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Abstract: Issues of safety, explainability, and efficiency are of increasing concern in learning systems deployed with hard
and soft constraints. Loss-function based techniques have shown promising results in this area, by embedding
logical constraints during neural network training. Through an integration of logic and information geometry,
we provide a construction and theoretical framework for these tasks that generalize many approaches. We
propose a loss-based method that embeds knowledge—enforces logical constraints—into a machine learning
model that outputs probability distributions. This is done by constructing a distribution from the logical formula,
and constructing a loss function as a linear combination of the original loss function with the Fisher-Rao
distance or Kullback-Leibler divergence to the constraint distribution. This construction is primarily for logical
constraints in the form of propositional formulas (Boolean variables), but can be extended to formulas of
a first-order language with finite variables over a model with compact domain (categorical and continuous
variables), and others statistical models that is to be trained with semantic information. We evaluate our method
on a variety of learning tasks, including classification tasks with logic constraints, transferring knowledge from
logic formulas, and knowledge distillation.

1 INTRODUCTION

Neuro symbolic artificial intelligence (NeSyAI) has
emerged as a powerful tool for representing and rea-
soning about structured logical knowledge in deep
learning (Belle, 2020). Within this area, loss-based
methods are a set of techniques that provide an in-
tegration of logical constraints into the learning pro-
cess of neural architectures (Giunchiglia et al., 2022).
Such constraints are formulas that represent knowl-
edge about the problem domain. They may be used to
improve the accuracy, data, parametric efficiency, inter-
pretability, and safety of deep learning models (Belle,
2020). For example, in robotics, logic constraints can
be used to represent safety conditions (Kwiatkowska,
2020; Amodei et al., 2016). This information can
help the model make more accurate predictions and
provide interpretability, as we are embedding human
expert knowledge into the network (Gunning, 2017;
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Rudin, 2018). Additionally, such expert knowledge
reduces the problem space as the agent does not need
to learn how to avoid harmful states and/or explore
suboptimal policies, reducing the amount of data re-
quired to train a deep learning model (Hoernle et al.,
2022). Broadly speaking, these neurosymbolic tech-
niques solve the problem of obtaining distributions
that satisfy the constraints while solving a particular
task. Our approach is different, we aim to obtain a
model that can potentially sample all the instances of
the constraint–for which satisfying the constraint be-
comes a consequence. Finally, this framework can also
be used for Knowledge Distillation (KD) (Gou et al.,
2020), which consists in using an expert model with a
complex architecture and transferring its information
into a model with a simpler architecture, reducing size
and complexity.

1.1 Problem Description

Suppose we have a task that consists in training a sta-
tistical model to be able to describe a set of objects
X. A description consists on assigning to each vari-
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able from a finite set V = {x1, ..., xn} a value in a set
A. Therefore, the possible descriptions are contained
in the set AV. The descriptive instances a ∈ AV are
the samples, AV is the sample space, the variables the
features and the set of values A is the domain. Let us
also assume that a single description may not capture
completely what the object x ∈ X is, maybe there are
some descriptions that are equally good, or others that
are better or worse. This can be accounted for if our
statistical model assigns to each object x ∈ X a proba-
bility distribution over AV. Asking the model what the
object x is, consists in sampling a description from this
distribution, the probability of the sample shows how
adequate it is as a description. It is the distribution
that holds the information about the object—which
is limited by the expressiveness of the sample space.
Let us also assume that the model can only associate
states from a family of distributions F . Therefore, our
statistical model consists of a function,

F : X→F . (1)

This model will be trained by minimizing a loss func-
tion L : F → R≥0.

What if there is external information that we want
our model to learn as well? This extra information
may come in the form of a formula that expresses the
relationships between the variables. To exemplify this,
if the variables represent features that can be true or
false, then the domain can be seen as the set {0,1} (e.g.
the Boolean space) and the constraint has the form of
a propositional formula generated by a subset of the
variables, such as x1 ∧¬x3; if the domain is R, then
the formula may determine relationships expressed as
inequalities that the outcomes of the variables must
hold, such as x2

1 + x2
2 + x2

3 ≤ 1. These formulas act
as constraints over the sample space, they represent
knowledge that we want to embed into the system.
Not only can we have extra information on the form
of a specific region of the sample space, it can be a
distribution over a region, allowing more complexity
on the constraint. We will refer to the distribution that
encodes this additional information as the constraint
distribution. The problem we want to solve now is:
How can we train a statistical model for a given task
in a way that it also learns this additional information?

