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Abstract: The public transportation system in Lima, Peru, faces significant challenges, including bus shortages, long 
queues, and severe traffic congestion, which diminish service quality. These issues arise from a lack of modern 
management tools capable of efficiently handling the Metropolitano bus system. This paper introduces T-
RAPPI, a predictive model based on Random Forest, developed to estimate bus arrival times at Metropolitano 
stations. Using historical data on bus arrivals and operational parameters, the model achieved exceptional 
accuracy, with an R² score of 0.9998 and a MAPE of 0.0554%, demonstrating its robustness and ability to 
minimize prediction errors. The implementation of T-RAPPI represents a substantial improvement over 
existing systems, providing operators with data-driven insights to optimize route planning and bus allocation. 
Additionally, the model's integration into the mobile application Metropolitano + enhances the commuting 
experience by offering users real-time bus arrival predictions, reducing uncertainty and wait times. Future 
extensions of this work could include incorporating real-time traffic and weather data to further enhance 
prediction accuracy and expanding the model to other transit systems in Lima and beyond. 

1 INTRODUCTION 

Traffic congestion in Metropolitan Lima ranks among 
the worst in Latin America, causing an average delay 
of 24 minutes for every 10 kilometers traveled 
(Gonzales, 2023). This situation worsens during peak 
hours, with average travel time per kilometer 
reaching 33 minutes. The public transportation 
system, specifically the Metropolitano, faces various 
issues, such as insufficient buses, long queues, and 
disorganization at stations (Infraestructura Vial 
2024). At a broader level, congestion in Latin 
American cities like Bogotá, Mexico City, and Rio de 
Janeiro is also affected by infrastructure and 
operational factors that hinder the efficiency of public 
transportation (Calatayud et al., 2021). 

The lack of appropriate technological tools within 
the Metropolitano limits its ability to efficiently 
manage passenger flow and operations, which affects 
the user experience and increases operating costs and 
reduces productivity (Rivas et al., 2022). 
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Implementing technological solutions could 
significantly enhance operational efficiency, 
providing users with a more comfortable and reliable 
service. 

In this context, several Latin American capitals, 
such as Bogotá and Mexico City, have implemented 
advanced technologies, including mobile applications 
and real-time tracking systems to efficiently manage 
public transportation (Porras, 2023). Applications 
like TransMilenio (Colombia) and Transantiago 
(Chile) serve as established solutions in major 
regional capitals. Similarly, independent applications 
like Moovit provide routes for various public 
transportation services in over 3,400 cities across 112 
countries (Santos & Nikolaev, 2021). 

Despite the success of some applications, many 
existing solutions still have limitations. Applications 
like Transantiago lack advanced fleet management 
and user experience personalization technologies. 
Others, like Moovit, do not provide real-time data 
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with high precision, relying only on estimations. This 
generates user frustration and reduces adoption. 

Responding to the need for technological tools 
that optimize Metropolitano's transportation service, 
we developed a Machine Learning model called T-
RAPPI, based on the Random Forest technique. This 
model aims to improve user experience and optimize 
the operational management of the Metropolitano 
system. T-RAPPI will provide estimated arrival times 
for buses, trained using historical records of bus 
arrivals and departures across various routes within 
the Metropolitano. This will provide valuable data 
both for users, who can plan their trips better, and 
operators, who can optimize route planning and bus 
allocation according to projected demand. 

This paper covers related work in Section 2, 
which laid the groundwork for our solution proposal. 
Section 3 details the model's design (architecture, 
dataset, indicators, and interfaces). Section 4 presents 
the evaluations conducted on the solution and the 
results obtained. Section 5 discusses the test results, 
concluding with research findings and 
acknowledgments in Sections 6 and 7. 

