
Learning to Program: Mapping Errors and Misconceptions of Python
Novices to Support the Design of Intelligent Programming Tutors

Lisa van der Heyden1 a, Fatma Batur2 b and Irene-Angelica Chounta1 c

1Department of Human-centered Computing and Cognitive Science, University of Duisburg-Essen, Duisburg, Germany
2Computing Education Research Group, University of Duisburg-Essen, Essen, Germany

{lisa.van-der-heyden, fatma.batur, irene-angelica.chounta}@uni-due.de

Keywords: Programming, Novices, Adaptation, Intelligent Tutors, Python, Errors, Misconceptions.

Abstract: Students often struggle with basic programming tasks after their first programming course. Adaptive tutor-
ing systems can support students’ practice by generating tasks, providing feedback, and evaluating students’
progress in real-time. Here, we describe the first step for building such a system focusing on designing tasks
that address common errors and misconceptions. To that end, we compiled a collection of Python tasks for
novices. In particular, a) we identified errors occurring during introductory programming and mapped them to
learning tasks; b) we conducted a survey to validate our mapping; c) we conducted semi-structured interviews
with instructors to understand potential reasons for such errors and best practices for addressing them. Synthe-
sizing our findings, we discuss the creation of a tasks’ corpus to serve as a basis for adaptive tutors. This work
contributes to the standardization and systematization of computing education and provides insights regarding
the design of learning tasks tailored to addressing errors.

1 INTRODUCTION

Learning to program is considered challenging, and
it is often associated with difficulties, errors, and
misconceptions. In a systematic review, (Qian and
Lehman, 2017) found that students’ misconceptions
and difficulties in syntactic, conceptual, and strate-
gic knowledge were related to many factors, such
as unfamiliarity with syntax, natural language, math
knowledge, inaccurate mental models, lack of strate-
gies, programming environments, teachers’ knowl-
edge, and instruction. They advocate that more re-
search is needed on students’ misconceptions in Com-
puter Science (CS), especially on the development
of (mis)conceptions, and that appropriate teaching
strategies and tools need to be developed and dis-
seminated to address them. As part of their re-
view, the authors also concluded that there is no
generally accepted definition of these problems in
computer science education. Some frequently used
terms are “misconceptions” (Sorva, 2012), “difficul-
ties” (Du Boulay, 1986), and “errors” (Sleeman et al.,
1986). Qian and Lehman suggest that “misconcep-

a https://orcid.org/0000-0003-0197-7473
b https://orcid.org/0000-0002-7377-6585
c https://orcid.org/0000-0001-9159-0664

tions per se, are probably best defined as errors in
conceptual understanding” (Qian and Lehman, 2017,
p. 3). For our work, we prefer to use the general term
“errors” most of the time.

One possibility for providing students with indi-
vidualized learning and practice opportunities is using
Intelligent Tutoring Systems (ITS). In particular, In-
telligent Programming Tutors (IPTs) focus on teach-
ing programming, also in the context of introductory
programming (Crow et al., 2018). Related research
on IPTs confirms the effectiveness of such systems
(Rivers and Koedinger, 2017) in terms of promoting
students’ learning. Still, little is known about the spe-
cific learning tasks and materials these systems use
to guide students’ practice. Additionally, learning re-
sources that are available online often are not associ-
ated with specific errors, misconceptions, or difficulty
levels, and thus, it is not clear how to address potential
issues that students may face when using them.

In this work, we aim to address this gap and
contribute to the transparent development of learning
materials for IPTs that can support novices when
learning Python. In particular, our objective is to
build a corpus of Python learning tasks that address
different difficulty levels and target common errors
and misconceptions. We argue that such tasks can
be used as a basis for adaptive learning systems to

