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Abstract: Deep learning, for sustainable applications or in cases of energy scarcity, requires using available, cost-
effective, and energy-efficient accelerators together with efficient models. We explore using the Yolact model,
for instance, segmentation, running on a low power consumption device (e.g., Intel Neural Computing Stick 2
(NCS2)), to detect and segment-specific objects. We have changed the Feature Pyramid Network (FPN) and
pruning techniques to make the model usable for this application. The final model achieves a noticeable result
in Frames Per Second (FPS) on the edge device while achieving a consistent mean Average Precision (mAP).

1 INTRODUCTION

Deep Learning (DL) has recently gained widespread
recognition as a powerful technology, driving ad-
vancements in both research and industrial applica-
tions across a range of fields, e.g., medical area (Avola
et al., 2022), cultural heritage (Gonizzi Barsanti et al.,
2024), and even entertainment (Avola et al., 2023).

Deep Convolutional Neural Networks (CNNs)
have made remarkable progress in tasks such as im-
age analysis, object detection, and instance segmen-
tation (Li et al., 2022; Khayya et al., 2024). How-
ever, deploying these models on resource-constrained
edge devices poses significant challenges due to high
computational, memory, and energy demands. For
instance, models like ResNet-100 (He et al., 2015)
and Mask R-CNN (He et al., 2017a) require mil-
lions of parameters and billions of floating-point oper-
ations (FLOPs), making them difficult to run on edge
devices. Although offloading computation to cloud
servers is an option, practical issues like connectivity,
latency, and security concerns limit this approach.

The demand for efficient on-device inference has
led to model optimization and compression innova-
tions to reduce computational costs while maintain-
ing acceptable accuracy. Companies have developed
a range of domain-specific accelerators for inference
on edge, e.g., Intel’s Neural Compute Stick 2 (NCS2),
Google’s Edge Tensor Processing Unit (TPU), and
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NVIDIA’s Jetson Nano.

1.1 Research Objectives

The goals of this research are to:

• Develop an instance segmentation model to iden-
tify specific objects in images accurately.

• Implement the model on an edge device.

• Optimize the model to reduce inference time on
the device.

• Evaluate the model’s performance for the Intel
NCS2 platform.

We particularly care about the NCS2 because the
financier of this project (Rome Technopole) was al-
ready invested in this hardware, and a solution target-
ing any other accelerator would not have made eco-
nomic sense.

2 STATE OF THE ART

The task of Instance Segmentation is an evolution of
Object Detection and Semantic Segmentation. While
object detection focuses on identifying different ob-
jects in an image, semantic segmentation aims to pre-
dict the class of each pixel and create masks for each
class. Both tasks are tackled simultaneously in In-
stance Segmentation, providing pixel-level accuracy
for locating object instances. Each pixel is classified
into one of the predefined classes, akin to Semantic
Segmentation, but with the added capability of per-
forming Object Detection. Consequently, each result-
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ing mask corresponds to a specific class instance, al-
lowing for identifying different instances of the same
class within an image.

Similar to previous tasks, object detection, and se-
mantic segmentation, various frameworks based on
Convolutional Neural Networks (CNNs) have been
proposed to address this challenge over the years.
(Hariharan et al., 2014) were pioneers in addressing
instance segmentation, referring to it as Simultaneous
Detection and Segmentation. They extended the R-
CNN architecture to obtain masks for every instance,
not just bounding boxes. Their framework began with
generating different proposals using Multiscale Com-
binatorial Grouping, resulting in 2000 region propos-
als per image. Subsequently, a CNN extracted fea-
tures from each region proposal, and a Support Vector
Machine was trained on these features to obtain class
probabilities. Finally, a year later, the authors refined
their model (Hariharan et al., 2014). They observed
that using only the output of the last layer as a feature
representation led to a loss of crucial spatial informa-
tion. To address this limitation, they introduced the
concept of hypercolumns. Instead of relying solely
on the output of the last layer, each pixel was defined
by a vector comprising activations from all CNN units
above that pixel.

