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Abstract: Graph learning has attracted significant attention due to its applicability in various real-world scenarios 
involving textual data. Recent advancements, such as Graph Echo State Networks (GESN) within the 
reservoir computing (RC) paradigm, have shown notable success in node-level classification tasks, especially 
for heterophilic graphs. However, graph neural networks (GNNs) suffer from the need for a large number of 
high-quality labels to achieve promising performance. Conversely, large language models (LLMs), with their 
extensive knowledge bases, have demonstrated impressive zero-shot and few-shot learning abilities, 
particularly for node classification tasks. However, LLMs struggle with efficiently processing structural data 
and incur high inference costs. In this paper, we introduce a novel pipeline named LLM-GESN, which 
involves four flexible components: k-means clustering for active node selection, LLM for difficulty aware 
annotation, adaptable post-selection, and GESN model training and prediction. Experimental results 
demonstrate the effectiveness of LLM-GESN on text-attributed graphs from the Cora, CiteSeer, Pubmed, 
Wikics, and ogbn-arxiv datasets. Our LLM-GESN achieved significant test accuracy of 86.67%, 76.63%, 
74.58%, 77.09%, and 58.79%, respectively, compared to state-of-the-art methods. 

1 INTRODUCTION 

Deep learning (DL) has revolutionized numerous 
machine learning tasks, including image 
classification (Li S. S., 2019), video processing 
(Sharma, 2021), speech recognition (Soltani, 
Newman-Watts-Strogatz topology in deep echo state 
networks for speech emotion recognition, 2024), and 
natural language processing (Otter, 2020). The 
majority of DL models involve data in Euclidean 
space. However, many applications, such as paper 
citations, web page links, social network interactions, 
and molecular bonds, involve data from non-
Euclidean domains represented as graphs. The 
complexity and richness of graph-structured data, 
along with the availability of large datasets, have 
driven a surge in developing DL models for adaptive 
graph processing. In recent years, GNNs have been 
widely employed in various graph analysis tasks, 
including node-focused tasks (e.g., node 

classification, link prediction) and graph-focused 
tasks (e.g., graph similarity detection, graph 
classification) (Abadal, 2021).  

Node classification is an essential area of research 
due to its wide range of applications, one of the best-
known traditional pipelines for this task are: the first 
is the GNN-based pipeline that involves a fixed 
training set with truth labels and the GNN is trained 
on these truth labels from the graph then predicts the 
labels of the rest of the unlabeled nodes in the test 
phase (Huang, 2020), the second graph active 
learning-based pipeline aims to select a group of 
nodes from the pool in order to maximize the 
performance of the GNN models trained on these 
graphs with labels (Chen Z. M., 2023). Both pipelines 
neglect the subtleties of the annotation process which 
can be both costly and error-prone in practice, even 
for simple tasks. Moreover, this can be even more 
difficult if active learning of graphs is taken into 
account; with improvements in annotation diversity 
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inevitably increasing the difficulty of ensuring 
annotation quality for these reasons other pipelines 
appears. In order to overcome these limitations, 
authors of (Chen Z. M., 2023) propose a pipeline 
capable of exploiting LLM to automatically generate 
high-quality annotations and use them to train a GNN 
model with promising performance. LLMs, in 
contrast to GNN, excel in zero-shot and few-shot 
node classification on TAGs with unlabeled nodes. 
Nonetheless, they struggle to capture graph structural 
patterns as effectively as GNNs. LLMs are also 
limited by input context length, reducing their ability 
to utilize extensive labels for fine-tuning. 
Consequently, LLMs may underperform compared to 
well-trained GNNs and have higher prediction costs, 
making them less scalable for large datasets.  
However, most GNNs utilize a layered architecture 
that performs local aggregation of node features. This 
local aggregation progressively smooth node features 
in deeper layers, creating difficulties in GNN models 
(Xie Y. L., 2020). This bias towards locally 
homogeneous graphs is particularly problematic in 
node classification tasks involving graphs with a large 
number of inter-class edges, or a low degree of 
homophily. The GESN was introduced by (Micheli, 
2023). In GESN, input data is encoded via a randomly 
initialized reservoir, requiring learning only at the 
linear readout stage, which enhances efficiency and 
mitigates the issues arising from local feature 
aggregation. 