224
van der Heyden, L., Batur, F. and Chounta, I.-A.
Learning to Program: Mapping Errors and Misconceptions of Python Novices to Support the Design of Intelligent Programming Tutors.
DOI: 10.5220/0013203100003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 1, pages 224-231
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



provide tailored feedback and scaffolding. To create
this task corpus, we collected various errors and
misconceptions as well as Python tasks. We assigned
each task to a misconception or error and one of three
difficulty levels. Then, we tested our assumptions
about the mapping by asking Python teachers to
validate our propositions. With this work, we aim to
answer the following research questions (RQs):
RQ1. Do Python instructors agree to the mapping of
the tasks and levels of difficulty?
RQ2. Do Python instructors agree to the mapping of
the tasks, misconceptions and common errors?
RQ3. What are the concepts students struggle with?
We aim to get insights from Python instructors
based on their professional experience regarding the
concepts that students often have difficulties with.
We use these insights to enrich the collection of
programming tasks established and validated in RQ1
and RQ2 to address a wide range of students’ needs.
RQ4. What practices do teachers use to support
students with difficulties?
We aim to document the teaching practices that
instructors recommend for efficiently and effectively
supporting students who face difficulties with pro-
gramming. These practices will accompany the task
collection with the aim of guiding the design of
automated, adaptive feedback.

We envision that our work contributes to the stan-
dardization and systematization of computing educa-
tion. Additionally, we aim to provide insights regard-
ing the design of learning tasks tailored to address-
ing common errors and misconceptions in introduc-
tory programming.

2 RELATED WORK

Learning to program is a popular and widely re-
searched topic. Specifically, novice programmers are
in the spotlight of CS education since research sug-
gests that novices often suffer from a wide range
of difficulties that involve acquiring complex new
knowledge and related strategies and practical skills
(Robins et al., 2003). (McCracken et al., 2001) con-
ducted a multi-national study that examined novice
students’ programming competence at the end of in-
troductory computer science courses. The results in-
dicated that the majority of students performed poorly
and suggested that the problems seemed to be inde-
pendent of the country and educational system. Stu-
dents appeared to have the most difficulties with ab-
stracting the problem to be solved from the task de-
scription. (Luxton-Reilly et al., 2018) explored trends

and advances in learning introductory programming.
Among other things, the authors pointed out that there
was a lack of research concerning the specific con-
cepts that were covered in the first few weeks of in-
troductory programming courses.

It is challenging to reach a consensus on the most
important and difficult concepts for an introductory
computer science (CS1) course due to the diversity of
programming languages, pedagogical paradigms, and
programming environments that impact the percep-
tion of important and difficult topics (Goldman et al.,
2008). Similarly, there is no consensus on the correct
sequencing in which topics should be taught in a par-
ticular language (Robins, 2010). Our desk research
revealed that the basic topics of variables, loops, and
functions are often cited as challenging topics, which
aligns with the work from (Lahtinen et al., 2005).

Learning to program is often accompanied by var-
ious difficulties, errors and misconceptions. Research
on misconceptions in CS dates back to the 1980s
(Du Boulay, 1986). Published misconception or error
collections, such as https://progmiscon.org or https://
www.csteachingtips.org, and related research (Sorva,
2012; Kohn, 2017) provide insightful overviews of
common misconceptions and errors: Progmiscon of-
fers a curated inventory of programming language
misconceptions with a focus on syntactic and seman-
tic knowledge (Chiodini et al., 2021); the CS teach-
ing tips website contains more than 100 teaching tips
that are tagged as “content misconceptions”; (Sorva,
2012) created an extensive collection of novice mis-
conceptions about introductory programming con-
tent; (Kohn, 2017) presented a selection of miscon-
ceptions related to syntax, the nature of variables,
and assignments. However, none of the aforemen-
tioned collections contains information about specific
tasks or difficulty levels associated with the miscon-
ceptions. We aim to close this gap by a) linking tasks
to misunderstandings and errors; and b) classifying
tasks into different difficulty levels.

3 METHODOLOGY

To answer our research questions, we followed an it-
erative design process for designing a collection of
Python learning tasks to address errors and miscon-
ceptions of novices. First, we conducted a desk re-
view to identify important concepts and common er-
rors in introductory programming. In parallel, we col-
lected Python tasks related to the concepts and the
errors identified in the review. Next, we established
the mapping of the Python tasks, different levels of
difficulty, and common errors. Following this, we de-

Learning to Program: Mapping Errors and Misconceptions of Python Novices to Support the Design of Intelligent Programming Tutors

225



signed and conducted a survey study for Python in-
structors to validate the mapping of the tasks with
levels of difficulty (RQ1) and the common errors
(RQ2). Additionally, we conducted semi-structured
interviews with Python instructors to get insights into
further errors, misconceptions, and difficulties of stu-
dents (RQ3) and the teaching approaches to support
struggling students (RQ4). The mapping of tasks, dif-
ficulty levels and common errors was adjusted to re-
flect the results of the surveys and interviews.