2 RELATED WORKS 

In terms of Machine Learning (ML) models used to 
predict transportation demand, studies like those by 
Blättler and Imhof (2023) and AlKhereibi et al. 
(2023) highlight the effectiveness of the Random 
Forest (RF) method in these tasks. Blättler and Imhof 
employed this model to predict Demand Responsive 
Transport (DRT) in rural areas of Switzerland, 
utilizing variables such as population and proximity 
to train stations, achieving an explanation of 25% of 
the variability in services. Meanwhile, AlKhereibi et 
al. used RF to predict subway demand, based on 
historical and geospatial data related to land use, 
achieving an R² of 98.8% and a KGE efficiency of 
96.93%. Both studies underscore Random Forest's 
capability to handle large volumes of data and 
complex variables. 

On the other hand, Graham et al. (2023) and Hu et 
al. (2022) focused on using different ML techniques 
to predict travel times and classify passengers. 
Graham et al. compared methods like RF and Support 
Vector Machines (SVM) to estimate passenger flows 
and travel times, concluding that RF was the most 
effective according to metrics like RMSE and MAPE. 
Hu et al. used Backpropagation Neural Network 
(BPNN) to classify passengers in Beijing, achieving 
an accuracy of 95.4%, demonstrating ML's potential 

to improve public transportation management by 
identifying behavior patterns. 

Regarding the prediction of occupancy and wait 
times in transportation, Glück et al. (2022) and Ding 
et al. (2022) presented innovative ML-based 
solutions. Glück et al. used K-nearest neighbors 
(KNN) to predict vehicle occupancy in real-time, 
reaching an accuracy of 80% in short-term 
predictions. Meanwhile, Ding et al. developed the 
Du-Bus system, which estimates bus wait times 
without GPS data, achieving an MAE of 0.78 
minutes. Both studies highlight ML's potential to 
enhance public transport user experience through 
precise and real-time predictions. 

Finally, Müller-Hannemann et al. (2022), Yin and 
Zhang (2023), and Imoize et al. (2022) explored how 
ML techniques can optimize route planning and 
resource management in transport systems. The first 
study utilized Support Vector Regression (SVR) to 
assess the robustness of transportation schedules, 
overcoming traditional simulation limitations with a 
Relative Mean Error below 1%. Yin and Zhang 
proposed a method to predict bus travel time based on 
driver driving styles, improving predictive accuracy 
by using trip histories. Lastly, Imoize et al. focused 
on an adaptive traffic management system based on 
IoT and ML for smart cities, which optimizes traffic 
flow and reduces accidents. These studies underline 
how ML can improve both planning and operational 
efficiency in public transport and urban traffic. 

3 SYSTEM DESIGN 

3.1 Architecture 

The RF T-RAPPI model will be integrated into a 
mobile application called ‘Metropolitano +’, allowing 
guides and users to view the model's predictions, 
including upcoming bus arrivals at stations. This 
application will be developed in Flutter and will be 
available for mobile devices with the Android 
operating system. The model’s processed data will be 
managed in the cloud using Firebase services. The 
structure of the application is as follows: 
▪ Users: The application is designed for two 

types of users: regular users and service guides. 
Both will connect to the application via an 
Android device with network connectivity. 

▪ ‘Metropolitano +’: This application will 
contain the ML model and present model-fed 
reports on bus arrivals and general service 
information. 
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▪ Flutter/Dart: These will be the framework and 
language used for developing the application's 
front end, targeting Android. 

▪ T-RAPPI Model: The T-RAPPI model will be 
integrated into the back end, processing data 
stored in the database to generate predictions. 
Through the construction of decision trees, the 
model will deliver precise results on bus 
arrivals at stations. 

▪ Firebase Cloud Storage: Firebase’s cloud 
database service will store application 
information, including credentials and data for 
various modules, as well as the datasets that 
enable the T-RAPPI model to make 
predictions. 

▪ Firebase ML Kit: A Firebase service for ML 
model development in mobile applications. 

▪ Firebase Authenticator: Manages user 
credentials for application access. 

▪ Firebase Hosting: Manages the deployment of 
the mobile application. 

 
Figure 1: Physic Architecture of the ‘Metropolitano +’ app. 