In this paper, we exploit the strengths of LLM and 
GESN in node classification by investigating the 
potential of exploiting the zero-shot learning 
capabilities of LLM to alleviate the substantial 
training data demands of GESN while addressing 
their inherent weaknesses. Our LLM-GESN involves 
four flexible components: k-means clustering for 
active node selection, LLM for difficulty aware 
annotation, adaptable post-selection, and GESN 
model training and prediction. LLMs are utilized to 
annotate a small subset of nodes, which are then used 
to train GESNs to predict the remaining nodes. This 
approach presents unique challenges: selecting the 
most beneficial nodes for LLM annotation to 
optimize GESN training, and ensuring that LLM 
annotations are of high quality, representativeness, 
and diversity to enhance GESN performance. 

The remaining of this paper is organized as 
follows: Section 1 provides an overview of related 
works, focusing on Graph Echo State Networks 
(GESN) for graph node classification and the use of 
Large Language Models (LLMs) in graph structures. 
Section 2 introduces our proposed method in detail. 
Section 3 presents the evaluation of our model on 

node classification tasks ranging from medium- to 
large-scale graphs with different degrees of 
heterophily., including experimental settings and a 
comprehensive performance. Finally, we conclude 
our study and discuss potential future directions in 
Section 4. 

2 RELATED WORKS 

2.1 Graph Echo State Network for 
Graph Nodes Classification 

Echo State Networks (ESNs) (Soltani, 2023) (Soltani, 
2024) (Soltani, 2024)are recurrent randomized neural 
networks that feature a large, fixed, recurrent 
reservoir. In this framework, there are three layers: 
input layer, reservoir layer and the readout layer. 
Only the weights of the readout layer are trained.  

When applied to graph structures, GESN 
computes graph representations, or embedding, as 
fixed points of a dynamical system. Initially 
introduced as the GESN (Micheli, 2023) (Jellali, 
2023), this approach was later extended into deep 
architectures (Micheli, 2023). GESN was applied in 
the literature, on all types of graph tasks including 
graph classification, edge classification and node 
classification. Recent research has explored graph 
classification to predict graph molecular toxicity 
using GESN. Gallicchio et al. (Gallicchio, 2020) 
introduced a constructive algorithm for GESN, 
applying reservoir computing to graph classification 
domains for toxicology tasks. 

Moreover, GESN has emerged as an efficient 
approach for processing dynamic graphs. The 
Dynamic Graph Echo State Network (DynGESN) 
model has been proposed for discrete-time dynamic 
graphs, offering competitive accuracy and improved 
efficiency compared to temporal graph kernels and 
convolutional networks (Tortorella, 2021).This 
approach provides vector encodings for dynamic 
graphs without requiring training, making it suitable 
for large-scale data. Building on this concept, the 
Grouped Dynamical Graph Echo State Network 
(GDGESN) introduces a snapshot merging strategy to 
enhance performance in spreading process 
classification tasks (Li Z. F., 2023). These reservoir 
computing-based models offer a balance between 
predictive performance and computational efficiency. 

GESN has also shown promise in node 
classification tasks on graphs. Traditional approaches 
involve fixed connections in the hidden layer and 
training only the output weights (Gallicchio, 2020). 
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However, recent research suggests that output weight 
training can be omitted in favor of supervised 
clustering based on principal components of reservoir 
states, potentially improving classification accuracy 
(Prater, 2016). GESN have demonstrated 
effectiveness in addressing heterophily challenges in 
node classification, outperforming many fully trained 
deep models (Micheli, 2023). GESN computes node 
embeddings recursively using an untrained message-
passing function, effectively encoding structural 
relationships.  

2.2 Large Language Models for 
Graphs 

LLMs are employed as Enhancers in graph learning 
by initially processing graph data enriched with 
textual information, thereby enhancing node 
embedding or labels to augment GNN training. This 
approach addresses issues with diverse initial node 
embedding, which may lack clarity and diversity, 
potentially leading to suboptimal GNN performance. 
Recent advancements leverage LLMs' language 
modelling capabilities to generate more meaningful 
and effective embedding for improved GNN training 
output. Several methods use this approach. For 
instance, G-Prompt added a GNN layer to pre-trained 

LLMs for task-specific node embedding using 
prompt tuning (Fang, 2024). SimTeG fine-tunes text 
embedding obtained from LLMs for node 
classification tasks using GNNs (Duan, 2023). 
GALM utilizes BERT for text embedding and 
employs unsupervised learning tasks to optimize 
model parameters for various applications (Xie H. Z., 
2023). LLMRec enhances user-item interaction data 
using GPT-3.5 to enrich node embedding with rich 
textual profiles, thereby improving the performance 
of recommender systems (Wei, 2024). 