3.1 Task Collection

Here, we focus on three programming concepts: vari-
ables, loops, and functions since they appear as chal-
lenging concepts for novices. For these concepts, we
conducted a desk review to document common errors:
for variables, we focused on errors related to the as-
signment and reassignment of values (Kohn, 2017;
Du Boulay, 1986); for loops, we focused on specific
keywords such as break or else, the understanding of
while and for loops, and errors related to off-by-one
errors and the assumption that a loop halts as soon as
the condition is false rather than finishing the loop’s
body first (Rigby et al., 2020); for functions, we se-
lected common errors related to the “general” under-
standing of defining and calling functions, nesting and
parameter passing (Kallia and Sentance, 2019).

In parallel, we collected tasks that could be as-
signed to these errors. We aimed at combining differ-
ent tasks with expected errors and potential miscon-
ceptions. Our task collection can be found in the dig-
ital appendix (https://zenodo.org/records/14712398).
Since the difficulty level of concepts and tasks plays a
vital role in this context, we aimed at collecting tasks
of different difficulty levels. To that end, we used the
taxonomy of (Le et al., 2013; Le and Pinkwart, 2014).
The authors proposed a categorization of the degree
of ill-definedness of educational problems based on
the existence of solution strategies (Le et al., 2013).
Reviewing existing intelligent learning environments
for programming exercises, (Le and Pinkwart, 2014)
suggested that the exercises can be classified into
three classes: (1) exercises with one single solution,
(2) exercises with different implementation variants,
and (3) exercises with different solution strategies.
The authors also compared the proposed classifica-
tion with the PISA proficiency levels for Mathemat-
ics, where “the proficiency scale represents an empir-
ical measure of the cognitive demand for each ques-
tion/exercise” (Le and Pinkwart, 2014, p. 57). They
connected class 1 problems with proficiency level 1,
class 2 problems with proficiency level 2, and class 3
problems with proficiency level 3 and 4. Hence, we

Figure 1: Task F1C1.

Figure 2: Task L2C2.

argue that the three classes of programming exercises
can also be seen as “difficulty levels”. We mapped the
tasks to three different levels of difficulty, so-called
“classes”:

• Class 1 Tasks: have the lowest level of difficulty
and have one single correct solution. An exam-
ple is a task that describes the problem and asks
the user to input one specific value in a specified
gap (Figure 1). We reviewed our collected tasks
and assigned all tasks that fit to the “one solution
strategy, one implementation” approach to class 1.

• Class 2 Tasks: are more complicated and have
one solution strategy but can be solved by dif-
ferent implementation variants, such as modify-
ing program statements to make an incorrect code
snippet work. All of our tasks that followed the
“one solution strategy, alternative implementation
variant” approach were assigned to class 2. An
example is task L2C2 (Figure 2).

• Class 3 Tasks: are the most difficult tasks that
enable students to implement different solution
strategies in different variants. We only found
four tasks that had a known number of typical so-
lution strategies and were mapped to class 3. One
example is task V1C3 (Figure 3).

This resulted in 33 programming tasks: 11 for
variables, 11 for functions and 11 for loops. For the
difficulty levels, we assigned 16 tasks to class 1, 13
tasks to class 2 and four tasks to class 3.

Figure 3: Task V1C3.

