exhibits the closely related performances between
the centralized learning and FL while providing more
privacy to data stakeholders.

Figure 4: MLP performances in centralized settings against
MLP performances in federated settings on the three
datasets.

The differences between the performances of cen-
tralized DP free MLP and the differentially private
MLP performances are reimbursed by the more secu-
rity and privacy added to the individuals data. Care-
fully tuned DP parameters help, considerably, achiev-
ing the desired level of privacy while maintaining re-
liable levels of accuracy. With σ=1.3, α=10, the con-
sumed privacy budget (ε=0.91) is still in an acceptable
range, for a satisfying accuracy reaching 97.07%.

Highlighting the difference between the accuracy
of the DP Free MLP and the accuracy of differentially
private MLP trained using different parameters in fed-
erated settings, the performances of the model are
still accurate despite the fact that two privacy preserv-
ing mechanisms are deployed. The slight decrease in
model performances is indemnified by a strong pri-
vacy guarantee due to the use of DP harnessed with
FL. With σ=1.3, α=10, the consumed privacy budget
(ε=0.91) is still in an acceptable range for an accuracy
of 89.71% .

Our approach, applied on different heart diseases
datasets, proves its scalability and shows very satisfy-
ing results outperforming existing results. Extended
to a multi-classification task, it achieves reliable and
accurate results.

Compared to the work of (Liu et al., 2024),
our work provides a three-dimensional approach
which involves centralized, federated and differen-

tially private models. That allows examining the
impact of each technique on the learning process.
Besides, the FL performances of our approach ex-
ceed those of the aforementioned work. Our model
achieves an average accuracy of 99.15% against an
average accuracy less than that of (Liu et al., 2024).
Actually, the concerned paper does not provide con-
crete values of the results but rather plots them , which
make the comparison, a bit, confusing. For the feder-
ated learning, the plotted result seems less than 99%.
Furthermore, the result of our differentially private
model exceed the results of his approach. Our pro-
posed approach achieved more accurate results for
less privacy budget. Our DP MLP accuracy in cen-
tralized setting reaches 97.07% for a privacy budget
ε = 0.91 against an accuracy of 81.34% for ε ≥ 1.

6 CONCLUSION

Our research has demonstrated the successful deploy-
ment of a MLP model to predict the likelihood of in-
dividuals to have heart disease. Through the integra-
tion of FL and the incorporation of DP techniques, in-
dividual data contributions remain indistinguishable.
We have not only achieved promising predictive per-
formance but also preserved the privacy of sensitive
medical data. Moreover, by integrating DP into the
training process, we ensured that the model’s predic-
tions did not compromise the confidentiality of sen-
sitive informations. DP mechanism comes to pro-
tect the model parameters against the attacks that may
lead to data re-identification.

Our experimental results indicate that the de-
ployed MLP model achieved satisfying levels of ac-
curacy. That ensures its scalability and generaliza-
tion across diverse datasets, underscoring its poten-
tial for real-world application in healthcare field. Fur-
thermore, the successful implementation of privacy-
preserving techniques highlights the feasibility of
leveraging advanced ML methods while upholding
strict privacy standards.

Overall, our findings contribute to the growing
body of research on privacy-preserving techniques in
ML and underscore the potential of FL combined with
DP in healthcare applications. Moving forward, fur-
ther exploration and refinement of our proposed ap-
proach hold promise for advancing predictive effi-
ciency and privacy preservation in medical data anal-
ysis by applying other DP perturbation mechanisms in
global or distributed DP architectures harnessed with
other aggregation algorithms.
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