LLMs also serve as Labelers in graph learning, 
where labels generated by LLMs are used to 
supervise GNN training. This method extends beyond 
simple categorical labels to include embedding and 
other forms of information. Leveraging LLMs in this 
manner provides supervision signals that aid in 
optimizing GNN performance across various graph-
related tasks. Examples of this approach include 
OpenGraph, which uses LLMs to generate nodes and 
edges, addressing sparse data issues through sampling 
and refinement strategies (Xia, 2024). LLM-GNN 
employs LLMs to annotate nodes with confidence-
scored category predictions, enhancing GNN training 
with diverse labels (Micheli, 2023). GraphEdit 
utilizes LLMs to predict and refine candidate edges in 
comparison to original graph edges, improving edge 
prediction accuracy (Guo, 2024).  

 

 
Figure 1: Our proposed pipeline method LLM-GESN. 
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Despite the advancements made by these methods 
in enhancing graph learning performance, a notable 
limitation remains: the decoupling of LLMs from 
GNNs necessitates a two-stage learning process. This 
separation is often due to resource constraints posed 
by large graphs or complex LLM parameters, which 
strongly influences GNN performance reliant on pre-
generated LLM embedding and task-specific 
prompts. 

3 PROPOSED METHOD 

Figure1 provides a detailed explanation of our 
proposed pipeline method. This pipeline consists of 
four main steps: data preprocessing, LLM 
confidence-aware annotation, post-selection, and 
GESN training. 

3.1 Data Preprocessing 

GESNs need numerous high-quality labels for 
optimal node classification performance. The main 
challenge is actively selecting nodes for annotation by 
LLMs to enhance GESN training. Leveraging LLMs 
for high-quality, representative, and diverse 
annotations can significantly improve GESN 
performance. 

The active node selection process identifies a 
small set of candidate nodes for LLM annotation, 
maintaining a manageable budget and considering 
diversity and representativeness as the original 
baseline. It is also important to consider label quality, 
as LLMs can produce noisy labels with significant 
variance across different node groups. Therefore, 
establishing heuristics that link to the annotation 
difficulty of various nodes is crucial. A preliminary 
analysis of LLM annotations provides insights into 
how to infer annotation difficulty based on node 
features showing that the accuracy of annotations 
generated by LLMs is closely related to the clustering 
density of the nodes. 

To demonstrate this correlation, k-means 
clustering, as shown in Figure 2, is applied to the 
original feature space, setting the number of clusters 

to match the distinct class count. We sample 1000 
nodes from the entire dataset and annotate those using 
LLMs. These nodes are then sorted and divided into 
ten equal-sized groups based on their distance to the 
nearest cluster center. This distance serves as a 
heuristic to estimate annotation reliability.Given that 
the number of clusters matches the number of distinct 
classes, we refer to this heuristic as  𝜙ௗ௦௧௬(𝑉 ) , 
calculated as: 𝜙𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑉𝑖 ) = 11 + 𝐸𝐷(𝐸𝑀𝑉𝑖, 𝐶𝐶𝑉𝑖) (1)

Where ED is the Euclidean distance metric, 𝐸𝑀 
is the embedding of node vi and 𝐶𝐶 is the center of 
the cluster that 𝑉  belongs to. A higher value of 𝜙ௗ௦௧௬(𝑉 ) indicates that  𝑉   more representative 
within the embedding space. 

We then integrate this annotation difficulty 
heuristic into the active selection process, B Nodes in 
the unlabeled pool are chosen based on their highest 
scores. To enhance model performance, the selected 
nodes should balance annotation difficulty with 
traditional active selection criteria, such as 
representativeness and diversity (Zhang, 2021). 
These criteria can be expressed as a score function. 