(Pinheiro et al., 2015) introduced an innova-
tive approach with their algorithm DeepMask, which
takes an image patch as input and produces two out-
puts. One output is a class-agnostic mask, while the
other is a score indicating the probability of the patch
containing a completely centered object. The model,
based on a ConvNet, optimizes both outputs simul-
taneously through a cost function. DeepMask sig-
nificantly reduced the number of generated proposals
while enhancing performance compared to prior mod-
els.

While Fully Convolutional Networks (FCNs) have
proven successful for Semantic Segmentation, they
lack instance-level information. (Dai et al., 2016) pro-
posed InstanceFCN, an extension of FCN capable of
segmenting different instances of the same class. Un-
like traditional FCNs, InstanceFCN’s output is a score
map the same size as the input image. Each pixel in
the output serves as a classifier for relative positions
of instances, incorporating information such as ”left
side” or ”bottom”. By leveraging local coherence, In-
stanceFCN reduces computational costs and the num-
ber of parameters compared to DeepMask.

However, InstanceFCN had drawbacks addressed
in (Li et al., 2016). InstanceFCN lacked considera-
tion for semantic categories, performed segmentation
and detection in separate stages, and lacked an end-
to-end model. The fixed-size sliding windows and the

time-consuming process of finding instances at dif-
ferent scales were additional challenges. (Li et al.,
2016) introduced Fully Convolutional Instance Seg-
mentation (FCIS), the first end-to-end solution for in-
stance segmentation. FCIS shares features and score
maps between segmentation and detection tasks, lead-
ing to a reduction in parameters. Additionally, it uti-
lizes bounding box proposals instead of sliding win-
dows, improving efficiency.

Despite the enhancements introduced by (Li et al.,
2016), the FCIS model exhibited deficiencies, par-
ticularly when dealing with overlapping instances.
It demonstrated issues and inaccuracies in scenarios
where two or more instances overlapped, resulting in
false edges, even in cases of uniform background tex-
ture.

An alternative research approach addressed the
problem differently, first performing semantic seg-
mentation and subsequently attempting to delineate
instances for each class. This is exemplified in works
such as (Arnab and Torr, 2017; Bai and Urtasun,
2016; Kirillov et al., 2016; Liu et al., 2017).

(Kirillov et al., 2016) propose a model called In-
stanceCut. They tackled semantic segmentation using
a standard CNN to achieve an instance-agnostic solu-
tion. Simultaneously, a separate CNN was employed
to extract the edges of different instances. The outputs
of these two CNNs were then combined. Notably,
this framework trained two distinct models—one for
semantic segmentation and another for instance-edge
detection—avoiding the need to handle global fea-
tures of instances from various classes. This modular
design facilitates direct implementation of advance-
ments in semantic segmentation or instance-edge de-
tection. However, a limitation of this method is its in-
ability to consider objects as part of the same instance
if they are not connected.

In (Bai and Urtasun, 2016), the authors leveraged
the classical grouping technique known as the water-
shed transform. Viewing a grayscale image as a topo-
graphic surface, the transform floods the surface from
different points in its minima. A segmentation of the
image’s different components is obtained by prevent-
ing water from different sources from meeting. (Bai
and Urtasun, 2016) proposed using a deep convolu-
tional neural network to learn the energy of the trans-
form, enabling segmentations containing only one in-
stance. This allows the segmentation of different in-
stances by cutting at distinct energy levels. Similar
to (Kirillov et al., 2016), a primary limitation of this
framework is its inability to handle occlusions.

In (Liu et al., 2017), Sequential Grouping Net-
works (SGN) were introduced, for instance, segmen-
tation. SGN employs a concatenation of neural net-
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works, each addressing sub-tasks with varying se-
mantic complexity within the instance segmentation
process. The task is divided into more manageable
subtasks, each handled by a distinct neural network.
The initial network focuses on grouping pixels along
pixel rows and columns in the image by predicting
object breakpoints and forming line segments. These
line segments become the input for the second net-
work, which is responsible for grouping them into
connected elements. Another neural network inte-
grates these components in the final step, generat-
ing masks for object instances. Despite its effective-
ness, this framework exhibits limitations in segment-
ing small instances and occasionally grouping multi-
ple instances together when they overlap.

