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Abstract: In recent years, water utilities have increasingly required a deeper understanding of users’ water demand 
across their distribution networks to optimize resource management and meet customers' needs. With the 
adoption of smart metering solutions, it has become possible to investigate water usage at a finer resolution, 
enabling the collection of more detailed consumption data. In the present study, the authors present an 
innovative methodology for identifying water usage using data from smart meters. First, a Multiple Seasonal-
Trend Decomposition algorithm is applied to extract seasonality from the raw time-series data. Next, the 
Bootstrap sampling technique is used to train an optimized Time Series K-means algorithm on multiple data 
configurations. Finally, the clustering results are interpreted graphically and validated, providing valuable 
insights into consumption habits and a comprehensive assessment of the methodology's effectiveness and 
stability.

1 INTRODUCTION 

The increasing global population, along with rapid 
urbanization and ongoing climate change, continues 
to strain water resources. In many countries 
worldwide, it has become increasingly common to 
discuss about water crisis, referring to a deficiency in 
the water systems. The causes of this crisis vary and 
include several factors such as, primarily, the drought 
due to climate change; the reduced rainfall and high 
temperatures lead to a significant reduction in the 
volume of water available in reservoirs (McDonald et 
al., 2011). Another major cause is the lack of 
maintenance of water infrastructures, which have 
become outdated and poorly managed. In regards, the 
International Water Association (IWA) estimates that 
water losses from water systems worldwide amount 
to 346 billion litres per day. The World Bank states 
that 8.6 trillion gallons per year of water is lost due to 
leakage and breakage in water networks worldwide 
(Pearson, 2019). In this context, understanding water 
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usage is becoming crucial for an efficient 
management of Water Distribution Systems (WDS). 

Recently, the rise and expansion of smart-
metering technologies facilitate the quick and 
extensive collection of water usage data at high 
spatial and temporal detail (Cominola et al., 2019). 
This data provides essential information, crucial for 
improving the efficiency and sustainability of WDS 
with specific applications including the development 
of predictive models for water demand (Di Grande et 
al., 2024), the advancement of water reuse and 
recycling technologies (Du Plessis et al., 2018), the 
classification of users profiles based on individual 
water consumption patterns (Mazzoni et al., 2023) 
together with the detection of possible anomalies and 
irregularities through the investigation of unusual 
water consumption behaviours (Berlotti et al., 2023 ). 
Profiling consumers and evaluating the water demand 
patterns to detect abnormal water consumption 
behaviour is strongly requested to achieve a 
sustainable management of WDS. Data-driven 
approach based on machine learning or artificial 
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intelligence algorithms may be of great help to reach 
this goal. 

In this paper, the authors introduce a novel 
clustering approach for identifying different user 
profiles from water demand time series. By grouping 
users with similar, though not identical, consumption 
patterns, the method generates representative profiles 
for both residential and non-residential users. This 
approach not only allows for user type identification 
based on consumption patterns but also makes the 
clustering algorithm a robust tool for detecting 
abnormal water demands, which may indicate the 
presence of issues as leakages, irregularities, or 
unauthorized consumption.  

The paper is structured as follows: Section 2 is an 
overview of the state of the art regarding the paper 
subject. In Section 3 the authors give a detailed 
description of the proposed approach. Section 4 will 
provide a description of the representative patterns 
featured by different types of consumers; moreover, 
the main results obtained from the final test carried 
out during the research, are presented. Finally, in 
Section 5 concluding remarks will summarize the 
contents of the paper.  

2 RELATED WORKS 

In this section, the authors provide an overview of the 
current state of the art about methods used to identify 
user profiles based on water demand data. 

Traditionally, research on water consumption has 
focused on the residential sector, as residential users 
typically represent the largest share of water 
consumers (Aksela and Aksela, 2011). Several 
studies have been conducted to evaluate residential 
water usage at different levels of spatial aggregation, 
ranging from large-scale, such as entire cities or 
District Metered Areas (DMA), to individual user 
levels. Historically, water consumption at the user 
level was examined using data collected from water 
meters, aggregated on a monthly or yearly basis for 
billing purposes. This kind of data provides a broad 
view of the aggregate water consumed over a long 
period, limiting the ability to analyze detailed 
consumption behavior or identify specific trends. 
With advancements in technology and the widespread 
adoption of smart meters, much more granular data 
can now be collected, such as every 15 minutes or 
hourly. The availability of such high-resolution data 
opens up new possibilities for more accurate profiling 
and analysis of water usage, facilitating better 
resource management and the identification of 

possible anomalies that were previously difficult to 
detect. 

