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Abstract: 3D reconstruction of physical environments presents significant challenges, particularly when it comes to the 
semantic interpretation of these spaces, which often requires human input. This paper introduces a novel 
process that leverages multiple AI models trained on 2D images to automatically interpret and semantically 
annotate 3D spaces. Using a game engine as an intermediary, the process facilitates the integration of various 
3D formats with 2D-trained AI models, enabling the capture and reprojection of semantic annotations back 
into the 3D space. A representative 3D scene is employed to evaluate the system’s performance, achieving an 
object identification accuracy of 87% alongside successful semantic annotation. By offloading semantic 
annotation tasks to external 2D AI, this approach reduces the computational burden on edge devices, enabling 
dynamic updates to the system’s internal knowledge base. This methodology enhances the scalability of 
spatial AI, providing a more comprehensive understanding of 3D reconstructed environments and improving 
the feasibility of real-time, AI-driven reasoning in spatial applications. 

1 INTRODUCTION 

A variety of sensors and techniques exist to capture 
and digitally represent physical environments. 
However, the process of accurately virtualizing the 
physical world involves navigating numerous 
challenging and often conflicting requirements. For 
instance, trade-offs must be considered between 
factors such as capture fidelity, coverage area, refresh 
rate, the types of physical sensors employed, and the 
utility of the resulting file format. The process of 
translating the physical world into virtual 
representations is commonly referred to as 3D 
reconstruction (Han et al., 2021; Sun et al., 2021). 

While numerous methods for 3D reconstruction 
of physical spaces are available, some of which are 
detailed in Section 2, few automated approaches go 
further and integrate semantic data into these virtual 
models. This integration, which could significantly 
enhance the utility and understanding of 
reconstructed scenes, remains largely unrealized. For 
example, following the 3D reconstruction of an 
interior using LiDAR data, the individual objects 
within the geometry can be identified and labelled 
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with additional properties such as materials, 
functional context or whether they are moveable. The 
semantic knowledge increases the model’s utility as 
an identified chair can be indexed for searchability, 
extracted from the complete 3D reconstruction, 
customised, moved, hidden, or replicated, enabling 
advanced interaction and analyses.  

The wide range of fundamentally different 
formats and purposes means that systems with 
general understanding of 3D spaces is a significant 
challenge, and each different format may require a 
completely different technique (Han et al., 2021). 
This is made more prominent when considering how 
AI models are trained and used. The data that an AI 
is trained with must be interoperable with the test 
data. For example, an AI trained only on point cloud 
data will only be able to interpret point cloud data.  

Being able to work beyond the constraints of 
datatypes and sensors could prove invaluable when 
trying to reconstruct 3D space. Figure 1 presents the  
 

 
Figure 1: Towards 3D scene understanding. 
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abstract steps required to achieve 3D scene 
understanding. This paper assumes that the 3D scene 
reconstruction is already complete and proposes a 
filetype agnostic approach to deriving semantic data. 

Large strides have been made recently with 
regards to 2D image recognition in specific contexts, 
such as object identification and relative localisation 
using SLAM. In these areas AI has become quite 
proficient, both in terms of capability and speed 
(Gemini Team et al., 2024). This progress is enabled 
by the much larger pools of images available for 
training data, the equivalent of which does not exist 
in 3D formats. This advancement of 2D 
understanding of space can be leveraged in order to 
increase understanding and interaction with 3D 
spaces, and its value can be extended to domains such 
as to facilitate XR interactions  (Sun et al., 2021), 
mechanical engineering (Kent et al., 2021), robotics 
(Batra et al., 2020; Weihs et al., 2020), and spatial AI 
(Hubert et al., 2021; Miyake et al., 2023). 

This paper will describe a process to understand 
any 3D room reconstruction in any data format, 
employing several 2D image-based AI to identify and 
tag objects in a 3D reconstructed space with semantic 
information. The core contribution of this paper is the 
process of using 2D projections in captured 3D space 
to facilitate interpretation and reasoning of 3D spaces. 
The paper will present an implementation of the 
process for analysis and discussion.  

This section has described the challenges with 3D 
scene understanding, and how these challenges are 
compounded by the need for many data formats for 
3D reconstruction. Section 2 outlines current 
capability for scene understanding and defines the 
scope of this work. Section 3 details the proposed 
process, a complete implementation, and a testing 
scenario. Section 4 presents the findings and analyses 
the capability of the demonstrated implementation, 
along with discussion and iterations. This is followed 
by a discussion on limitations and generalisability in 
Section 5. The paper concludes with opportunities for 
future work in Section 6. 

2 RELATED WORKS 

In this section, approaches to 3D reconstruction and 
understanding will be described. Data representation 
will be considered and compared against the depth of 
understanding that can be achieved using them by AI, 
summarised in Figure 2. Typically, as the dataset 
becomes richer, the depth of possible understanding 
via AI decreases. 