CSEDU 2025 - 17th International Conference on Computer Supported Education

226



3.2 Survey

To validate the mapping of learning tasks and errors
(see section 3.1), we designed an online survey to col-
lect input from Python instructors. Specifically, we
wanted to gather feedback on whether the Python in-
structors agree to the mapping of the tasks with the
levels of difficulty (RQ1) and the errors (RQ2). The
study was conducted with the approval of the Depart-
ment’s Ethics Committee (number 2410CMvL7106).
To keep the survey short regarding the completion
time, we created three questionnaires: one for vari-
ables, one for loops, and one for functions. Each
questionnaire was composed of three parts: A short
introduction, the main part – where the participants
were asked to rate the appropriateness of the difficulty
level and whether they thought the tasks appropriately
addressed the expected errors – and finally, demo-
graphic questions related to the participants’ teach-
ing experience. In addition, we included free text
fields where participants could provide additional in-
sights. Participation in the survey was anonymous,
and we did not collect any sensitive data. We con-
tacted Python instructors from our home institution
and via public calls for participation that were dis-
tributed via email and social media channels. Upon
positive response, we followed up by sending a short
description of the research idea, a link to the online
survey, and an “instructions” sheet (see digital ap-
pendix) that should have been read before the survey
was completed. The instructions sheet provided more
information about the distinction of the different lev-
els (“classes”) and explained the structure of the sur-
vey. The questions from the survey can also be found
in the digital appendix.

3.3 Interviews

After the survey, we conducted follow-up semi-
structured interviews with three individuals who par-
ticipated in the survey study. We used interview in-
put to gain deep insights into the concepts students
struggle with (RQ3) and how the instructors support
students in resolving these struggles (RQ4). An in-
terview protocol was created to lead the interviewer
through the process. All interviews were conducted
online and lasted between 23 and 37 minutes. The
first question referred to the survey, and participants
were asked whether they wanted to follow up on a
topic from the survey in more depth. Then, par-
ticipants were queried about common errors, poten-
tial misconceptions, and difficult concepts beyond the
ones that were mentioned in the survey. Participants
were also asked about their programming teaching ex-

perience, which concepts they thought students strug-
gled with, and what they did to support students. All
participants gave informed consent for their partici-
pation. The interviews were analyzed using thematic
analysis (Braun and Clarke, 2006) and affinity dia-
grams (Beyer and Holtzblatt, 1989).

3.4 Participants

Nine Python instructors with different teaching ex-
perience participated in the survey (three participants
per concept – see table 1).

In total, three participants volunteered to take part
in a follow-up interview after filling in the survey. We
can’t identify which survey participants (table 1) par-
ticipated in the interview as the surveys were anony-
mous. Nevertheless, we found out that each interview
participant had received another concept so that we
could conduct one interview with a person who filled
in the survey for variables, one for loops, and one for
functions. This allowed us to gain complementary in-
sights.

4 RESULTS

4.1 Do Python Instructors Agree to the
Mapping of the Tasks and Levels of
Difficulty? (RQ1)

In total, for 21 out of 33 tasks (64 %), the partici-
pants agreed that the difficulty level was appropriate
for the tasks. For 11 tasks, two out of three partici-
pants agreed that the mapping was appropriate, while
for 1 task, only one out of three participants agreed to
the mapping. Figure 4 shows the agreement among
the participants for all tasks and concepts. The tasks
that were rated with an agreement of 3/3 covered all
concepts and all levels of difficulty. Nevertheless, we
saw that agreement was established for 9/11 tasks re-
lating to variables, compared to 7/11 tasks for loops
and 5/11 tasks for functions. Since we did not have
the same number of tasks for each level of difficulty
(see Section 3.1), we calculated an agreement rate -
this was done by dividing the number of tasks for
which participants gave their full agreement by the
respective number of available tasks for each class.
Since we had a small sample size and some missing
values, we decided to use this metric. Class 3 scored
the highest agreement rate (75 %), followed by class
1 (69 %) and class 2 (54 %).

Qualitative analysis of participants’ input suggests
that the main points of participants’ disagreement

Learning to Program: Mapping Errors and Misconceptions of Python Novices to Support the Design of Intelligent Programming Tutors

227



Table 1: Study Participants.