In their study, (Obringer and White, 2023) 
propose a clustering approach to develop a typology 
of residential water users. The study focuses on 
understanding community-specific attitudes towards 
water usage and conservation by applying 
unsupervised learning techniques on social survey 
data collected in three cities in the Southwestern 
United States. The methodology combines social 
survey data with unsupervised machine learning, 
making it a novel approach to segmenting water users 
based on behavioural patterns.  

Similarly, (Arsene et al., 2021) explore the 
profiling of water consumers in a WDS using K-
Means clustering along with multiple pre-processing 
methods. The study analyses a sample of 800 
households, and it focuses on improving the 
identification of distinct water consumer profiles.   

All the aforementioned studies focus specifically 
on water consumption in the residential sector. 
However, residential users account for only a small 
portion of the total water supplied by utilities. A large 
share of water is also consumed by industries, 
commercial businesses, and other services (Aksela 
and Aksela, 2011). On the basis of this consideration, 
more recent studies have shifted focus toward 
analysing water consumption at the non-residential 
level. 

In particular, (Cheifetz et al., 2017) proposed a 
two-step machine learning approach for exploring 
both residential and non-residential user profiles from 
water consumption data produced by smart meters. 
Their methodology is fully data-driven, applying a 
Fourier decomposition algorithm to extract seasonal 
patterns from time series data. Two clustering 
strategies, K-Means and FReMix generative models, 
are then evaluated and compared, providing a 
qualitative interpretation of the resulting clusters. 

In line with the approach by (Cheifetz et al., 
2017), the authors of this paper propose a multi-step 
machine learning method to analyse hourly water 
consumption data collected from smart meters of a 
WDS in real WDS located in a city of the central Italy.  

The first part of the approach focuses on profiling 
typical water usage patterns for different consumer 
types. To achieve this, several data-cleaning 
techniques were applied, including Multiple 
Seasonal-Trend time series decomposition using 
LOESS (MSTL) (Bandara et al., 2021). Decomposing 
the original time series into its main components, 
helps isolate recurring consumption patterns, 
enabling the clustering algorithm to focus on seasonal 
trends instead of noise. An optimized Time Series K-
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means algorithm (TSKmeans), rather than the 
standard K-Means, was used for profiling the 
different users. To ensure stability in the clustering 
results, the authors applied Bootstrap Sampling, 
testing various clustering solutions with different sets 
of hyperparameters during the optimization process.  

Differently from (Cheifetz et al., 2017), in the 
second part of the approach the authors were able to 
validate the clustering results using geo-referenced 
users’ information, ensuring that the identified 
clusters reflect real-world patterns more reliably. 
After validating the clusters, the authors conducted a 
final test on a new set of residential users to identify 
those whose water usage deviated from typical 
patterns. 

In conclusion, the integration of clustering with 
geographic data represents a significant improvement 
over existing methods, making the proposed approach 
an effective decision-support tool for water utilities 
able not only to profile the water consumption 
patterns of user types but also to detect irregularities, 
possibly due to billing errors, leakages or even 
potential fraud in water consumption. 

3 PROPOSED APPROACH 

3.1 Data Acquisition 

The data used in the analysis refers to the hourly 
cumulative water demand in litres per second (l/s) 
collected over nine months (September 5th, 2023-
May 31st, 2024) from smart meters monitoring six 
District Metered Areas (DMAs) in a central Italian 
city. In details, the DMAs consist of varying users 
counts: 403 (DMA 1), 295 (DMA 2), 81 (DMA 3), 31 
(DMA 4), 84 (DMA 5), 61 (DMA 6).  

3.2 Data Preprocessing 

Data preprocessing was necessary before proceeding 
with clustering users. After downloading and merging 
files in different formats, the authors began by 
cleaning the data. Specifically, columns with more 
than 30% of missing values were removed. Since the 
dataset consists of time series, each column 
corresponds to the hourly user's cumulative water 
consumption. Therefore, removing a column means 
deleting that user's data. All remaining missing values 
were filled using the K-Nearest Neighbors (KNN) 
spatial interpolation (Sahoo and Ghose, 2022). After 
cleaning, each DMA counts the following users: 396 
(DMA 1), 288 (DMA 2), 81 (DMA 3), 28 (DMA 4), 
84 (DMA 5), 61 (DMA 6).  

The next step was to transform the cumulative into 
effective water consumption data. Smart meters 
continuously monitor water use as cumulative litres 
per second (l/s) meaning that they store the total 
amount of water consumed until that point. However, 
these aggregated values were not directly indicative 
of how much water was used by the user in each hour. 
To derive this information, the difference of 
cumulative consumption values between two 
consecutive hours was computed.  