 
Figure 2: Mapping the related works quality of data used to 
the depth of understanding achieved. 

Currently, text-based representations offer the 
best chance to enable implicit knowledge to be 
inferred by AI through structured knowledge graphs. 
Logic based tasks however, particularly with a 
temporal element, are still very challenging for AI 
(Jiang et al., 2023; Titus, 2024). Current methods 
consolidate a variety of knowledge modelling 
approaches in order to facilitate grounded contextual 
and temporal reasoning for AI (Ilievski et al., 2021). 
With methods to translate 3D space into semantic 
knowledge graphs, this could be utilised to increase 
an AI’s faculty of spatial reasoning.  

Several approaches look to parse 3D information 
from 2D images. For example, RoomNet (Lee et al., 
2017), attempts to estimate 3D room layout from single 
2D images by identifying key points within the space. 
Kent et al., (2023) propose identification of large 
structures and assemblies through smaller or standard 
components. This could be used to infer geometries of 
a room as part of a larger process chain. Depth can only 
be estimated in an image, so whilst identification of the 
objects is possible under the right conditions, there is 
no spatial or contextual interpretation or reasoning. 

Li et al., (2018) uses silhouettes generated from 
2D images to match to known object pools.  By 
estimating depth from RBG images and combining 
multiple images, Tatarchenko et al., (2016), create 
explicit and complete point clouds of objects, 
although without explicit knowledge of what object is 
being created. NeuralRecon (Sun et al., 2021) extend 
this approach, and demonstrate real-time 3D 
reconstruction of 3D surfaces from a singular 
monocular video, analysed as a sequence of images. 
Depth in estimated in each image individually, 
leading to noisy outputs and redundant computation. 

Work is also being done to understand 3D scenes 
where unordered or raw 3D data is available, such as 
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Figure 3: Process using multiple AI to develop scene understanding. The numbered steps are described in Table 1. 

with point cloud captures. SceneScript (Avetisyan et 
al., 2025) uses LLM style next token prediction in 
order to describe point clouds as parametric 
instructions. This is a lightweight approach to scene 
definition, using high-level and interpretable 
representations of the space. Synthetic point cloud 
have been used as training data for an AI that can 
generate 3D layout estimations within the bounds of 
the parameters (Engel et al., 2023). This approach can 
build simple models without contextual knowledge, 
however manual extensions to achieve this has been 
proven theoretically possible. 

Neural Radiance Fields (NeRFs) have recently 
gained significant attention (Mildenhall et al., 2022). 
NERFs can render novel views by training a deep 
neural network from a set of known camera poses. It 
has been followed up by Gaussian Splatting (Chen & 
Wang, 2024; Kerbl et al., 2023), which enables 3D 
reconstruction from images, offering improvements 
in computation speed and data size. Whilst these 
methods provide dynamic and fast 3D reconstruction, 
they are incompatible with current 3D understanding 
methods. 

When these myriad approaches are mapped, see 
Figure 2, there is a disconnect between having high 
quality data through 3D reconstruction, and the depth 
of understanding. By reducing high quality data to 
data that is compatible with AI models, the output 
data can be reprojected into the reconstructed space. 

In summary, 2D images have shown potential as 
inputs for semantic understanding, but too much data 
is required for a general AI capable of 3D scene 
interpretation. Point clouds can be used to capture a 
scene but are data heavy and lack semantic 
understanding methods. NeRFs and Gaussian 
Splatting have showed promise as a means to 
represent 3D scenes (Chen & Wang, 2024), but the 
generated views are assumed, and also with little 
semantic understanding opportunities. This paper 
presents a process that combines the speed and 
opportunities for semantic understanding by 
representing a 3D space as a series of 2D projections. 

 

3 PROPOSED PROCESS 

The process described in this paper uses a game 
engine and a series of AI to parse and understand a 
3D environment. The system will emulate egocentric 
exploration of a 3D virtual scene, attempting to parse 
and interpret the initially unidentified objects. Figure 
3 shows the process being proposed, and Table 1 
details each of the process steps. 

This process shows two AI being used (Gemini 
Team et al., 2023, 2024), but this can be extended, 
and other AI can be substituted if required. The 
important distinction is the use of parallel captures 
being processed serially by AI, cropped, and 
reprojected back into the 3D scene to develop spatial 
understanding about the 3D scene. A prototype 
system has been developed to explore how this 
cropping and reprojection can be used in a 3D 
reconstructed scene. 

3.1 Prototype System 

Two state of the art AI (Gemini Team et al., 2023, 
2024), are utilised to infer details about the objects in 
a 3D scene. These AI models are trained on 2D data, 
allowing them to operate effectively with 2D images. 
To leverage their capabilities, we will capture a series 
of egocentric 2D images of the 3D scene.  