An effective method for integrating the difficulty 
heuristic into this learning process is ranking 
aggregation. This method is more robust to 
differences in scale because it only considers the 
relative order of the elements. We incorporate the 
difficulty heuristic by first converting 𝜙ௗ௦௧௬(𝑉 ) 
into a rank 𝑟థೞ(𝑉) . Then, we combine these 
two rankings to obtain: 𝑓ି௧(𝑉) = 𝛼 × 𝑟ೌ (𝑉) + 𝛼ଵ × 𝑟థೞ(𝑣) (2)

Where 𝑓௧(𝑣)  is the initial score function for 
active graph learning, 𝑟ೌ(𝑣)  is its ranking by 
decreasing percentage and “DA” means difficulty 
aware. The hyperprameters α0 and α1 allow us to 
balance sannotation difficulty with traditional criteria 
for active graph learning, such as representativeness 
and diversity. Nodes vi with higher  𝑓ି௧(𝑉)  
scores are then selected for annotation by the LLMs, 
forming the 𝑉 set. 
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Figure 2: K-means clustering for active node selection. 

3.2 LLM Confidence Aware Annotation 

After selecting nodes (candidate set 𝑉 ) easily to 
annotate with difficulty-aware active node selection, 
we then utilize the strong zero-shot ability of LLMs 
to annotate those nodes with confidence-aware 
prompts. But LLM annotations, akin to human 
annotations, can exhibit a certain degree of label 
noise. That’s means we are not aware of how the 
LLM responds to the nodes at that stage. It leads to 
the potential of remaining low-quality nodes. To 
figure out the high-quality annotations, we need some 
guidance on their reliability, such as the confidence 
scores that can help to identify the annotation quality 
and help us filter high-quality labels from noisy ones. 

Inspired by recent literature on generating 
calibrated confidence from LLMs, we aim to identify 
the most effective prompts in terms of accuracy, 
confidence calibration, and cost-efficiency.  

We observe that LLMs exhibit promising zero-
shot prediction performance across all datasets. Zero-
shot annotation is a technique where a model is used 
to annotate data without having seen examples of the 
specific annotation task during its training. The 
consistency strategy involves ensuring that the 
annotations are consistent across similar instances in 
the dataset. In Table 1 a comprehensive prompt 
example for zero-shot annotation with a consistency 
strategy. 

Table 1: Complete prompt for zero-shot annotation with 
consistency strategy used across all datasets. 

Input: Question: (Contents) Paper:
Title:  #the title of the suggested paper# 
Abstract: #the abstract of the suggested paper#    
Task: There are following categories:
[category1, category2, ….,  category]#
What’s the category of this paper? 
Provide your 3 best guesses and a confidence number
that each is correct (0 to 100) for the following
question from most probable to least. The sum of all
confidence should be 100. 

For example, [ {” answer”: <your first answer>,”
confidence”: <confidence for first answer>}, ...]
Output: 

3.3 Post-Selection 

The post-selection step aims to eliminate low-quality 
annotations by using confidence scores generated by 
the LLMs. By leveraging these scores, we refine the 
set of annotated nodes by removing those with lower 
confidence, ensuring the labels remain high-quality. 
However, directly filtering out low-confidence nodes 
can result in a shift in label distribution and reduce the 
diversity of the selected nodes, which may degrade 
the performance of the trained models. 

During the post-selection stage, label distribution 
is readily available, allowing us to directly consider 
the label diversity of the selected nodes. To measure 
the change in diversity, a simple score function called 
Change of Entropy (COE) is proposed. This function 
measures the entropy change of labels when 
removing a node from the selected set and can be 
computed as follows:  𝐶𝑂E(𝑣𝑖)=𝚮(Α𝑉𝑠𝑒𝑡−{𝑣𝑖})−𝚮(Α𝑉𝑠𝑒𝑡) (3)

Where 𝑉𝑠𝑒𝑡  is the current selected set of nodes, Α 
present the annotation generated by LLMs and H () is 
the Shannon entropy function (Shannon, 1948). 