In this paper we provide a general framework for
solving the problem of transferring information from
a given distribution that may come from a logic con-
straint or a pretrained neural network. Our contribu-
tions can be summarized as follows: we provide a
canonical way to transform a constraint—in the form
of propositional formulas with finite variables, or First
Order Logic (FOL) formulas of a language with finite
vocabulary and either with finite or real domain—into
a distribution, and then construct a loss function out

of it. By minimizing over this loss function we can
obtain a model that learns all possible instances of
the constraint, and as a consequence, satisfies the con-
straint. We can also use this method to distill the in-
formation from a pretrained model allowing for more
parameter efficient networks that also respect the logic
constraints.

The paper is divided into six sections. Section 2
contains related work on the problem of finding deep
learning methods with logical constraints and KD. Sec-
tion 3 presents the main concepts from information
geometry and mathematical logic that will be used for
the construction of the Semantic Objective Functions
(SOFs). Section 4 describes the construction of SOFs
given a constraint distribution. Section 5 has experi-
ments that show that these methods solve the problem
of learning the constraint in the case of propositional
formulas, an experiment with the MNIST and Fashion
MNIST databases, another using a FOL formula, and
a KD problem. Section 6 states the limitations of our
approach, as well as some avenues for future work.
Finally, Section 7 concludes the paper.

2 RELATED WORK

There are multiple approaches for enforcing logic
constraints into the training of deep learning models
(Belle, 2020; Giunchiglia et al., 2022). In this section,
we will provide a general overview of the approaches
that relate to our contributions and were used as basis
of our work.

There are several techniques proposed to incorpo-
rate logical constraints into deep learning models. For
propositional formulas there are semantic loss function
(Xu et al., 2017), and LENSR (Xie et al., 2019). For
FOL formulas there are: DL2 (Fischer et al., 2019), for
formulas of a relational language, MultiplexNet (Ho-
ernle et al., 2022) for formulas in disjunctive normal
form and be quantifier-free linear arithmetic predicates,
and DeepProbLog (Manhaeve et al., 2018), which en-
capsulates the outputs of the neural network in the
form of neural predicates and learns a distribution
to increase the probability of satisfaction of the con-
straints.

In addition to regularization methods, Knowledge
Distillation (KD) offers another approach for transfer-
ring structured knowledge from logic rules to neural
networks. Examples include methods proposed in
(Hu et al., 2016) and (Roychowdhury et al., 2021).
These works build a rule-regularized neural network
as a teacher and train a student network to mimic the
teacher’s predictions. A different approach is Concor-
dia (Feldstein et al., 2023), an innovative system that
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combines probabilistic logical theories with deep neu-
ral networks for the teacher and student, respectively.

Our framework differentiates itself from previous
methods in certain key aspects. First, unlike (Hu et al.,
2016) and (Roychowdhury et al., 2021), it does not
require the additional step of training the teacher net-
work at each iteration. Second, compared to (Hu et al.,
2016) and (Roychowdhury et al., 2021) and (Feldstein
et al., 2023), it only requires a single loss function for
training. This loss function can be used for training
the network, regardless of whether the teacher is a
logic constraint, a pre-trained network, or another kind
of statistical model. This flexibility makes the loss
function suitable for both semantic and deep learning
KD scenarios. In the case of the loss-based methods,
they build a regularizing loss function such that its
value is zero whenever the model—or in the case of
distributions, the support— satisfies the formula—or
is contained in the samples that satisfy the constraint.
This makes sense, as we do not want the regulariz-
ing term to penalize the distributions that satisfy the
constraints. Given that the regularizer is a positive
function, then all the elements that have zero value
are local minimal, meaning that these approaches—as
well as the other approaches—solve the problem of
satisfying the constraint. whereas our aim is to build a
loss function that can learn a distribution consistent
with the models of the formula i.e. has as its unique
minimal value the uniform distribution over the set of
models of the constraint.