The final data preprocessing step was data 
normalization, essential to establish a uniform 
baseline and prevent the clustering bias from feature 
scales (Ahsan et al., 2021). In the residential group, 
household size can significantly affect total water 
consumed, even when the overall consumption 
patterns remain similar. To address this issue and 
group households by behaviours regardless of size, 
Min-Max scaling was applied, standardizing each 
variable to 0-1 scale. 

3.3 Data Exploration 

Before proceeding with the analysis, an initial data 
exploration was conducted to gain a basic 
understanding of the dataset. Due to the authors' 
inability to access information regarding the type of 
user contract, a reconstruction of this data was 
necessary. Thanks to the availability of geographic 
information, it was possible to map the users and 
identify the types of activities they were associated 
with. An application able to provide the type of the 
activity at a given location by providing longitude, 
latitude, and address information was developed. 
Finally, based on the output generated by the 
mapping, a two-class label is assigned to each user, 
distinguishing between residential and non-
residential categories.  

This initial data exploration revealed that only 60 
users in the sample are non-residential. This 
imbalance reflects reality, as residential users 
typically constitute the majority of water consumers 
in a city . To solve this issue, the clustering model was 
trained on a balanced dataset consisting of 145 users: 
85 residential users were randomly selected from 
across the six DMAs of the WDS.  The remaining 60 
represent the available non-residential user’s data.  

3.4 Feature Engineering  

Feature engineering is the process of transforming 
raw data into more meaningful features to enhance 
the performance of machine learning algorithms 
(Kumar et al., 2017). The next step in the analysis 
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involves using MSTL to extract seasonal patterns 
from the original time series. MSTL iteratively 
decomposes the time series into its main components: 
seasonality, representing repeating patterns in the 
data, trend, capturing the long-term changes, and 
residuals, considered as noise or irregular 
fluctuations (Bandara et al., 2021). Compared with 
other decomposition alternatives, MSTL is highly 
efficient and well-suited to handling large datasets 
due to its computational scalability. To estimate the 
different components, MSTL relies on LOESS (Local 
Regression Smoothing), a non-parametric regression 
method that fits local polynomial regressions to the 
data, smoothing the series at each time point within a 
defined window.  The outcome of the procedure is a 
smooth curve that represents the seasonality in the 
data, filtered out from noise to reveal clear patterns 
(Cleveland, 1979).  

Two key hyperparameters have been set in the 
MSTL algorithm: periods, regulating the length of 
each seasonal cycle, and windows, referring to the 
LOESS smoothing window size. While the window 
size was left at its default value, the period was set to 
168, to align with weekly water consumption 
patterns. This strategic choice enables MSTL to 
capture distinct weekly variations, such as residential 
users consuming more water on weekends and 
commercial users peaking on weekdays. The analysis 
of MSTL seasonal components makes it easier to 
identify similar user behaviours, allowing a more 
effective clustering.  

Lastly, seasonal data was aggregated into weekly 
patterns by calculating the average hourly 
consumption for each day of the week, for each 
month. Instead of dealing with 720 observations, the 
dataset was reduced to 168 observations (24 hours for 
each of the 7 days in a week). By focusing on a 
representative week, general daily and weekly 
consumption patterns were captured without being 
skewed by unusual dates within the month.  

3.5 Feature Extraction 

Principal Component Analysis (PCA) is an effective 
dimensionality reduction technique whose main idea 
is to transform the original data into a set of linear 
combinations represented in a new space with 
reduced dimensions (Pearson, 1901). Several reasons 
justify the introduction of PCA in this analysis. First, 
by focusing on the components with the most 
variance PCA reduces noise and helps filter out less 
significant data. Secondly, this technique highlights 
dominant water consumption patterns that may not be 
immediately visible in the original high-dimensional 

space. Additionally, by reducing the number of 
features, PCA makes the dataset more manageable 
and computationally efficient.  

After cleaning and transposition, PCA was 
performed on the dataset of seasonal water 
consumption patterns consisting of 145 users (rows) 
and 1512 features (columns). By retaining 95% of the 
variance, PCA results showed that rather than using 
the original 1512 features, the dataset could be 
reduced to 80 principal components. In essence, 80 
components were sufficient to represent most of the 
relevant information from the original features, 
enabling more efficient data handling while 
preserving critical insights into consumption patterns.  

3.6 Modelling 

This section explains the clustering procedure applied 
in the analysis. A key challenge in clustering is 
determining the optimal number of clusters while 
ensuring stability—meaning the robustness and 
consistency of clusters despite data variations or 
random initialization. In this paper, the authors use a 
Bootstrap sampling technique to test clustering 
stability.  