Following evidence that cropping images to the 
subject can increase the success and capability of zero 
shot inference for Multimodal Large Language 
Models (MLLMs) (Ilievski et al., 2021; Zhang et al., 
2024), the first AI specifically identifies objects 
within the capture and provides bounding boxes with 
confidence values around any identified objects.  

The initial capture is cropped to each bounding 
box to ask more precise questions to a second AI, 
which is able to infer more qualitative information 
such as colour, function, and context. The second AI 
is multimodal, accepting images and a text prompt for 
specific information. This AI is unable to describe the 
object location within the capture so to reproject the 
data, the object must be central in the capture. 
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From Figure 4, examples of bounding boxes 
leading to cropped images can be seen. These cropped 
images are then sent to the second AI. The text 
prompt uses the English order of adjectives list 
(Cambridge Dictionary, 2024) to populate semantic 
data and is as follows: 

“What do you see in this image? Be as specific as 
possible. Return the results as a csv file in the format 
‘object name, opinion, size, physical quality, shape, 
age, colour, origin, material, type, purpose’.” 

The use of a second AI allows for scene 
understanding, supplementing the 2D capture with 
semantic data and context. The response is then 
reprojected back into 3D space and attached to the 3D 
geometries. Table 1 gives a more detailed overview 
of each step of the process and how it is implemented 
in the prototype system.  

3.2 Testing Scenario 

A test scenario will be used to evaluate the viability 
of using several multi-modal AI to generate data and 
semantic data about a 3D scene. As this paper is not 
concerned with the method for 3D reconstruction, an 
existing scene with known geometries and collisions 
for all objects will be used. This will ensure that the 
reprojected response can be analysed for correctness. 
The scene is a simple room with 68 internal and 
identifiable objects. Exterior boundaries, such as 
walls, floors, and ceilings are not identifiable by this 
process. There are areas of cluttered objects, such as 
items scattered on a table and books on a bookshelf.  

 

 

 
Figure 4: Screenshot and resulting bounding boxes. 

The process will run in batches of 75 cycles until 
the results stabilise, to explore how the scene 
understanding evolves over time. To understand the 
capability of the scene identification process, a trial 
run of 225 captures will be presented.  

Table 1: Description of the complete process. 

# Step Description 
1 Load 3D 

Scene 
Any prior 3D reconstruction data is 

loaded into the scene. In this 
prototype, the 3D scene has 
geometry and collision data. 

2 Choose 2D 
capture 
position 

A random position within the 3D 
space is selected, emulating an 

egocentric view.  
3 Take 2D 

Screenshot 
From the chosen 3D position, a 2D 
screenshot is taken. The image as 
well as the camera parameters and 
transform are both archived and 

sent to AI #1. 
4 Send to  

AI #1 
(Vision) 

AI #1 identifies and segments 
objects. The response is a series of 
bounding boxes around objects see 

(Figure 4). 
5 Crop 2D 

Capture 
The screenshot in Step 3 is cropped 

for each bounding box. Each 
cropped image is sent to AI #2 with 

a text prompt. 
6 Send to  

AI #2 
(Gemini) 

AI #2 can infer direct information 
about a single object, such as name, 
size, materials etc. As the image is 
cropped, there should be a single 

subject within each image. 
7 Reprojection The response data is parsed. A ray 

cast replicating the initial 2D 
capture is used to reproject the 

parsed data back into the 3D scene. 
8 Attach to 

scene 
The parsed data is then attached as 

metadata to any hit objects. The 
data attachment method depends on 

the 3D scene filetype. 
9 Go to Step 2 Repeat until satisfied. 

4 RESULTS 

This section presents the outcomes of a pilot 
implementation of the process. In Section 4.1, the 
results are manually compared against known correct 
values to evaluate the accuracy of object 
identification. Section 4.2 explores the system’s 
ability to measure self-confidence in its results 
without human intervention. This is followed by 
Section 4.3, which introduces an extension to enhance 
the identification capabilities of the overall process. 
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Finally, Section 4.4 evaluates the accuracy and 
significance of the generated semantic data. 

4.1 Identification Accuracy 

Table 2 summarises the output of the test scenario as 
the scene identification progressed. The first column 
specifies the number of captures sent to AI #1. The 
second column specifies the number of cropped 
images that are then send to AI #2. Column three is 
the number of identified objects by AI #2. Column 
four is the number of discarded identifications. The 
data from AI #2 is reprojected back into the 3D scene, 
and if this ray does not hit viable geometry (e.g. a 
wall, the floor), then it is discarded. Column 5 show 
the number of successful object identifications.  

Table 2: Number of captures sent to AI #1, cropped images 
sent to AI #2, identifications, discarded results and 
successful identifications. 