Another limitation is that their solution requires the
constraint to be the same for all object x ∈ X, whereas
in our approach we can have a constraint that depends
on the object x. The only restrictions for being able to
use our proposed methodology is that the constraint
has to be a formula of a language generated by a finite
set of variables, and the set of instances that satisfy the
formula has non-zero finite measure.

3 BACKGROUND THEORY AND
NOTATION

The description of this section is compressed for rea-
sons of space, please refer to (Lee, 2022; Gallot et al.,
2004; Bell and Slomson, 2006; Enderton, 2001; Cover
and Thomas, 2006; Amari, 2005; Amari and Nagaoka,
2000; Csiszár and Shields, 2004; Watanabe, 2009) for
a more comprehensive exposition.

3.1 Information Geometry

In this paper we will take F to be a family of distribu-
tions over a space AV which is parametrized by a chart

θ ∈Ω 7→ p(x;θ) ∈ F , where Ω is an open subset of Rm.
It has the structure of a convex Riemannian manifold
where the metric is defined through the Fisher Informa-
tion metric(Amari and Nagaoka, 2000). The distance
in the manifold derived by this metric is known as
the Fisher-Rao distance, which is the one we will be
using, and for distributions p and q it will be denoted
as DF (p,q). Another important ”measure” between
probability distributions that we are going to use is
the Kullback-Leibler Divergence(Cover and Thomas,
2006). This measure, denoted for distributions p,q as
DKL(p||q), can be interpreted as ”the inefficiency of
assuming that the distribution is q when the true distri-
bution is p”(Cover and Thomas, 2006), and is defined
as,
∑

x∈AV p(x)log
( p(x)

q(x)

)
or
∫

x∈AV p(x)log
( p(x)

q(x)

)
dx, for

the finite and continuous case respectively.

3.2 Mathematical Logic

The logic constraints we will be using are expressed
as formulas of a formal—propositional or FOL—
language generated by a finite set of variables V =
{x1, ..., xn}. The models of a propositional language
can be seen as the assignments of a truth value to each
variable, i.e., Mod(LV) = 2V = {s : V → 2} where
2 = {0,1}. On the other hand, a FOL formal language,
L1
V

, is specified by a type τ, which is a set of relations,
functions and constant symbols. The terms are gener-
ated by the set of variables V, and the formulas are
recursively constructed by taking as atomic formulas
the relations applied to terms, and then recursively con-
structing the rest with the logical operations ∧,∨,¬,
and quantifiers ∀ and ∃. A model A of L1

V
consists of

a set A–the domain of the model–and an interpretation
of each symbol in τ in A, and it will associate each
formula φ to a set Mφ ⊆ An. This determines a notion
of satisfaction within the model that is recursively de-
fined over the set of formulas— A |= φ(a1, ...,an) if and
only if (a1, ...,an) ∈ Mφ1.

4 SEMANTIC OBJECTIVE
FUNCTIONS

Gradient optimization algorithms are commonly used
in machine learning to optimize the parameters of a
model by minimizing a loss function (Goodfellow
et al., 2016). These algorithms work by iteratively
updating the model parameters in the direction of the
negative gradient of the loss function, which results in
a sequence of model parameter values that minimize
the loss function.

1For more details see (Enderton, 2001)
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To address this issue, regularizers are often used to
constrain the model’s parameters during training, pre-
venting them from becoming too large or too complex.
They are added to the loss function as penalty terms,
and their effect is to add a bias to the gradient update
of the model parameters. Given a loss function L and
a regularizing term L′, the regularized loss function
is a linear combination αL+βL′, where α,β ∈ R. Our
construction also includes the case in which the con-
straint depends on the object x ∈ X, where the training
dataset are of the form {(Xi,ρi,φi)}i∈I or {(Xi,φi)}i∈I for
the supervised and unsupervised cases respectively. In
this section we will introduce the Semantic Objective
Functions (SOFs) for each case and write down the
explicit form in some important finite and continuous
cases.