3.2 Methodology 

3.2.1 Dataset 

For developing the T-RAPPI model, a dataset 
containing detailed information on the arrival and 
departure times of Metropolitano buses at various 
stations was used. This data was provided by Lima 
and Callao’s Urban Transport Authority (ATU) via 
their transparency portal, covering the period from 
January 1, 2023, to December 31, 2023, and includes 
records of scheduled bus arrival and departure times 
at different stations, as well as service frequency by 
line and schedule. 

For developing the T-RAPPI model, a dataset 
containing detailed information on the arrival and 
departure times of Metropolitano buses at various 
stations was used. This data was provided by Lima 
and Callao’s Urban Transport Authority (ATU) via 

their transparency portal, covering the period from 
January 1, 2023, to December 31, 2023, and includes 
records of scheduled bus arrival and departure times 
at different stations, as well as service frequency by 
line and schedule.  

To ensure the data was suitable for modeling, a 
thorough preprocessing pipeline was applied. 
Records with missing arrival or departure times were 
removed to prevent inaccuracies in predictions. 
Outliers, such as extreme arrival times caused by 
reporting errors or exceptional events, were identified 
and excluded.  

Once cleaned, the dataset was transformed to 
make it suitable for the RF algorithm. Categorical 
variables, including bus lines, station names, and 
service types, were encoded numerically using one-
hot encoding. Numerical features, such as time 
intervals and station occupancy rates, were 
normalized to ensure consistent scaling, enhancing 
the algorithm's ability to process the data effectively.  

A temporal index was also introduced by 
aggregating records based on date and time intervals. 
This adjustment allowed the model to capture patterns 
related to peak and off-peak hours, significantly 
improving its ability to predict future events based on 
historical trends. 

The data was divided into two subsets for 
modeling: 
▪ 70% of the dataset was allocated for training, 

allowing the RF algorithm to learn patterns 
from historical data and develop predictive 
rules based on decision tree construction. 

▪ The remaining 30% was reserved as a test set 
to evaluate the model's predictive ability on 
unseen data. This split ensures the model 
generalizes well and does not overfit the 
training data. Evaluation metrics like accuracy 
and MSE were used to assess its performance. 

Additionally, a 5-fold cross-validation was used 
for a more robust evaluation, ensuring that the 
model's performance is not dependent on a single data 
partition. 

3.2.2 Model 

The T-RAPPI model is a prediction system based on 
an RF algorithm, designed to forecast bus arrival 
times at Lima's Metropolitano stations. It utilizes 
historical data on bus arrivals and departures, station 
occupancy, and other contextual variables like traffic. 

The workflow follows a structured approach, 
starting with data preprocessing, feature extraction, 
and model construction. 
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During preprocessing, Metropolitano data is 
cleaned and prepared by removing missing or 
anomalous values and transforming categorical 
variables into numerical ones through encoding. 
Numerical features are normalized, and the data is 
split into training, test, and validation sets without 
mixing examples. As the dataset contains temporal 
data, a temporal index is created to improve the 
model’s accuracy in predicting future sequences. 

The RF algorithm was chosen after conducting a 
comprehensive benchmarking process involving 
several predictive modeling techniques, including 
Gradient Boosting Machines (GBMs), SVR, and 
neural networks. RF excelled in accuracy and 
robustness when handling noisy data, offered 
interpretability by providing clear insights into 
feature importance, and demonstrated computational 
efficiency on moderate-sized datasets, making it ideal 
for real-time applications. Additionally, its resistance 
to overfitting and versatility in handling mixed data 
types (numerical and categorical) make it the optimal 
choice for predicting arrival times across diverse 
operational scenarios. 

3.2.3 Training 

The training of the T-RAPPI model is based on the 
RF algorithm, a supervised learning method that 
combines the results of multiple decision trees to 
improve accuracy and reduce the risk of overfitting. 
In each iteration, the model selects a random subset 
of features and data to train several independent 
decision trees (bagging). The trees then vote on the 
final prediction, making the model more robust 
against errors or noise in the data. 

The hyperparameters adjusted in this process 
include: 

• n_estimators: the number of trees in the forest. 
A higher number of trees improves model 
stability, although it increases computation 
time. 