As for more recent methodologies, instance seg-
mentation approaches can be categorized into two pri-
mary groups: algorithms based on detection and those
employing a single-shot strategy. The former tends
to achieve higher mean Average Precision (mAP), re-
flecting the overlap area between predicted masks and
ground truth masks. In contrast, the latter is particu-
larly well-suited for real-time implementation scenar-
ios, offering superior speed compared to the former
approach.

Numerous frameworks have been developed
within the category of algorithms based on detection.
The approach based on detection is commonly known
as the proposal-based method. In this method, the ini-
tial step involves detecting various objects within the
image using a dedicated detection network. Subse-
quently, a segmentation head is applied to each de-
tected bounding box to acquire instance segmentation
like Mask R-CNN (He et al., 2017a).

Mask R-CNN (He et al., 2017a) was proposed
as an extension of Faster R-CNN. The authors intro-
duced an additional branch to the Faster R-CNN ar-
chitecture. While the original branch was designed
for classification and bounding box regression, pro-
ducing bounding boxes and class labels, the new
branch focused on predicting segmentation masks for
each region of interest. This resulted in the mask of
the instance within each bounding box as the out-
put. Mask R-CNN demonstrated superior perfor-
mance to previous state-of-the-art models, for in-
stance, segmentation, particularly when utilizing the
COCO dataset (He et al., 2017a).

Numerous frameworks have been developed
within the category of single-shot strategy. Single-
shot instance segmentation, or in other words, the
proposal-free method, is a real-time approach, usually
much faster than a detection-based approach. At the
same time, the single-shot approach is less accurate.
As representative examples of the single-shot archi-

tecture, we can mention YOLACT (You Only Look
At CoefficienTs) (Bolya et al., 2019; He et al., 2017a),
PolarMask (Xie et al., 2019) or SSAP (Single-Shot
Instance Segmentation With Affinity Pyramid) (Gao
et al., 2019). SSAP runs a pixel category classifica-
tion network (semantic segmentation) and performs
instance segmentation on a semantic segmentation
map.

This work has been included in the research for
industrial purposes in the Rome Technopole ecosys-
tem. The content target of the research is currently
confidential for the industrial secrets involved; thus,
we decided to test the effectiveness of the proposed
methodology on a different subject. Pepper segmenta-
tion is a task that receives attention in research for its
applications in the real world. In (Cong et al., 2023),
the authors perform Instance Segmentation on Green-
house Sweet Peppers using Improved Mask RCNN.
They achieve good results, proving the method robust
even on complex scenes. They achieve 5 FPS per-
formance on a system equipped with an RTX 2080;
as the authors claim, this kind of performance satis-
fies the requirements of dynamic monitoring of sweet
peppers’ growth status, albeit still not meeting good
enough real-time performance. In (Gómez-Zamanillo
et al., 2024), Instance Segmentation for pepper phe-
notyping is based on DL. They tested the program
on images of three pepper varieties. They improved
on previous state-of-the-art programs, achieving 97%
mean average precision for two of the three varieties
and 52% on the third one. The algorithm has proved
robust but still computationally expensive, requiring
about 0.5s on GPU.

2.1 Mask R-CNNs

As previously mentioned, (He et al., 2017a) con-
ceived Mask R-CNN as an extension of the preex-
isting Faster R-CNN. The Faster R-CNN architecture
comprises two primary components. Initially, it fea-
tures a Region Proposal Network (RPN) responsible
for suggesting candidate bounding boxes that indicate
potential locations of different objects within the in-
put. Subsequently, these proposed bounding boxes
serve as input for the second stage, a Fast R-CNN.
In this stage, the model utilizes features from each
bounding box to perform classification and bounding
box regression tasks.

In the context of these primary modules, the raw
image is not directly utilized as input. To enhance ef-
ficiency and reduce processing time, Fast R-CNN in-
troduced a concept involving an initial convolutional
neural network to generate the feature map for the en-
tire image. This approach is time-saving compared
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to individually computing the feature map for each
proposed bounding box. The initial module, referred
to as the backbone, is succeeded by two subsequent
modules: the Region Proposal Network (RPN) and
the network head.