4.1 Constraint Distribution of a Formula

An important part of the construction of the loss terms
associated to a formula φ is to construct a probabil-
ity distribution that is a associated to the formula in
a canonical way. What we want is a distribution that
samples all the models of the formula with equal prob-
ability. For each formula φ, the size of the region that
it constraints is denoted as Aφ–which is |Mφ| in the
propositional case, or A is finite, and

∫
Mφ

1dx when
A = R, or any measurable space.

The propositional case has a quite simple repre-
sentation. Given that the set of models is finite (2n if
n is the amount of atomic propositions), we can or-
der the set of models as M1, ...,M2n and represent the
constraint distribution of the formula φ as a tuple

ρφ = (p1, ..., p2n ) (2)

where pi = 1/Aφ if pi |= φ and 0 otherwise. An ex-
ample of this is the XOR formula. If we order the
models of a propositional language with two variables
x1 and x2 as M1 = (x1 = True, x2 = True),M2 = (x1 =

True, x2 = False),M3 = (x1 = False, x2 = True) and
M4 = (x1 = False, x2 = False), then its associated con-
straint distribution is ρXOR = (0,0.5,0.5,0).

The FOL case is defined as,

ρφ(a1, ...,an) =

1/Aφ if (a1, ...,an) ∈ Mφ
0 otherwise.

(3)

These distributions are only well-defined whenever 0<
Aφ <∞, meaning that Mφ has finite non-zero measure.
In the propositional case, this is satisfied whenever
the formula is not equivalent to a contradiction (has at
least one model). In the FOL this may be interpreted as
having that the probability of sampling a model of the
formula is not zero (non-zero measure), or that it is not
the case there are so many models that the probability

of sampling any model is very close to zero, because
the larger the amount of models, the less probability
of sampling them (finite measure).

4.2 Propositional and Finite Domain
Constraints

Given a constraint distribution ρ that is propositional
or is interpreted in a model with finite domain, then
the Fisher distance has a closed form(Belousov, 2017)
and can be used to construct the semantic regularizer
as Lρ( f ) = DF (ρ, f ). For these cases the family F
is the n− 1-simplex { f : An → [0,1]|

∑
s∈2n f (s) = 1}.

For the propositional case A = {0,1}, and for the finite
categorical case we are working on a model A of a FOL
language of type τ with domain A = {a1, ...,an}. To
each formula φ, its associated constraint distribution
is the uniform distribution ρφ ∈ F defined in 2. In this
case the Fisher distance is defined as,

DF (p,q) = arccos

∑
s∈An

√
p(s)
√

q(s)

 . (4)

Therefore, the semantic regularizer can be defined as,

Lφ( f ) = arccos

∑
s∈Mφ

√
f (s)√
|Mφ|

 . (5)

4.2.1 Continuous Domain

This is the case where the constraint is given as a
formula of a FOL language of type τ in a model A
with continuous domain A. The terms are generated by
the finite setV, therefore the sample space is An. For
this case we will use the Kullback-Leibler Divergence.
There is a restriction on the formulas that we can apply
this construction to. They have to be formulas φ ∈ L1

V

such that Mφ is of finite non-zero measure, so that
ρφ, as defined in 3, is well defined. The semantic
regularizer associated to φ is, Lφ( f )=DKL(ρφ|| f ). This
function can be rewritten as a sum—or integral—over
the set Mφ, which we can obtain through knowledge
compilation techniques(Darwiche and Marquis, 2002).