• max_depth: the maximum depth of each tree, 
controlling how extensively each tree can grow. 
A very high value could lead to overfitting, 
while a low value could underfit the model. 

• min_samples_split: the minimum number of 
samples required to split a node, which ensures 
that nodes do not split when samples are 
insufficient. 

• max_features: The maximum number of 
features selected to split at each node. This 
parameter controls the randomness of the forest 
and improves its generalization ability. 

Regarding the computational resources used for 
training, the T-RAPPI model was executed on Google 
Colaboratory (free plan), which provided access to 
1.5 GB of RAM (out of 12.7 GB available) and 32.5 
GB of disk space (out of 107.7 GB available). During 
the training process, GPUs were not used, as the free 
plan was sufficient for the current scope of the 
project. However, future improvements, such as 
integrating real-time data or scaling the model, could 
benefit from utilizing more advanced resources like 
GPUs for faster processing. 

To ensure the robustness and reliability of the T-
RAPPI model, a 5-fold cross-validation process is 
implemented. In this technique, the dataset is divided 
into five subsets, and the model is trained five times, 
each time using a different subset as the test set and 
the others as the training set. This process helps 
prevent the model from overfitting the training data. 

3.2.4 Evaluation and Statical Analysis 

Table 1: Metrics used to evaluate the T-RAPPI model. 

 

4 RESULTS 

To model the variation in travel times within the 
Metropolitano system, we used an approach based on 
the RF algorithm. This model, named T-RAPPI, is 
suitable for regression problems, as it is robust against 
outliers and capable of capturing complex, non-linear 
relationships. 

# Metric Description Formule 

1 MAPE 

Evaluates the average 
error as a percentage 
between predicted and 
actual values, useful for 
understanding the 
magnitude of relative 
error.

𝑀𝐴𝑃𝐸 = 1𝑛  ฬ𝑦𝑖 − 𝑦ො𝑖𝑦𝑖 ฬ × 100𝑛
𝑖=1  (1) 

2 R2 

Measures the proportion 
of variance explained by 
the model, indicating 
how well the model fits 
the data. An R² close to 1 
implies a good fit.

𝑀𝐴𝑃𝐸 = 1𝑛  ฬ𝑦𝑖 − 𝑦ො𝑖𝑦𝑖 ฬ × 100𝑛
𝑖=1  (2) 

3 RMSE 

Measures the magnitude 
of prediction errors, 
penalizing larger errors 
by squaring them. 

𝑅𝑀𝑆𝐸 = ඩ1𝑛 (𝑦ො𝑖 − 𝑦𝑖)2𝑛
𝑖=1  (3) 

4 MAE 

Is the average of absolute 
errors between 
predictions and actual 
values. Unlike RMSE, it 
does not penalize large 
errors as severely.

𝑀𝐴𝐸 = 1𝑛 |𝑦ො𝑖 − 𝑦𝑖 |𝑛
𝑖=1  (4) 

5 Max Error 

Measures the maximum 
absolute difference 
between predicted and 
actual values in the 
dataset.

𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 = max𝑖=1 |𝑦𝑖 − 𝑦ො1| (5) 

6 Explained 
Variance 

Measures the proportion 
of total variance in the 
data explained by the 
model. A higher value 
implies a better model fit. 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1 − 𝑉𝑎𝑟(𝑦 − 𝑦ො)𝑉𝑎𝑟(𝑦)  (6) 

7 
Median 
Absolute 
Error 

Measures the median of 
absolute errors between 
predictions and actual 
values.

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑎(|𝑦𝑖 − 𝑦ො1|) (7) 
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The dataset used to train the T-RAPPI model 
includes multiple relevant features for predicting 
variation, such as variables like SERVICE, PROG. 
TIME MINUTES, VISUAL OCCUPANCY, among 
others. The target variable, VARIATION, was used 
to assess how well the T-RAPPI model can predict 
the differences between actual and scheduled times. 

To evaluate T-RAPPI's effectiveness, we used the 
metrics detailed in the previous section. The values 
obtained are shown in Table 2. 

Table 2: T-RAPPI model Parameters. 