2.2 YOLACT

In the context of Instance Segmentation, networks
that proved to yield good results are FCIS (Li et al.,
2016), Mask R-CNN (He et al., 2017a), Retina-
Mask (Fu et al., 2019), PANet (Liu et al., 2018), etc.
Although performing relatively well, these frame-
works cannot be used in real-time due to the com-
putational complexity involved in creating such sys-
tems. The sheer number of parameters makes it im-
possible for these networks to perform on machines
with lower computational capabilities. Therefore, the
task requires a different architecture that can perform
real-time computations.

YOLACT (Bolya et al., 2019), an advanced
single-stage object detector, introduces a mask com-
ponent, utilizing a fully convolutional network (FCN)
to propose masks for the entire image. Simultane-
ously, a prediction head generates coefficients for
each mask instance, facilitating effective instance
localization. This unique approach distinguishes
YOLACT from Mask R-CNN, notably omitting the
Region Proposal Network (RPN) layer, resulting in
significant speed improvements. However, this speed
enhancement comes at the expense of reduced predic-
tion quality, particularly for smaller objects.

The YOLACT model operates as a single-stage in-
stance segmentation network, dividing the task into
prototype mask generation and mask coefficient pre-
diction. Its five components include a backbone
network (Backbone) incorporating ResNet and fea-
ture pyramid (FPN), a mask template generation
branch (Protonet), a prediction module, an aggrega-
tion branch, and a clipping module. Utilizing ResNet
and FPN, the backbone network obtains feature im-
ages P5, P4, and P3 and performs convolution on
feature image P5 to acquire feature images P6 and
P7. The instance segmentation process involves two
parallel subtasks. One subtask utilizes feature im-
age P3 in Protonet to generate various mask tem-
plates (Prototype mask generation), each sensitive to
different instances. The other subtask adds a mask
coefficients prediction branch to the target detection
branch, generating coefficients representing instance
masks (Mask Coefficients). These coefficients are lin-
early combined with the mask template, and, follow-
ing bounding box predictions, the image is cropped
to achieve instance segmentation (Bolya et al., 2019).

YOLACT’s architecture is shown in Figure 1.

3 PROPOSED METHOD

As already mentioned, this work focuses on perform-
ing Instance Segmentation on Low-Power Edge De-
vices. Many works (e.g. (Bolya et al., 2019; He et al.,
2017a; Wang et al., 2020a) are often meant to run on
(possibly quite powerful) desktop GPUs.

While exploring the landscape of advanced mod-
els designed for semantic segmentation (Wang et al.,
2017) and instance segmentation (Liu et al., 2020;
Yang et al., 2019) on edge devices, we found that
these models were mainly created for powerful GPU-
based edge devices like Jetson Xavier. It is often the
case that inference of the same model on the CPU is
suboptimal.

Various strategies have been employed to accel-
erate instance segmentation models, such as Pruning,
but many of them only decrease the accuracy. In this
context, we now establish a baseline model and pro-
pose a solution to reduce the computational intensity
of the instance segmentation task without compromis-
ing accuracy and inference speed in instance segmen-
tation on NCS2.

Our study started with the Yolact model as our
base for single-stage instance segmentation. We then
made various structural changes to make it work with
minimal computational requirements on the NCS2
edge device. Our main goal is to speed up and opti-
mize the instance segmentation model to make it prac-
tical for real-world situations using such a device.

3.1 Architecture’s Backbone:
ResNet-50

Yolact is a real-time instance segmentation algorithm
that divides the instance segmentation task into two
parallel branches fed by the backbone detector.

Generally, the backbone refers to the CNN net-
work, which takes the image as input and extracts
the feature map upon which the rest of the network
is based.

Several CNNs are available, such as AlexNet, VG-
GNet, and ResNet (Sultana et al., 2020), which are
mainly used as a backbone in instance segmentation
models. However, many complicated ConvNets de-
liver higher accuracy than the simple ones; the draw-
backs become significant, especially when dealing
with an edge device with a simple VPU processor and
small RAM.