3.6.1 Bootstrap Sampling  

Bootstrap sampling, or Bootstrapping, is a resampling 
technique used in statistics and machine learning, 
which consists in drawing multiple samples from the 
original data with replacement, meaning that the same 
data point can appear more than once in the resampled 
dataset (Jain and Moreau, 1987). This technique 
enables clustering validation on "fake" datasets that 
differ from the original, with some users’ patterns 
potentially missing. Starting with an unknown 
population, X of n elements, m different bootstrap 
samples (S1, S2, …, Sm) are created, each containing 
the water consumption values over a series of 
timesteps for the users, who are equally likely to be 
selected. The number of bootstrap samples, m, is a 
key hyperparameter that needs to be tuned for optimal 
model performance.  

3.6.2 Optimization 

Hyperparameter optimization, or tuning, involves 
selecting the set of hyperparameters that yields an 
optimal model by minimizing a predefined loss 
function for a given dataset (Claesen and De Moor, 
2015). In our analysis, various clustering models were 
generated and tested with different sets of 
hyperparameters using the Optuna Python library 
(Optuna: A Hyperparameter Optimization 
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Framework — Optuna 4.0.0 Documentation, n.d.). A 
total of 100 trials were conducted to create and 
compare 100 different clustering models across 
different combinations of the original dataset as 
determined by the number of bootstrap samples. The 
following hyperparameters directly influencing the 
complexity, speed and performance of the model 
have been optimized: n_of_bootstraps (number of 
samples drawn from the original dataset, range from 
10 to 100), n_of_clusters (number of groups, range 
from 2 to 20), max_iter (maximum number of 
algorithm iterations to find the optimal clusters, range 
from 50 to 300), tol (convergence threshold, 
measuring centroids changes, range from 1e-6 to 1e-
4), n_init (number of algorithm initializations with 
different initial centroids, range from 1 to 10). 

3.6.3 Evaluation Metrics 

The optimization process determines the best 
clustering model, including the number of clusters 
using the combined score of three equally weighted 
metrics, given by (1). 𝐹𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = Silhouette score௩ −  𝐵𝐼𝐶௩ + 𝐴𝐼𝐶௩2  (1)

In equation (1), the final score combines the 
average silhouette score with the average Bayesian 
Information Criterion (BIC) and the average Akaike 
Information Criterion (AIC). Each trial yields an 
average of the metrics obtained across all 
combinations of the original dataset tested.  

The silhouette score is a metric to maximize, 
while BIC and AIC are metrics to minimize. 
Specifically, the silhouette score, ranging from -1 to 
+1, measures clusters separation. In details, +1 
reflects perfectly distinct clusters, -1 indicates overlap 
or misallocation , and 0 suggests ambiguity in data 
point assignments (Shahapure and Nicholas, 2020).  

BIC and AIC are information criteria used for 
model selection. Both metrics balance the model’s 
goodness of fit against its complexity by 
incorporating a penalty term to discourage complex 
models (Gabbay et al., 2011). As a result, these 
metrics provide a more nuanced evaluation compared 
to the silhouette score. 

3.6.4 Clustering  

Clustering algorithm used in this study is TSkmeans 
(Huang et al., 2016). TSkmeans was specifically 
chosen for its ability to account for the sequential 
nature and temporal distortions in the data, challenges 
that traditional clustering methods struggle to address 
(Berlotti et al., 2024). Unlike traditional K-means, 

TSkmeans incorporates Dynamic Time Warping 
(DTW) metric to account for temporal shifts,  
varying speeds, and local distortions in sequences, 
providing a more comprehensive measure of 
similarity among time-dependent data points 
(Tslearn.Clustering.TimeSeriesKMeans — Tslearn 
0.6.3 Documentation, n.d.). The integration of DTW 
into TSkmeans improves the detection of similar 
water usage patterns, leading to more accurate 
insights for efficient water resource management.  

4 RESULTS 

In this section, the authors discuss the obtained 
results. The clustering model was trained on a dataset 
of 145 users: 85 residentials and 60 non-residential.  

Table 1 shows the input dataset used for modelling. 
Specifically, after PCA the data was transposed to 
place users in columns, ensuring that each user became 
a feature in the dataset. This transposition is crucial for 
clustering, as it allows the algorithm to make 
meaningful comparisons between user’s water 
consumption patterns, rather than focusing on time 
points or specific measurements. Finally, additional 
daytime information (Year, Month, Day of the Week, 
and Hour) was added in the dataset. 

Table 1: Final input dataset for modelling. 