Participant Professional Background Years of Teaching Experience Questionnaire
P1 Undergraduate/college student 1-3 Loops
P2 Research (staff) 10+ Loops
P3 Graduate/Postgraduate student/PhD candidate 1-3 Loops
P4 Professor 6-10 Functions
P5 Undergraduate/ college student 1-3 Functions
P6 Graduate/Postgraduate student/PhD candidate 1-3 Functions
P7 Graduate/postgraduate student/PhD candidate 1-3 Variables
P8 Research (Staff) 4-5 Variables
P9 Graduate/postgraduate student/PhD candidate 1-3 Variables

concerned the wording of the tasks and the idea that
some tasks could be solved differently from the pro-
posed solutions.

4.2 Do Python Instructors Agree to the
Mapping of the Tasks and
Misconceptions and Common
Errors? (RQ2)

For the examination of the mapping of tasks and er-
rors, we had 29 tasks because we did not map spe-
cific errors to the four tasks of class 3. For 19 out
of 29 tasks (66 %), participants fully agreed on the
mapping. For 9 tasks, two out of three participants
agreed on the mapping, and for 1 task, only one par-
ticipant approved the mapping. Figure 4 illustrates
the agreement among the participants for all tasks and
concepts. The tasks rated with an agreement of 3/3
covered all concepts and both difficulty levels (that is,
class 1 and class 2). Similar to the results for RQ1
(Section 4.1), we calculated two agreement rates, one
for the concepts of loops, functions, and variables and
one for the difficulty levels class 1 and class 2. We
observed the highest agreement rate for the concept
of loops (90 %), followed by functions (56 %) and
variables (50 %). Comparing the difficulty levels, the
agreement rate for the mapping of class 1 was slightly
higher (69 %) than for class 2 (62 %). The main points
on which the participants disagreed were the wording
of the tasks and the related errors. Furthermore, they
also made assumptions about possible other solutions
to the tasks, which could then lead to potential new
errors.

4.3 What Are Concepts Students
Struggle with? (RQ3)

To further investigate the concepts that students strug-
gle with potentially leading to errors, we interviewed
3 (I1, I2, and I3) out of the 9 participants. Through
the interviews, participants gave several indications

of potential errors that they considered relevant and
that were not included in our original task collec-
tion. We documented these errors and divided them
into six error categories. Three categories referred
to variables, loops, and functions, as in the original
scheme. In addition, we identified three more er-
ror categories for (a) syntax errors (“use of methods
without ()” (I3)); (b) data structures/flow (“using li-
braries” (I1), “lists and tuples” (I3), “how data flows
in the program” (I3)); and (c) other that included er-
rors that were related to the code quality (“no suf-
ficient documentation” (I2)) or concepts and errors
that were not mentioned multiple times (e.g.“condi-
tions, the if/else” (I1), “confusing the assignment and
comparison signs” (I3)).

4.4 What Practices Do Teachers Use to
Support Students with Difficulties?
(RQ4)

When asked what practices teachers apply to address
the students’ struggles, I2 and I3 set the focus on un-
derstanding (“promoting the understanding” (I2)) so
that students a) learn how to write code, b) under-
stand “why to write code in a certain way” (I3), and
c) are enabled to implement code in different ways
instead of “bare remembering” (I3). Both I2 and I3
also talked about the benefit of learning with prob-
lems (“I guess the most useful skill in terms of teach-
ing is to break down problems into pieces” (I2)). Fur-
thermore, I2 and I3 mentioned collaboration (for ex-
ample, working in groups and discussing the results
to find a solution (I2)) and guidance (having long
lectures and the time for discussions with students
(I3); staying with the students in the lab and looking
things up with them (I2)) as important factors in the
classroom, and general recommendations like teach-
ing how to write good code (recommendations to be-
ing more organized in terms of naming (I2) and use
comments for the code (I2)) or provide information
about the software setup (I2).

CSEDU 2025 - 17th International Conference on Computer Supported Education

228



Figure 4: Agreement rates from participants’ survey responses for the levels of difficulty and the related errors. A value of 3
means that 3 out of 3 participants expressed their agreement, a value of 2 means that 2 out of 3 participants expressed their
agreement, and so on.