4.3 Extending Weighted Model
Counting

As mentioned in Section 3, there are limitations on
some semantic regularization techniques that use a
function that assigns weights to each atomic formula.
This is the case in (Xu et al., 2017), where the logic
constraint regularization is defined as logarithm the
weighted model counting (WMC) (Chavira and Dar-
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wiche, 2008) which is defined as:

WMC(φ,ω) =
∑
M|=φ

∏
l∈Lit(M)

ω(l).2 (6)

Weighted Model Counting defines a weight func-
tion ω : Lit(M) → R≥0 over the literals, so that we
can then calculate the probability of satisfaction of
each models. Instead, from Equation 6, we can gen-
eralize the weight function ω to a weight function for
the models, which is of the form ω : Mφ → R sub-
ject to

∑
x∈Mod(L0

V
)ω(x) = 1. That is, WMC(φ,ω) =∑

x∈Mφ ω(x). Therefore, a natural extension of Equa-
tion 6 is to extend it to FOL logic constraints with a
finite amount of variables as,

W(φ,ω) =
∫

Mφ
ω(x1, ..., xn)dx1...dxn. (7)

There is another generalization of WMC known
as Weighted Model Integration (WMI) (Belle et al.,
2015). That generalization extends WMC to hybrid do-
mains that can take into account both Boolean and con-
tinuous variables simultaneously, and the constraints
are formulas of propositional logic and a first order
language for linear rational arithmetic. In that sense,
7 is the particular case of WMI whenever there are
only first order formulas of linear arithmetic logic. It
does not generalize to hybrid domains, but deals with
measurable spaces more straightforwardly.

5 EXPERIMENTS

This section showcases the capabilities of the SOFs
framework through focused experiments. We aim to
demonstrate its advantages and potential use cases,
rather than achieve state-of-the-art performance (left
for future work). We employ propositional logic
formulas in experiments from Section 5.1 for clear
demonstration. Experiment in Section 5.2 explores
Knowledge Distillation over pretrained models. Fi-
nally, experiment of Section 5.1 illustrates how to use
SOFs for first-order logic (FOL) formulas with a finite
amount of variables.

5.1 Classification Tasks with Logic
Constraints

We evaluate the effectiveness of Semantic Objective
Functions (SOFs) as a regularizer for image classi-
fication. We compare SOFs with other regulariza-
tion techniques on two popular benchmark datasets:

2Lit(M) is the set of atomic propositions or their nega-
tions that are satisfied at M.

MNIST(LeCun et al., 2010), containing handwritten
digits 0-9, and Fashion MNIST(Xiao et al., 2017), with
images of 10 clothing categories. Both datasets use
grayscale images. To enforce a constraint that each
image belongs to exactly one class, we utilize a logi-
cal formula φ =

∨n
i=1((
∧n

j,i, j=1¬x j)∧ xi) representing
one-hot encoding.

Our classification model is a simple four-layer
Multilayer Perceptron (MLP) with a structure of
[784,512,512,10] units per layer. We employ ReLU
activation functions in all hidden layers for efficient
learning. In the final layer, however, we deviate from
the typical SoftMax activation used in single-class
classification. Instead, we adopt a sigmoid function.
This aligns with the work of (Xu et al., 2017), where
the network’s output represents the satisfaction prob-
ability for each class belonging to the image. To en-
sure a fair comparison and maintain consistency with
their approach, we calculate the probability distribu-
tion over the models using the weighing function de-
fined in (Xu et al., 2017), rather than the more gen-
eral form presented in Equation 7. We incorporated
the semantic regularizers (Semloss, WMC, L2-norm,
Fisher-Rao distance and KL-Divergence) as an addi-
tional loss term in an MLP with MSE as the main loss.
Experiments tested different regularization weights
λ ∈ {1,0.1,0.01,0.001,0.0001} during batched train-
ing (128 images, Adam optimizer, learning rate 0.001,
10 epochs). We defer a wider method comparison to
future work.

Table 1 shows the results of training the MLP with
same initial parameters, using different regularizers.
We performed a grid search over the different λ’s and
displayed the best results. Semantic regularizers pro-
vide an advantage of improving the accuracy by 1%
using the One-Hot-Encoding formula. While it is not
shown on the table, the regularizer provides faster
convergence than without regularization. Another im-
portant result is that the accuracy does not vary much
for the different λ in the case of the KL-Div, Fisher
distance and L2-norm, their results never went lower
than 94%. This was not the case with the other regular-
izers, both Semloss and WMC went lower than 10%
in both datasets when λ is large enough. We believe
this has to do with the fact that their functions have a
lot of minimal elements, whereas the rest only have
one.