We opted for ResNet-50 as the backbone for the
baseline model due to its more logical choice in terms
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Figure 1: YOLACT’s architecture.

of computational complexity with fewer parameters.
This consideration is particularly crucial for edge de-
vices, and our research aims to enhance this aspect.
YOLACT has 30M parameters, while ResNet-50 has
23M parameters.

3.2 Acceleration with Pruning

Pruning (He et al., 2017b) Convolutional Neural
Networks (CNNs) have emerged as a highly effec-
tive approach for compressing networks (Ding et al.,
2021). Recent trends have witnessed networks grow-
ing deeper, resulting in a surge in parameters and
convolution operations. However, this rise in high-
capacity networks with substantial inference costs
presents challenges, particularly in applications in-
volving embedded sensors or mobile devices with
limited computational and power resources (Li et al.,
2016).

Impressive compression rates have been achieved
on AlexNet and VGGNet by pruning weights with
small magnitudes and retraining without significantly
impacting overall accuracy (Han et al., 2015). Also,
this technique seems particularly effective on com-
plex models, where the depth and the number of lay-
ers are considerable (Fontana et al., 2024). However,
it’s important to note that pruning parameters might
not always reduce computation time significantly, pri-
marily because most of the removed parameters be-
long to fully connected layers, which inherently have
low computation costs.

Unstructured pruning methods remove individ-
ual parameters, resulting in a sparse neural network
(Vahidian et al., 2021). However, this approach faces
limitations as most frameworks and hardware strug-
gle to accelerate computations involving sparse ma-
trices. For instance, the NCS2 cannot exploit zeros in

Table 1: Size of ResNet-50 after pruning.

Pruning ratio Param. (M)
40% 10.9
50% 9.2
60% 8.08
70% 7.22
80% 6.64

parameter tensors to reduce the actual cost of the net-
work. This pruning technique is commonly known as
Weight Pruning.

On the other hand, filter pruning is a structured ap-
proach that doesn’t introduce sparsity, thereby elimi-
nating the necessity for sparse libraries or specialized
hardware (Shao et al., 2021). Pruning filters directly
impact acceleration by reducing the number of ma-
trix multiplications. One-shot pruning is performed
initially, followed by a retraining strategy that saves
retraining time by pruning filters across multiple lay-
ers, a crucial aspect for very deep networks. In our
scenario, we opted for filter pruning, aiming for an
effective device-friendly method and considering the
interconnectivity between layers and filters. Unim-
portant filters are identified and pruned by utilizing
ℓ2-norm as a regularizer. A stage-wise pruning ap-
proach allows for a uniform pruning rate across all
layers within a given stage. We pruned ResNet50 with
40%, 50%, 60%, and 70%, the results are shown in
Table 1.

4 EXPERIMENTAL SETUP

This section provides the experimental setup in-
volved, highlighting the hardware details and the
dataset.
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4.1 Hardware

Traditionally, as the requirements of deep learning ar-
chitecture grow, one would need more computational
resources and specialized hardware such as Graph-
ics Processing Units (GPUs) and Tensor Processing
Units (TPUs). However, this work aims to involve a
low computational end device, the NCS2.

However, the program has also been tested on an
Intel i7-9750H. The rationale for the CPU choice is
as follows. It is a high-end consumer CPU that came
out around the same period of the NCS2 (i.e., Q2’19
for the CPU1 and Q4’18 for the NCS22). It is also
a mobile CPU (i.e., mounted on laptop computers);
recall that our goal is to run Instance Segmentation
on a low-end piece of hardware, meant to be used
in situations where energy consumption is a crucial
factor, where powerful (and power-hungry) machines
cannot be used. Thus, comparing the NCS2 with a
CPU meant to run on a laptop makes sense.

It is also worth noting the difference in power con-
sumption. Intel NCS2 absorbs around 1W (Libutti
et al., 2020), while the i7-9750H has a rated TDP of
45W.

4.2 Dataset

Figure 2: Dataset sample.