When discussing teaching practices (section 4.3),
the participants also mentioned future perspectives for
learning and teaching programming. I2 introduced
this topic with the statement “things will change, but
the problem-solving skill is something you can train”
pointing out that it is important to teach students to
break down problems into pieces. I2 also mentioned
“in a broader scope of programming” that it is impor-
tant to teach and learn how to translate problems into a
symbolic language. I1 said that focusing on concepts
would be a “good idea” as it would help “this attitude
of computational thinking”. Following, I1 elaborated
that the programming concepts were more about com-
putational thinking and a mindset of debugging, going
step by step, thinking about the concepts in a broader
way, and applying them to other fields. To talk about
the importance of teaching programming, I3 pointed
out an important difference between (1) teaching how
to write instructions in the correct order and with the
correct syntax and (2) teaching in terms of thinking
about structures of code, how to optimize code, why
certain things are implemented and so on. I3 said that
Large Language Models (LLMs) were good for the
former but didn’t perform well on the latter. In gen-
eral, none of the participants seemed to be opposed to
the use of LLMs, provided they were used to support
students.

5 DISCUSSION

5.1 Mapping of Tasks with Levels of
Difficulty, Errors and
Misconceptions (RQ1, RQ2)

Our findings suggested that the lowest level of agree-
ment for the mapping of tasks with difficulty levels
was established for tasks related to functions or tasks
that are assigned to class 2. This may reflect that when

dividing tasks into three difficulty levels, it is more
difficult to evaluate a task in the middle (class 2) than
a task that represents one extreme or the other (class
1 or class 3).

Concerning the mapping of tasks with errors,
there was a high agreement for tasks related to loops.
The task descriptions were specific and did not leave
room for interpretation. Participants’ feedback of-
ten focused on reflecting about the learning task in-
stead of the related errors. This may suggest that the
classification of the programming exercises (Le and
Pinkwart, 2014) can meaningfully reflect “levels of
difficulty”.

5.2 What Concepts Do Students
Struggle with and How Can
Teachers Support? (RQ3, RQ4)

From our interviews, it emerged that participants put
more emphasis on concepts than on syntax. Under-
standing was more important than writing code cor-
rectly, as this could also be outsourced to tools like
LLMs or accompanying materials. This idea is in
line with current research on LLMs, which shows
promising results in areas such as solving introduc-
tory programming tasks (Finnie-Ansley et al., 2022)
or using LLMs for assessment and feedback genera-
tion for a given input (Hellas et al., 2023). One par-
ticipant suggested including hyperlinks or similar in-
formation about syntax when using our task corpus
so that students could completely focus on the con-
cepts. This idea complements the proposal of (Crow
et al., 2018) to link additional resources to the intelli-
gent and adaptive component of an IPT after they had
identified the gap that only a few IPTs were equipped
with comprehensive reference material. It is impor-
tant to point out the importance of context: Even if we
saw some agreement among our participants, related
research shows that educators only form a weak con-
sensus about which mistakes are most frequent and

Learning to Program: Mapping Errors and Misconceptions of Python Novices to Support the Design of Intelligent Programming Tutors

229



that educators’ perceptions of students’ errors and the
errors that students make are different (Brown and Al-
tadmri, 2014). Taking the feedback of the surveys and
the interviews into account, we adjusted our task col-
lection twice. A detailed overview of the adjustments
and the reasoning is provided in the digital appendix.

5.3 Theoretical and Practical
Implications

In this work, we built on existing tasks and mapped
these tasks to different levels of difficulty and poten-
tial errors. By asking Python instructors to review
this initial task collection and conducting follow-up
interviews, we adjusted and refined our enriched task
collection. We envision that our process of creating
and adjusting the task collection can help inform fu-
ture research and provide an opportunity for practical
application of the task collection. On the one hand,
our tasks can be used for practicing specific concepts
in introductory programming courses. On the other
hand, our results reveal which tasks are generally
suitable for investigating errors of novices. There-
fore, our results can be used to create tasks that fol-
low the same approaches and concepts to investigate
common errors of novices. For the future, we also
see potential in connecting misconception collections
with other taxonomies - such as Bloom’s taxonomy
(Bloom et al., 1956) or SOLO taxonomy (Biggs and
Collis, 1982) - and thus achieving even more granular
differentiations than we have with our three levels of
difficulty. We plan to integrate our existing collection
of tasks with errors and misconceptions as base for
an ITS for programming, that focuses specifically on
detecting misconceptions and helping students over-
come them. As mentioned by (Crow et al., 2018), we
see a chance to equip ITS with comprehensive refer-
ence material, especially to deal with students’ mis-
conceptions. The levels of difficulty can be used to
adjust the tutor to the knowledge state of the student
and to provide customized feedback.