Metric Value 
MAE 0.0062 

RMSE 0.0912 
MAPE 0.0554% 

R² 0.9998 
Max Error 4.0 

Explained Variance Score 1.0 
MedAE 0.0 

• The R² score of 0.9998 indicates that the model 
is able to explain nearly all variability in the 
data, suggesting that the predictions are 
extremely accurate. 

• The MAE of 0.0062 and RMSE of 0.0912 
confirm that the average error in the predictions 
is very low. 

• The MAPE of 0.0554% indicates that the 
percentage error is less than 0.1% on average, a 
strong indicator of a highly accurate model. 

• The Max Error of 4.0 shows that the greatest 
absolute error between predictions and actual 
values was 4 units, which is reasonable given 
the target variable's range. 

• The Explained Variance Score of 1.0 and the 
Median Absolute Error of 0.0 reinforce that the 
model captures nearly all information in the data 
without significant errors. 

4.1 Graphics 

Below, we present graphs that demonstrate the 
effectiveness and results of the T-RAPPI model: 

Scatter Plot of Predictions vs. Actual Values: This 
plot shows the relationship between the model's 
predictions and the actual values. Ideally, the points 
should align with the diagonal line representing a 
perfect prediction. In this case, the predictions are 
very close to the line, indicating a high degree of 
accuracy. 

 
Figure 2: Scatter Plot of Predictions vs. Real Values. 

Error Histogram (Residuals): This plot shows the 
distribution of prediction errors. The errors are 
symmetrically distributed around 0, suggesting that 
the model does not exhibit bias towards 
overestimations or underestimations. 

 
Figure 3: Error Histogram. 

Feature Importance Chart: Highlights the most 
relevant variables in the model. REFERENCE and 
STATUS are the key contributors, while other 
features, grouped as Other Features, showed minimal 
impact on predictions. This approach simplifies 
visualization and confirms the evaluation of all 
variables. 
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Figure 4: Feature Importance Chart. 

RMSE Chart by Real Value Intervals: This chart 
shows RMSE across different intervals of the target 
variable. The model maintains low error across all 
value ranges. 

 
Figure 5: RMSE Chart by Real Value Intervals. 

4.2 Cross Validation 

To evaluate the model's generalization ability and 
avoid overfitting on the training data, we performed 
5-fold cross-validation. In each iteration, one subset 
is used as the test set while the other four serve as 
training sets. This process is repeated five times, so 
each subset serves as the test set once. Finally, results 
from the five iterations are averaged, providing a 

more robust and representative assessment of the 
model's performance. 

The cross-validation results showed some 
variability in MSE across folds. Below are the key 
results: 

• Average MSE: 0.0323 
• Standard Deviation of MSE: 0.0292 

The following bar chart visualizes the MSE 
obtained in each of the five folds during cross-
validation: 

 
Figure 6: MSE graph per fold (Cross Validation). 

In this graph, each bar represents the MSE of a 
specific fold, allowing us to observe how error varies 
across different data subsets. 

The cross-validation results reinforce that the 
Random Forest model performs well on most data 
subsets, although certain specific folds (folds 1 and 5) 
exhibited higher errors. These results suggest that the 
model has a good generalization capability, but it 
might benefit from further fine-tuning of 
hyperparameters or additional analysis of data in 
folds with higher errors. Overall, the model has 
shown to be robust and precise in predicting the 
variable VARIATION. 

5 DISCUSSIONS 

The results obtained with the T-RAPPI model, based 
on RF, indicate a significant improvement in 
predicting bus arrival times for Lima's Metropolitano 
system. This outcome provides a modern and 
efficient solution to the historical lack of advanced 
technological tools for public transportation 
management in the city. 
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5.1 Implications of the Results 

The predictive model developed offers a clear 
improvement in the ability to accurately forecast bus 
arrival times at Metropolitano stations, with an R² of 
0.9998, indicating that nearly all data variability is 
explained by the model. These results significantly 
enhance the operational management of the 
Metropolitano system, allowing for more efficient 
planning by operators. Users also benefit, as they gain 
access to precise arrival time information, improving 
their experience and reducing frustration from long 
waiting times. 