5.2 Constraint Learning Through
Knowledge Distillation on
Classification Tasks

In this experiment we want to demonstrate the KD
capabilities of our SOFs. As explained in Section 2,
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Table 1: Learning Classification tasks with semantic regularizers (SR). The results displayed are the best average accuracy after
ten epochs. The best accuracy from all the regularizers is show in bold.

Fashion-MNIST MNIST

SR λ Acc% λ Acc%

WMC 0.01 87.74± .64 0.01 97.99 ± .27
Semloss 0.0001 87.81 ± .64 0.0001 97.78 ± .28
Fisher 0.1 88.23 ± .63 0.1 98.44 ± .24
KL-Div 0.01 88.24 ± .63 0.001 98.35± .24
L2 Norm 0.01 88.22 ± .63 0.1 98.27 ± .25
NoReg 0 75.00 0 97.60

SOFs can enforce the knowledge obtained by a pre-
trained statistical model, not just those defined by for-
mulas. In essence, if a neural network successfully
learns a distribution through an SOF, the knowledge
can be transferred to a new network using the same
SOF.

The expert model we take is the one that was
trained during the experiments 5.1 and showed best
performance per dataset. It is important to notice that
this model not only knows how to classify, but it also
satisfies the constraint. We trained a smaller MLP
with layers [784,256,256,10] to learn how to solve
the MNIST and Fashion-MNIST in two ways: using
the SOFs as a regularizer, as in Experiment 5.1, or
as the main loss function, as a process of KD. In the
case of the regularizer, we tested for hyperparameters
λ ∈ {0,0.0001,0.001,0.01,0.1,1.0}. and displayed the
best results for each SOF. For the case of KD, given
that we take the SOF as the total loss function, the
only information we use to learn the task is the one
provided by the expert model. The labels are not used
in training, just for measuring the accuracy. In both
cases we take an adam optimizer, batch size of 128,
learning rate of 0.001, and train for 10 epochs.

Table 2 shows the results of this experiment. The
results show a small reduction on the accuracy of the
model compared against the expert models used in
training. In the case when the loss function was used
as a regularizer, the accuracy was reduced by 0.3% and
.24%, for Fashion-MNIST and MNIST respectively.
Using the KD method the loss is 0.67%, 0.24% for
Fashion-MNIST and MNIST respectively. It is im-
portant to point out that this loss on accuracy comes
with a reduction in the amount of required parameters,
which is half of the expert model. Another observation
is that these models still remain more accurate than
some models—Semloss and WMC—that were trained
on experiments 2, see table 1.

5.3 Preliminary Results for First Order
Logic Formula

This experiment uses Semantic Objective Functions to
learn a probability density function (pdf) that closely
matches assignments satisfying a finite-variable FOL
formula. To use the Fisher-Rao distance we have to
approximate a uniform distribution over these assign-
ments with a distribution from the family of distribu-
tions that we are using. If the formula’s true pdf does
not belong to this family (which will be the case of
any family of continuous distributions), the learned
distribution will only be an approximation. This lets
us leverage the formulas defined in the external case
from Section 4.2.1.

To show that our framework is independent of the
type of FOL formula, we will be using the following
formula over real variables:

φ(x1, x2) = (x2
1 + x2

2 ≤ 1)∧

¬∃z((z , 0)∧ ((x+ z2 = 0)∨ (y+ z2 = 0)))
(8)

Like in Sections 4.3, in order to define our learning
method we first need to calculate the set of valid as-
signments Mφ. For this, a common practice is to rely
on SMT solvers or knowledge compilation techniques
to compute the set of assignments in which the for-
mula is valid (Darwiche and Marquis, 2002). For this
experiment however, we can observe through a quick
inspection that the formula defines geometrically the
set of all points on the first quadrant of the unitary
circle with center in (0,0), its area is π4 . With the valid
ranges defined above and a change of variables to po-
lar coordinates, were x = rcosϑ and y = rsenϑ, we can
define a ”semantic loss”-like function as (Xu et al.,
2017) and Equation 7 for continuous domain as:

W(φ,θ) =
∫ 1

0

∫ π/2
0

f (rcos(ϑ),rsin(ϑ);θ)rdϑdr, (9)

where f (x,y;θ) is the ω function from Equation 7,
which will be replaced by the definition of the bi-
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Table 2: Regularizers vs Knowledge Distillation. The tables show the results when using the expert network as regularizer or
directly for knowledge distillation. The results displayed are the best average accuracy after ten epochs. The best accuracies for
both experiments are shown in bold.

Regularizer Knowledge Distillation

Fahion-MNIST MNIST Fahion-MNIST MNIST
Name λ Acc% λ Acc% Acc% Acc%

KL-Div 0.001 87.94±.63 1.0 98.20±.26 87.57±.64 98.12±.26
L2-Norm 1.0 87.75±.64 0.1 98.02±.27 87.26±.65 98.11±.26
Fisher.D. 1.0 87.60±.63 0.01 98.01±.27 87.38±.65 97.98±.27

variate normal distribution and we will define our learn-
able parameter θ = µ. That is, our neural architecture
will be a simple bivariate normal distribution and our
learnable parameter will be the mean vector µ. Now
for our SOF, since we need to only integrate over the
valid assignments, and the uniform distribution will
always give the same value over those assignments of
the formula we can replace the value ρφ(x,y) to 1

π
4
= 4
π .

We also change the variables to polar coordinates, ob-
taining the expression

DKL(ρφ|| fθ)=−
4
π

∫ 1

0

∫ π
2

0
log( fθ(r cosϑ,r sinϑ))rdϑdr

(10)
With Equation 7, we can define a FOL version

of the WMC and Semantic Loss which should max-
imize the probability of satisfaction of the formula.
We conducted the experiment over 10 different seeds,
over 2000 epochs and by using Adam and stochas-
tic gradient descent optimizer. The results of the ex-
periment can be found on Table 3, where we display
the best results from a grid search of learning rate
α ∈ {1,0.1,0.01,0.001,0.0001}. To measure the differ-
ence between the target and learned density function
we used the Total Variation Distance which is defined
as, δ(p,q) = 1

2

∫
|p(x)−q(x)|dx.

As expected our SOF was the one to attain the low-
est error in comparison with the W and Wlog functions.
It is important to mention that none of the loss func-
tions could arrive to the correct solution. The reason
is due to the fact that the bi-variate normal distribution
does not have a shape that could realistically cover the
area defined by the formula.

6 LIMITATIONS AND FUTURE
WORK

This work has several limitations that motivate future
research directions. First, we assume that for each for-
mula φ, the set Mφ is readily available. This assump-
tion necessitates solving the propositional satisfiability
problem (SAT) or the counting satisfiability problem

(#SAT) for propositional logic, and solving systems of
inequalities for general functions for first-order logic.
As mentioned in Section 2, other approaches share this
assumption and leverage knowledge compilation tech-
niques to address it (Darwiche and Marquis, 2002;
Barrett et al., 2009). An important avenue for fu-
ture work is to develop approximation methods for
the set of satisfying assignments that circumvent the
need for explicitly computing Mφ. Second, our current
approach is limited to cases where Mφ has non-zero
finite measure. Third, the Fisher-Rao distance may
not always have a closed-form solution, which can
lead to computational challenges. Further research
is needed to determine when the Fisher-Rao distance
is preferable to the KL-divergence, considering their
computational complexity and effectiveness in various
settings. Fourth, a comprehensive evaluation compar-
ing our method with existing approaches and testing
a wider range of logic constraints is necessary. The
experiments of Sections 5.1 and 5.2 were used mainly
to show that these methodologies work, but it is hard
to see how much better they are because the other ar-
chitectures perform well without the constraint, so it
is also necessary to perform the experiments in tasks
where there is a lower performance for state-of-the-art
methods. Finally, it would be interesting to investigate
the effectiveness of our method for a combination of
SOFs obtained from a set of constraints {ρi}i∈I as well
as further experimental analysis on constraint satisfac-
tion using KD methods as in Section 5.2