6 CONCLUSION

In this paper, we explored the alignment between
Python tasks for the concepts of variables, loops and
functions, and the mapping of these tasks with three
levels of difficulty and related errors. We created a
task collection that was refined based on our survey
results for the mapping of tasks with difficulty lev-
els (RQ1) and with related errors (RQ2). Gaining
additional insights from Python instructors for con-
cepts that students struggle with (RQ3) and informa-

tion on how the instructors support students (RQ4)
helped us to refine the task collection once again. Af-
ter the two phases of the refinement of the mapping,
we ended with 30 tasks (33 tasks initially). During
the first refinement, we removed 1 task and adjusted
the mapping for 10 tasks. During the second refine-
ment, we removed 2 more tasks and adjusted the map-
ping for 9 tasks (2 of these 9 tasks were adjusted for
the second time). As a result, we provide a validated
collection of tasks mapped to three difficulty levels
and common errors. The digital appendix provides
all reference materials for further use of the tasks
(https://zenodo.org/records/14712398).

We acknowledge that this study has several limi-
tations, such as the small sample size, the choice of
programming language, and the initial concepts that
may limit generalizability and transferability. We ac-
knowledge that our focus on novices might have ne-
glected relevant misconceptions and errors about pro-
gramming. Concerning the idea of creating learning
tasks for an adaptive tutor, we based our mapping of
the difficulty levels on the work of (Le et al., 2013)
and (Le and Pinkwart, 2014) and did not use a cogni-
tive taxonomy like Bloom’s taxonomy (Bloom et al.,
1956) or SOLO taxonomy (Biggs and Collis, 1982).
Possibly, instructors are more familiar with cognitive
taxonomies and categorizing on this basis could have
led to different results.

To investigate whether our findings apply to “real
world” classroom settings, studies are required that
make use of the actual task collection. If our task
collection proves to be valid for teaching Python and
addressing related errors for novices, one could also
try to investigate whether the task collection can be
transferred to different programming languages. As
future work for ourselves, we will design an adap-
tive tutor for Python programming that uses the val-
idated task collection and conceptually similar tasks.
We intend to set up an ITS that adapts the tasks and,
thus, the different levels of difficulty to the learner’s
level of knowledge. The planned system will allow us
to provide tailored support to novices who encounter
misconceptions and errors when learning Python pro-
gramming.

REFERENCES

Beyer, H. and Holtzblatt, K. (1989). Contextual Design:
Defining Customer-Centered Systems. Morgan Kauf-
mann, San Francisco, CA.

Biggs, J. B. and Collis, K. F. (1982). Evaluating the qual-
ity of learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). Academic Press, New
York.

CSEDU 2025 - 17th International Conference on Computer Supported Education

230



Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., and
Krathwohl, D. R. (1956). Taxonomy of Educational
Objectives: Handbook 1 Cognitive Domain. Long-
mans, London.

Braun, V. and Clarke, V. (2006). Using thematic analysis
in psychology. Qualitative Research in Psychology,
3(2):77–101.

Brown, N. C. and Altadmri, A. (2014). Investigating
novice programming mistakes: educator beliefs vs.
student data. In Proceedings of the Tenth Annual Con-
ference on International Computing Education Re-
search, ICER ’14, page 43–50, New York, NY, USA.
Association for Computing Machinery.

Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich,
A., Santos, A. L., and Hauswirth, M. (2021). A cu-
rated inventory of programming language misconcep-
tions. In Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Ed-
ucation V. 1, ITiCSE ’21, page 380–386, New York,
NY, USA. Association for Computing Machinery.