5.2 Comparison with Other Studies 

Direct comparisons between T-RAPPI and previous 
studies are limited due to differences in datasets and 
contexts. For example, Glück et al. (2022) used KNN 
to predict vehicle occupancy with 80% accuracy, 
highlighting the challenges of high accuracy in 
complex systems. T-RAPPI, however, demonstrated 
better accuracy in predicting bus arrival times, 
showing the suitability of the RF algorithm for 
operational data with temporal dependencies. 

Other studies, like those by Blättler and Imhof 
(2023) and AlKhereibi et al. (2023), focus on 
geospatial data, while T-RAPPI uses historical 
operational records from Lima’s Metropolitano 
system, tailoring it to the city's unique conditions. 
Though direct comparisons are difficult, T-RAPPI 
highlights the versatility of Random Forest across 
different data types and contexts. 

In conclusion, the differences in datasets and 
objectives highlight the diversity of approaches in 
public transportation research, with T-RAPPI 
contributing by effectively utilizing historical 
operational data for arrival time prediction within 
Lima’s transit system. 

5.3 Utility in an Operational 
Environment 

The T-RAPPI model has direct applicability in the 
operational environment of the Metropolitano. By 
integrating it into the ‘Metropolitano +’ mobile 
application, the model can be used by both 
Metropolitano guides and users. Guides can use 
predictions to optimize bus allocation, manage 
service frequencies, and respond more quickly to 
passenger demand variations. Meanwhile, users 
benefit from the ability to plan their trips with greater 
certainty, reducing waiting times and the stress 
associated with service uncertainty. 

A broader application of this type of model could 
be considered in terms of improving not only the 
efficiency of transportation systems but also resource 
optimization in other public service systems. For 
example, in the context of emergency management or 
urban planning, where response times and resource 
distribution could benefit from robust predictive 
models. 

5.4 Future Perspective 

One key challenge is its reliance on historical data, 
which may reduce accuracy in unexpected situations, 
such as sudden traffic disruptions, extreme weather, 
or operational anomalies. To improve the model’s 
adaptability, integrating real-time data on traffic and 
weather conditions would be a valuable enhancement, 
enabling more accurate predictions in dynamic 
scenarios.  

Future extensions could also explore applying the 
model to other transit lines in Lima or adapting it to 
different cities. However, this would require 
addressing challenges such as differences in data 
availability, transit systems, and urban layouts, which 
may demand adjustments to the model’s features and 
preprocessing methods. 

Despite these challenges, T-RAPPI provides a 
solid foundation for advancing urban transit 
management. With further refinements and the 
inclusion of new data sources, it has the potential to 
become a more versatile tool for improving public 
transportation systems across different regions. 

6 CONCLUSIONS 

This study introduces and evaluates T-RAPPI, a 
Random Forest-based model designed to predict bus 
arrival times in Lima's Metropolitano transportation 
system. The model achieves high accuracy, with an 
R² of 0.9998 and an extremely low average error, 
showcasing its robustness and effectiveness. Its 
impact lies in improving operational planning and 
user experience by providing precise predictions that 
aid decision-making for system operators and users, 
optimizing resources and reducing waiting times. 

Key advantages of the model include its ability to 
handle large data volumes and its flexibility to adapt 
to various operational scenarios, making it a valuable 
tool for transportation systems with similar 
characteristics. However, a noted limitation is its 
reliance on historical and operational data, which may 
reduce accuracy in the face of extraordinary events or 
sudden changes in traffic conditions. 
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The T-RAPPI model is integrated into the 
'Metropolitano +' mobile application, ensuring 
usability for both operators and end-users. This 
integration enables operators to make more informed 
decisions and improve service efficiency, while users 
can better plan their trips. 

Future work suggests incorporating real-time 
variables, such as weather and traffic conditions, to 
enhance the model's accuracy. Additionally, 
expanding its application to other public 
transportation systems in Lima and other cities could 
provide a more comprehensive and robust solution for 
urban transportation management. 
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