7 CONCLUSION

In this paper, we proposed a framework and general
construction of loss functions out of constraints and
expert models, which can be used to transfer knowl-
edge and enforce constraints into learned models. We
divided the SOF constructions into two cases, internal
and external, and for each case, we looked at closed
forms for both finite and continuous domains. We ran
experiments for classification tasks and both SOFs,
KL-Divergence and Fisher-Rao distance, showed bet-
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Table 3: Total Variation Distance for different optimizers and loss functions of φ.

Optimizer Loss Learning Rate α Avg. Total Variation Distance
ADAM W 0.0001 0.37111863±0.03492265
ADAM logW 0.0001 0.36836797±0.043502506
ADAM KLDiv 0.01 0.2161428 ± 7.386059e-06

SGD W 0.0001 0.39597395±0.049845863
SGD logW 0.0001 0.37211606±0.04976438
SGD KLDiv 0.001 0.212498 ±0.0048501617

ter accuracy than the other proposals (Xu et al., 2017;
Chavira and Darwiche, 2008). We also illustrated the
use of SOFs for finite variable first-order logic formu-
las showing promising results. Finally, we conducted
KD experiments for two scenarios: when the set of
satisfying assignments (SOFs) was used as a regu-
larizer and when it served as the main loss function.
These experiments are promising, demonstrating simi-
lar accuracy compared to their teacher models while
requiring only half the number of parameters.

ACKNOWLEDGEMENTS

Vaishak Belle was supported by a Royal Society Re-
search Fellowship. Miguel Angel Mendez Lucero was
supported by CONACYT Mexico.

REFERENCES

Amari, S. and Nagaoka, H. (2000). Methods of Information
Geometry. Translations of mathematical monographs.
American Mathematical Society.

Amari, S.-i. (2005). Information geometry and its applica-
tions. Journal of Mathematical Psychology, 49:101–
102.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. (2016). Concrete problems in ai
safety. arXiv preprint arXiv:1606.06565.

Barrett, C., Sebastiani, R., Seshia, S. A., Tinelli, C., Biere,
A., Heule, M., van Maaren, H., and Walsh, T. (2009).
Handbook of satisfiability. Satisfiability modulo theo-
ries, 185:825–885.

Bell, J. and Slomson, A. (2006). Models and Ultraproducts:
An Introduction. Dover Books on Mathematics Series.
Dover Publications.

Belle, V. (2020). Symbolic logic meets machine learning: A
brief survey in infinite domains. In Davis, J. and Tabia,
K., editors, Scalable Uncertainty Management - 14th
International Conference, SUM 2020, Bozen-Bolzano,
Italy, September 23-25, 2020, Proceedings, volume
12322 of Lecture Notes in Computer Science, pages
3–16. Springer.

Belle, V., Passerini, A., and Van den Broeck, G. (2015).
Probabilistic inference in hybrid domains by weighted
model integration. In Proceedings of 24th International

Joint Conference on Artificial Intelligence (IJCAI), vol-
ume 2015, pages 2770–2776.

Belousov, B. (2017). Geodesic distance between probability
distributions is not the kl divergence. 11 July, 2017.

Chavira, M. and Darwiche, A. (2008). On probabilistic
inference by weighted model counting. Artificial Intel-
ligence, 172(6-7):772–799.

Cover, T. M. and Thomas, J. A. (2006). Elements of Informa-
tion Theory 2nd Edition (Wiley Series in Telecommuni-
cations and Signal Processing). Wiley-Interscience.

Csiszár, I. and Shields, P. (2004). Information theory and
statistics: A tutorial. Foundations and Trends® in
Communications and Information Theory, 1(4):417–
528.

Darwiche, A. and Marquis, P. (2002). A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264.

Enderton, H. (2001). A Mathematical Introduction to Logic.
Elsevier Science.
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