Crow, T., Luxton-Reilly, A., and Wuensche, B. (2018). In-
telligent tutoring systems for programming education:
a systematic review. In Proceedings of the 20th Aus-
tralasian Computing Education Conference, ACE ’18,
page 53–62, New York, NY, USA. Association for
Computing Machinery.

Du Boulay, B. (1986). Some difficulties of learning to pro-
gram. Journal of Educational Computing Research,
2(1):57–73.

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly,
A., and Prather, J. (2022). The robots are coming: Ex-
ploring the implications of openai codex on introduc-
tory programming. In Proceedings of the 24th Aus-
tralasian Computing Education Conference, ACE ’22,
page 10–19. Association for Computing Machinery.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmar-
czyk, L., Loui, M. C., and Zilles, C. (2008). Identi-
fying important and difficult concepts in introductory
computing courses using a delphi process. In Pro-
ceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’08, page
256–260, New York, NY, USA. Association for Com-
puting Machinery.

Hellas, A., Leinonen, J., Sarsa, S., Koutcheme, C., Ku-
janpää, L., and Sorva, J. (2023). Exploring the re-
sponses of large language models to beginner pro-
grammers’ help requests. In Proceedings of the 2023
ACM Conference on International Computing Educa-
tion Research - Volume 1, ICER ’23, page 93–105,
New York, NY, USA. Association for Computing Ma-
chinery.

Kallia, M. and Sentance, S. (2019). Learning to use func-
tions: The relationship between misconceptions and
self-efficacy. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education,
SIGCSE ’19, page 752–758, New York, NY, USA.
Association for Computing Machinery.

Kohn, T. (2017). Teaching Python Programming to
Novices: Addressing Misconceptions and Creating a
Development Environment. ETH Zürich.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005).
A study of the difficulties of novice programmers.
SIGCSE Bull., 37(3):14–18.

Le, N.-T., Loll, F., and Pinkwart, N. (2013). Operational-
izing the continuum between well-defined and ill-
defined problems for educational technology. IEEE
Transactions on Learning Technologies, 6(3):258–
270.

Le, N.-T. and Pinkwart, N. (2014). Towards a classifica-
tion for programming exercises. In Trausan-Matu, S.,
Boyer, K., Crosby, M., and Panourgia, K., editors,
Proceedings of the 2nd Workshop on AI-supported
Education for Computer Science at the 12th Inter-
national Conference on Intelligent Tutoring, Systems
(ITS), Berlin, Heidelberg. Springer-Verlag.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Gian-
nakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott,
M. J., Sheard, J., and Szabo, C. (2018). Introductory
programming: a systematic literature review. In Pro-
ceedings Companion of the 23rd Annual ACM Con-
ference on Innovation and Technology in Computer
Science Education, ITiCSE 2018 Companion, page
55–106, New York, NY, USA. Association for Com-
puting Machinery.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Ha-
gan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,
Utting, I., and Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of program-
ming skills of first-year cs students. SIGCSE Bull.,
33(4):125–180.

Qian, Y. and Lehman, J. (2017). Students’ misconceptions
and other difficulties in introductory programming: A
literature review. ACM Trans. Comput. Educ., 18(1).

Rigby, L., Denny, P., and Luxton-Reilly, A. (2020). A miss
is as good as a mile: Off-by-one errors and arrays in
an introductory programming course. In Proceedings
of the Twenty-Second Australasian Computing Edu-
cation Conference, ACE’20, page 31–38, New York,
NY, USA. Association for Computing Machinery.

Rivers, K. and Koedinger, K. R. (2017). Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education, 27:37–64.

Robins, A. (2010). Learning edge momentum: a new ac-
count of outcomes in cs1. Computer Science Educa-
tion, 20(01):37–71.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(02):137–172.

Sleeman, D., Putnam, R. T., Baxter, J., and Kuspa, L.
(1986). Pascal and high school students: A study of
errors. Journal of Educational Computing Research,
2(1):5–23.

Sorva, J. (2012). Visual program simulation in introductory
programming education. School of Science, Aalto
University.

Learning to Program: Mapping Errors and Misconceptions of Python Novices to Support the Design of Intelligent Programming Tutors

231