As previously mentioned, the target dataset is covered
by industrial confidentiality. Thus, we used a differ-
ent dataset as a baseline. Starting from Sweet Pep-
per dataset on Kaggle 3, we selected 450 images and
resized them to 550×550px using bilinear interpola-

1https://ark.intel.com/content/
www/us/en/ark/products/191045/
intel-core-i7-9750h-processor-12m-cache-up-to-4-50-ghz.
html

2https://www.intel.com/content/www/us/en/products/
sku/140109/intel-neural-compute-stick-2/specifications.
html

3https://www.kaggle.com/datasets/lemontyc/
sweet-pepper

tion. The selection has been performed with a balance
of the data among all the classes, simulating the sam-
ple availability of the target industrial context.

The dataset has been split into 70% for training
and 30% for tests. Figure 2 is an example of what
images from the dataset look like.

5 RESULTS

5.1 Models Accuracy

Following, we will discuss the accuracy and robust-
ness of the tested models (i.e., YOLACT paired with
ResNet-50 and its variations).

As a metric, we will use mean Average Precision
(mAP).

5.1.1 Pruned ResNet-50

We first focus on the results obtained by pairing
YOLACT with Pruned ResNet-50.

Figure 3 compares the performance of YOLACT
paired with vanilla ResNet-50 with various degrees of
pruning of ResNet-50.

Base ResNet-50 showed robust results, with a
mAP of 92.11%. Pruning the backbone did impact
the prediction accuracy. The lowest accuracy model
is ResNet-50 pruned at 80%, with an mAP of 83.34%,
and the highest accuracy is ResNet-50 pruned at 60%,
with an mAP of 88.91%.

These tests show that pruning needs to be bal-
anced; in our tests, we lost almost 10% accuracy on
the most pruned backbone. On the other hand, some
pruned models didn’t lose as much, thus making prun-
ing a viable option if having a smaller model is crucial
and losing some accuracy is acceptable.

Interestingly, the mAP doesn’t decrease monoton-
ically as the model gets pruned. This behavior, al-
though strange, has already been observed in the liter-
ature. A survey on DNN pruning (Cheng et al., 2024)
shows the same pattern. Figure 8 of that paper shows
pruning on a ResNet-152; accuracy follows an overall
increasing trend up to around 60%, and drops down
as the pruning percentage increases (the same pattern
of Figure 3). In our case, although the trend is the
same, the magnitude at which the accuracy changes
is greater; this could be explained by the size of the
dataset used in this work, which began so small that
pruning might have had a greater impact on perfor-
mance.
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Figure 3: Yolact ResNet-50 pruned ratio trade-off.

5.1.2 ResNet-50 with Various Optimization
Techniques

We now focus on many optimizations that can be per-
formed on the backbone to make it lighter.

All the results are summarized in Figure 4.
Reparameterization involving the transformation

of ResNet to a simplified VGG-like RMNet architec-
ture revealed promise in improving mask mAP, es-
pecially with higher pruning ratios. This methodol-
ogy showcased its potential for optimizing mask pre-
dictions while simplifying the model’s architectural
complexities.

Integrating CPAC-convolutional layers (Wang
et al., 2020b) into the ResNet50 architecture yielded
substantial reductions in model size while concur-
rently maintaining or augmenting mask mAP. Specif-
ically, incorporating CPAC in ResNet50 resulted in a
noteworthy increase in mask mAP alongside a con-
siderable reduction in model size, indicating its effec-
tiveness in bolstering mask accuracy.

Depth-wise separable convolutions (DWS) show-
cased variable impacts on mask accuracy when ap-
plied to distinct sections of the YOLACT model. Al-
though effective in parameter reduction, careful con-
sideration is warranted when implementing DWS to
ensure it positively influences mask mAP.

It is worth noting that the best optimization
method has been CPAC-convolution, which yielded
92% mAP, really close to the 92.11% of base ResNet-

50 with no optimization applied.

5.2 Inference Evaluation on Hardware

Following, we show the inference time on both the
CPU and the NCS2. The CPU is used as a benchmark
for the NCS2.

All the results in this section are summarized in
Table 2 and Table 3.

5.2.1 CPU

Figure 5 shows the CPU’s mAP and FPS using Yolact
paired with ResNet-50 and its optimized variations.
These results have been used as a benchmark to com-
pare the results of the NCS2.