Year Month Day of 
week

Hour User1 … UserN 

2023 9 Monday 0 0.47738 … 0.554809
… … … … … … …

2024 5 Sunday 23 0.599534 … 0.459491

The optimization step yielded the following 
hyperparameters configuration: {n_of_bootstraps=10, 
num_clusters=4, max_iter=158, tol=5.69941e-06, 
n_init=8}. Figure 1 shows the average weekly pattern 
of each cluster for the optimal repartition K=4.  

Next, a realistic explanation of the clusters is 
given. Clusters 1 and 2 group residential users’ 
patterns with similar habits. Both show peaks around 
1:00–3:00 pm (lunch time), and 7:00–11:00 pm 
(dinner time), with higher water consumption on 
weekends, especially Sundays. Instead, Cluster 3 and 
4 include non-residential users. In Cluster 3, users 
typically consume water from 9:00 am to 2:00 pm 
(peak at noon) and again from 4:00 pm to 8:00 pm 
(peak at 6:00 pm), primarily during weekdays with 
minimal activity on weekends. Meanwhile, Cluster 4 
groups users whose consumption patterns differ 
significantly from those of the other clusters, though 
their behaviour still follows a consistent pattern. 
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Figure 1: Average weekly pattern for each cluster. 

These considerations were confirmed by the 
georeferenced information. In particular, Cluster 1 
and 2 include 37 and 49 users respectively, all 
residential. Cluster 3 consists of 34 non-residential 
users, including banks, garages, and service 
companies. Finally, Cluster 4 is composed of 25 
mixed users, of which only 9 are residential, while the 
rest are non-residential, involved in industrial 
activities.  

As introduced before, in this paper a validation of 
the clustering has been done with the aim of verifying 
if it was possible to use the four clusters as input for 
a decision-support system, capable of identifying the 
user’s type from the consumption pattern and of 

detecting any irregularities. In concerns, to test the 
algorithm a new set of 30 randomly selected users 
was considered. Some of the results achieved will be 
presented in the following. 

The first results shown involve two test users 
(23013052 and 23012890) assigned to the residential 
Cluster 1 and 2. Using georeferenced information, it 
was possible to confirm that the two users were 
residentials. To furthermore confirm this result, in 
Figure 2 test users’ average hourly patterns (dotted 
line) over one week were compared with the typical 
residential pattern given by Cluster 1 and 2 
(continuous line). Due to space constraints, the 
timestamp is illustrated in 6-hour step. As shown in 
plots (a) and (b), the two test users’ patterns closely 
resemble the average patterns of the two residential 
clusters in shape and structure.  

 

 
Figure 2: Test users grouped as residentials.  

The authors provide another example of test user 
(23012939) chosen among the set considered. In 
Figure 3 (a) and (b), the pattern of the test user is 
compared with the average patterns of the residential 
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clusters 1 and 2. As shown in the plots, despite being 
labelled as residential through georeferenced 
information, the user was classified by the algorithm 
in Cluster 4. Indeed, the test user exhibits a 
completely different pattern compared to the typical 
residential patterns of Cluster 1 and Cluster 2. 
Specifically, the test user’s water consumption never 
drops to zero at night, with unusual peaks which may 
indicate an irregularity in consumption as well as the 
presence of a leakage. 

 
Figure 3: Strange user vs residential clusters patterns. 

5 CONCLUSIONS 

In this study, the authors propose a machine learning 
approach for identifying users’ profiles from smart 
meter water demand data. The data under analysis 
refers to hourly time series recording the amount of 
water consumed by each user over a period of nine 
months. Using the MSTL algorithm, seasonality is 
extracted from the original time series. Next, PCA is 
performed on the seasonal patterns’ dataset, retaining 

95% of the variance. The optimized TSkmeans 
algorithm is then used to divide the data into different 
clusters. The authors highlight a significant advantage 
in using Bootstrap sampling to train the clustering 
algorithm on various configurations of the input data. 
This technique ensures that the model is less sensitive 
to dataset variations, thus enhancing the robustness of 
the results. The authors propose not only a graphical 
evaluation of the clustering results, providing a 
realistic explanation of the patterns' distribution, but 
also its validation using the georeferenced 
information available for each user. Ultimately, 
testing the clustering on a new set of users, the authors 
proved the ability of the algorithm to identify not only 
the type of user from its pattern but also cases of 
irregularities in water consumption. 

Future plans involve increasing the size of the 
population considered in the analysis, aiming to 
include a larger number of both residential and non-
residential users to discover new possible water 
consumption habits. Furthermore, the authors also 
expect to extend the analysis period to one year, 
incorporating users’ water consumption variations 
during the summer. 
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