The value of COE can be either positive or 
negative, with a small COE (𝑣𝑖) value indicating that 
removing the node could negatively impact the 
diversity of the selected set, potentially affecting the 
performance of the trained models. When a node is 
removed, the entropy adjusts, requiring a re-
computation of COE. This re-computation is 
computationally efficient since the size of the selected 
set 𝑉𝑎𝑛 is much smaller than the entire dataset. COE 
can be combined with the confidence score 𝑓𝑐𝑜𝑛𝑓(𝑣𝑖) 
to balance diversity and annotation quality through 
ranking aggregation, also 𝑟𝜙𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑣𝑖) is available in 
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the post-selection phase. The final selection score 
function can be calculated as: 
 𝑓𝑠𝑒𝑙𝑒𝑐𝑡(𝑣𝑖) = 𝛿0 ×  𝑟𝑓𝑐𝑜𝑛𝑓(𝑣𝑖)  + 𝛿1 × 𝑟𝐶𝑂𝐸(𝑣𝑖)+ 𝛿2 × 𝑟𝜙𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑣𝑖) 

(4)

Where 𝑟𝑓𝑐𝑜𝑛𝑓  is the high-to-low ranking percentage of 

the confidence score  𝑓𝑐𝑜𝑛𝑓  . To conduct post-
selection, each time we remove the node with the 
smallest 𝑓𝑠𝑒𝑙𝑒𝑐𝑡  value until a specified maximum 
number is attained. δ0 , δ1, δ2  are hyper-parameters 
introduced to balance label diversity and annotation 
quality.  

3.4 GESN Training 

GESN operates within the RC framework, where 
input data is processed by a randomly initialized 
reservoir, and only the linear readout layer requires 
training. This approach benefits from the dynamic 
properties of reservoirs, making it suitable for 
handling diverse graph structures. 

Another crucial aspect of the training process is 
the choice of the loss function. While GNNs usually 
utilize cross-entropy loss, the presence of noisy labels 
from the LLMs makes a weighted cross-entropy loss 
more appropriate. By using the confidence scores 
from the previous section as weights, we can enhance 
the model's robustness and improve the overall 
quality of the annotations. 

GESNs create whole graph embedding from node 
embedding using simple pooling functions like sum 
or mean. These node embedding are generated by 
updating a non-linear dynamical system iteratively, 
similar to GNN models. 

According to Figure 3, Node embedding is 
recursively computed by the non-linear dynamical 
 

 

 

system: 𝒉௩() = 𝑡𝑎𝑛ℎ ቆ𝑾𝒙௩ +  𝑾௨∈ேభ(௩) 𝒉௨(ିଵ)ቇ,  𝒉௩() = 𝟎  
(5)

Where Win ∈  ℝH×X  and Wෝ  ∈  ℝୌ×ୌ  are, 
respectively, the input-to-reservoir and the recurrent 
weights, for a reservoir with H units (input bias is 
omitted). Reservoir weights are initially randomized 
using a uniform distribution within the range [−1,1]. 
They are then rescaled to achieve the desired input 
scaling and reservoir spectral radius, all without the 
need for any training. Equation (1) is iterated over k 
up to K times, after which the final state 𝑋v(K)is used 
as the node embedding.  

For node classification tasks, a linear readout is 
applied to node embeddings: 𝐲୴ = 𝐖୭୳୲𝐡୴(୩)  + 𝐛୭୳୲ (6)

Where the weights w୭୳୲ ∈ ℝୌ×ଡ଼, 𝐛୭୳୲ ∈ ℝେ  are 
trained by ridge regression on one-hot encodings of 
target classesy୴. 

The dynamical system (1) has been designed to be 
asymptotically stable, which means that it converges 
to a fixed point hv(∞) as K →  ∞. This convergence is 
ensured by the graph embedding stability (GES)  
property (Gallicchio, 2020), which also guarantees 
that the system is independent of its initial state 𝒉𝑣(0). 
A sufficient condition for the GES property is to 
ensure that the transition function defined in (1) is 
contractive, i.e. has a Lipschitz constant such that ||𝐖 || ||𝐀|| ൏  𝟏. 

In standard reservoir computing, recurrent 
weights are initialized based on a necessary condition 
for the Generalized Echo State (GES) property, which 
is 𝜌(𝑤) ൏ 1 𝛼 ൗ , where ρ (-) denotes the spectral 
radius of a matrix, and 𝛼 = 𝜌(𝐴)  is the spectral 
radius of the graph. 