CPAC convolution yielded good results, achieving
around the same precision of base ResNet-50, but im-
proving the FPS by 78.1%. Pruning at 60% achieved
the best inference time, with an increase in FPS of
138.7%, but with a considerable drop in accuracy, go-
ing from 92.11% to 83.11%.

5.2.2 NCS2 Device

Following the results of the NCS2. On the NCS2, we
have conducted two kinds of tests. In the first kind,
we tested Yolact paired with only ResNet-50 with no
optimizations, with images ranging from 200×200px
to 550×550px. Results are shown in Figure 6.
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Figure 4: Yolact with ResNet-50 acceleration and optimization methods.
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Figure 5: CPU Benchmark results in mAP and FPS.

Decreasing the image size, as expected, improved
the inference time at the cost of reducing the pre-
cision. Starting from the baseline images at 550 ×
550px, with 92.11% mAP and 0.13 FPS, and end-
ing with 200×200px images, which yielded 81.11%
mAP and 0.4FPS, and increased of 207.7% in FPS
and -11.9% on the mAP.

Following, in Figure 7, the mAP and inference
time of the NCS2 paired with Yolact and ResNet-50
pruned with increasing ratios, from 40% to 80%.

Increasing the pruning ratio did improve the FPS,
but always by a small amount, going from a mini-
mum of 0.254 FPS (pruning at 40%) to a maximum
of 0.277 FPS (pruning at 80%). This small increase

came at the cost of precision, which dropped preci-
sion from 85.81% (pruning at 40%) to 83.34% (prun-
ing at 80%). It is also interesting to see that accu-
racy does not monotonically decrease: it first goes
up, from 40% pruning to 60% pruning, and then de-
creases from 60% to 80% (see explanation in Section
5.1.1).

These tests on the NCS2 show inference times
that, although unsuitable for real-time performance,
can be used in practice depending on the application
if power efficiency is a concern.
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Figure 6: Image size mAP and FPS trade-off.
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Figure 7: NCS2: image size mAP and FPS trade-off with Pruning.

5.2.3 CPU and NCS2 Comparison

Here, we compare the results of the NCS2 with the
benchmark obtained from the CPU. Results shown in
Table 2. Figure 6 is not summarized in the table be-
cause it represents different kinds of tests, but it is
shown in Table 3 for completeness.

Even though the NCS2, in all tests, was performed
with less than 1 FPS, in real-case scenarios, it might
be as suitable as the performance obtained from the
CPU, which maxed at 3.7FPS.

6 CONCLUSIONS

In conclusion, an extensive assessment of diverse
YOLACT models featuring distinct backbones, opti-
mization, and acceleration techniques were conducted
to enhance the inference performance from the base-
line. Subsequently, a sequence of hardware configu-

Table 2: Synopsis table for CPU and NCS2.

Hardware Optimization mAP (%) FPS
CPU None 92.11 1.55
CPU CPAC 92 2.76
CPU 60% Pruning 83.11 3.70

NCS2 None 92.11 0.13
NCS2 40% Pruning 85.81 0.254
NCS2 50% Pruning 88.22 0.263
NCS2 60% Pruning 88.91 0.272
NCS2 70% Pruning 87.56 0.275
NCS2 80% Pruning 83.34 0.277

Table 3: Synopsis table for NCS2 with image resizing.

Hardware Size (px) mAP (%) FPS
NCS2 200 x 200 81.11 0.4
NCS2 320 x 320 86.24 0.3
NCS2 400 x 400 88.5 0.18
NCS2 550 x 550 92.11 0.13
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rations was carried out to enable inference on the Intel
NCS2. To the best of our knowledge, this is the first
implementation of this kind of model on this type of
device.

Although we reached an accuracy of 95%, 0.5 FPS
cannot meet the speed requirement for real-time ap-
plications. Nevertheless, this implementation is still
usable in different contexts. These results are ob-
tained on the dataset described in Section 4; however,
similar values have been collected with the target data
provided by the industrial partner. For comparison,
we tried naive Yolact on NCS2, which got only 0.09
fps, while our model got 0.5 FPS.

Possible future works include exploring the uti-
lization of more powerful and recent edge devices and
a comprehensive analysis of contemporary instance
segmentation models.
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