 
Figure 3: GESN general design. 
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Table 2: Dataset Characteristics and Metadata. 
 

Datasets  Nodes  Edges  Tasks  Categories      Homophily  References  
CORA  2,708  5,429  Categorize papers by title and abstract  7   0.81 (Chen Z. M., 2024) 
CITESEER  3,186  4,277  Categorize papers by title and abstract  6   0.74 (Chen Z. M., 2024) 
PUBMED  19,717  44,335  Categorize papers by title and abstract  3   0.80 (Chen Z. M., 2024) 
WIKICS  11,701  215,863  Categorize articles by Wikipedia content  10   - (Chen Z. M., 2024) 
OGBN-ARXIV  169,343  1,166,243  Categorize papers by title and abstract  40   0.22 (Chen Z. M., 2024) 

 
Figure 4: Clustered t-SNE Visualization: Grouping of Data Points Around Cluster Centers. 

This condition provides the best estimate of the 
system's tipping point, beyond which equation (2) 
becomes asymptotically unstable. 

4 EVALUATION 

4.1 Experimental Settings 

The experiment begins with an LLM-based 
annotation process for preprocessed graph nodes. 
This process involves formulating queries based on 
node features and local graph structure, which are 
then input to the LLM (gpt 3.5 turbo) to produce high 
quality labels. Following this, the GESN is employed 
for node classification. The GESN consists of a 2-
layer with 256 hidden features. It utilizes sbert 
embedding as input and is initialized using carefully 
scaled uniform distributions. Our model incorporates 
a PageRank-based active learning strategy with 

varying budget constraints and employs both 
consistency-based and confidence-entropy filtering 
mechanisms.  

4.2 Datasets 

To assess the effectiveness of our model, we use five 
benchmark datasets: Cora, Citeseer, PubMed, 
WikiCS, and OGBN-Arxiv. All datasets are within 
the same domain of node classification. Table 2 
details the main characteristics of these datasets. 

4.3 Performance Analysis 

4.3.1 Performance on Node Clustering 

The t-SNE visualization with cluster centers, 
presented in Figure 4 shows how data points are 
grouped into clusters.  
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Figure 5: Relationship between LLM Annotation Accuracy and Node Distance from Cluster Center. 

 
Figure 6: Correlation between Label Entropy and Average Label Accuracy across Datasets. 

Each point is color-coded according to its 
assigned cluster (0 to # of classes - 1). The black 
crosses represent the center of these clusters. 

By analyzing the distribution of points around 
each center, we can understand the cohesion and 
distinctiveness of the clusters. Here, the resulting 
figure for K-means clustering on the Arxiv dataset is 
omitted from our manuscript due to the complexity of 

visualizing 40 clusters, which would not provide clear 
interpretation. 

4.3.2 Performance on Node Annotation  

Based on Figure 5, in our proposed method, the 
accuracy of LLM annotation depends on the distance 
of nodes from the cluster center. When nodes are 
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close to the center (lower region index), LLM 
annotation tends to be more accurate.  

These central nodes likely share common features 
and context, making them easier for LLMs to annotate 
effectively. Conversely, distant nodes (higher region 
index) exhibit lower accuracy in LLM annotation.  

To optimize LLM annotation quality, prioritizing 
nodes near the centroid becomes crucial. By doing so, 
we enhance the chances of accurate labeling. 

In Figure 6, we explore the relationship between 
label entropy and average label accuracy across 
various datasets. The x-axis represents the entropy of 
labels within different datasets, quantifying the 
uncertainty or disorder in a set of labels, with higher 
entropy values indicating more diverse or ambiguous 
labels.  

The y-axis represents the average label accuracy 
(in percentage) for each dataset, reflecting how 
accurately labels can be applied to data points 
Observations from the plot reveal that as the entropy 
of labels increases (moving right along the x-axis); 
average label accuracy tends to decrease. Datasets 
with lower entropy (more certain labels) exhibit 
higher accuracy, while those with higher entropy 
(more uncertain or diverse labels) experience lower 
accuracy.  

 
Figure 7: test accuracies for five different datasets across 
three models LLM-GCN, LLM-MLP and LLM-GESN. 

4.3.3 Performance on Node Classification 

The test accuracy in Figure 7 compares the 
performance of three models—LLM-GCN, LLM-
MLP, and LLM-GESN—across five datasets: Cora, 
Citeseer, Pubmed, Wikics, and Arxiv. LLM-GESN  

Table 3: Comparative Analysis: Our Model Versus State-of-the-Art Test Accuracies Across Datasets. 
 

Reference Model Test accuracy 
Cora 

(Hou, 2022) Self-supervised GraphMAE 84.2±0.4 
(Micheli, 2023) GESN 86.04±1.01 

 LLM-GESN 86.67 ± 0.00 
Citeseer 

(Hou, 2022) Self-supervised GraphMAE 73.4±0.4 
(Micheli, 2023) GESN 74.51±2.14 

 LLM-GESN 76.63 ± 0.00 
PubMed 

(Hou, 2022) GAE 72.1±0.5 
(Arnaiz-Rodríguez, 

2022) GCN 68.19±0.7 
 LLM-GESN 74.58 ± 0.00 

Wikics 
(Hoang, 2023) GIN 76.53±0.82 

 LLM-GESN 77.09 ± 0.00 
OBGN-Arxiv 

(Sharma, 2021) GESN 48.80±0.22 
 LLM-GESN 58.79 ± 0.00 
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competes well on Cora and Pubmed, but shows 
weaker results on Citeseer and Arxiv. These findings 
underscore the efficiency of LLM-GESN on all 
datasets.  

As displayed in table 3, our proposed pipeline, 
LLM-GESN, is evaluated against state-of-the-art 
methods across all datasets (Cora, Citeseer, PubMed, 
WikiCS, and OBGN-Arxiv). 

The results show that the LLM-GESN model 
outperforms other models in terms of test accuracy. 
For the Cora dataset, LLM-GESN achieved the 
highest accuracy of 86.67 ± 0.00, surpassing both 
Self-supervised GraphMAE and GESN. In the 
Citeseer dataset, LLM-GESN reached an accuracy of 
76.63 ± 0.00, again outperforming Self-supervised 
GraphMAE and GESN. For the PubMed dataset, 
LLM-GESN recorded 74.58 ± 0.00, higher than both 
GAE and GCN. On the WikiCS dataset, LLM-GESN 
achieved 77.09 ± 0.00, slightly better than GIN. The 
most significant improvement was seen in the 
OBGN-Arxiv dataset, where LLM-GESN achieved 
58.79 ± 0.00, far surpassing GESN. Overall, the 
LLM-GESN model demonstrates superior 
performance and robustness across all datasets, 
highlighting its effectiveness in enhancing test 
accuracies compared to state-of-the-art models. We 
note that the impact of LLM annotation to enhance 
the performance of GESN node classification on 
small to large-scale dataset as Cora, Citeseer and 
OBGN-Arxiv. Moreover, our model achieves 
respectable performance even comparing with other 
models like GraphMAE, GAE, GCN, GIN. 

However, this model still lacks hyperparameter 
optimization for the GESN, which could further 
enhance these results. Tuning hyperparameters such 
as learning rates, regularization strengths, and 
network architectures could potentially improve the 
model's performance across different datasets. 
Additionally, in terms of real-world applications, 
deploying LLM-GESN could be transformative. For 
example, in social network analysis, LLM-GESN 
could accurately classify nodes based on their 
attributes, such as predicting user preferences or 
behaviors. This capability could aid in personalized 
recommendation systems or targeted marketing 
strategies, where understanding and predicting 
individual user characteristics are crucial for 
enhancing user engagement and satisfaction. 

5 CONCLUSION 

In this paper, we address two significant challenges in 
node classification for graph data as a prominent topic 

in data science: the issue of heterophilic graphs and 
the requirement of high-quality annotations. We 
propose a new model LLM-GESN that investigates 
the potential of harnessing the zero-shot learning 
capabilities of LLMs to alleviate the substantial 
training data demands of GESNs. Comprehensive 
experiments on graphs of various scales validate the 
effectiveness of our pipeline. Demonstrating that our 
model achieves accuracy comparable to or better than 
the GESN model and other GNN models that utilize 
LLMs for annotation. In future work, we plan to 
validate our model in real-world applications, 
recognizing the importance of hyperparameters 
optimization for GESN. 
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