Captures Crops IDs Discards IDs
75 231 273 53 220

150 494 464 98 366
225 743 676 121 601

Figure 5 show the progression of object 
identification. By increasing the number of scenes 
captures, there is an increase in number of identified 
objects. However, the objects that are challenging for 
the AI to identify remain unidentified, even as the 
number of captures increases. Between 150 and 225 
cycles, only one more object was able to be identified. 

The results in Figure 5 are manually checked for 
accuracy. After 225 cycles; 28 of the 68 were never 
identified, in that no data was reprojected to them. 
This could be attributed to multiple factors and will 
be discussed in Section 4.3. 

4.2 Self-Confidence of Identification 

Something unaccounted for in the colour maps in 
Figure 5 is the self-confidence of the found values. 
Self-confidence is the level of certainty in the 
identification. This can manifest in multiple ways. A 
chair that was correctly identified 23 times out of 23 
appears in Figure 5 has the same 100% self- 
confidence value as a book that was found once and 
identified correctly once. This self-confidence value 
needs to be measured, as the process should run 
independently. Following the 225 cycles, three 
factors limiting self-confidence have been identified. 
These are: 
 Name synonyms (Section 4.2.1) 
 Many items in cropped images (Section 4.2.2) 
 Unidentifiable objects (Section 4.2.3) 

After 75 cycles. 

After 150 cycles 

After 225 cycles 

Green (Left) indicates 100% accurate identification, 
Red (Right), 0%, and grey boxes are objects that were 

never identified and had no attached data.  
Figure 5: Progression of correct identification of 68 objects 
in a 3D scene. Figure best viewed in colour. 

4.2.1 Name Synonyms 

As the results from AI #2 does not account for 
synonyms of objects names, an object may be 
correctly identified but not align with previous 
identifications. For example, after 225 captures, the 
‘sofa’ in the room was identified correctly 45/57 
times, but using several different terms, see Table 3. 
The most accurate ID, Chaise Lounge, is arguably the 
most correct, but the other ‘correct’ identifications 
will still reduce the overall confidence.  

This discrepancy in not-false positives may be 
overcome by calculating semantic distances between 
words, and using that value to determine confidence 
using knowledge graph networks such as WordNet 
(Princeton University, 2010) or ConceptNet (Speer et 
al., 2017).  

Table 3: Differently correct identifications of the same 
object. 

Identified Name Count
Chaise Lounge 27

Sofa 14
Couch 3 

Red Velvet Chair 1 

4.2.2 Many Items in Cropped Images 

Some objects were found to have a wide range of 
conflicting identifications. This was particularly 
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prominent when the object was a container or a 
surface. In these instances, the object was not the sole 
subject of the cropped image, a known weakness 
(Ilievski et al., 2021; Zhang et al., 2024). As the data 
is attached to the scene using the centre of the cropped 
image, this leads to incorrect attachments to 
containers and surfaces. 

In the test scene there are three tables. The self-
confidence was 18-21%, with a combined total of 
14/72 correct identifications. From Table 4, it is clear 
that the objects on and around the tables are being 
associated with the tables, significantly reducing the 
overall confidence.  

Table 4: Identifications and their relation to the attached 
object. 

 Named object in identification is: 
 Correct On Table Next to Table 

Table 1 3 1 10 
Table 2 7 23 8 
Table 3 4 9 7 

This error could be overcome by adding a 
decision point at Step 7 in Figure 3. In the case where 
multiple items are identified in the cropped image; the 
cropped image could be resubmitted to AI #1 to 
further reduce into sub-images. This would help 
remove the objects on and around the table from the 
tables ID data. 

On inspection of all 14 correct table 
identifications in Table 4, it was never the sole subject 
of a cropped response. This means that adding 
cropped images with multiple IDs back into the pool 
would remove any chance of identifying a container 
or surface. This would require the use of a second 
prompt targeted at surfaces and containers. 
Alternatively, objects with high self-confidence could 
be removed from the scene.  

 
Figure 6: Top-down view of the scene used in the test 
scenario. Each represents a reprojection of semantic data 
into 3D space from a capture position. Best viewed in 
colour. 

4.2.3 Unidentifiable Objects 

There are some objects that AI cannot or cannot 
consistently identify. This can be for myriad reasons, 
such as not being in a capture, poor, missing, or noisy 
input data, occlusion, or the object is simply not in the 
AIs capability to identify. 

After 250 captures, the remaining 28 unidentified 
objects are all small objects that occlude each other, 
for example stacks of books or plates under cups. 
Manually selecting ideal screenshots have shown that 
under the right conditions, the objects can all still be 
identified correctly. The current capture selection 
algorithm selects random positions and rotations 
within the space. Replacing this randomness with a 
more structured approach is expected to improve the 
overall effectiveness of the process. 

4.3 Informed Capture Selection 

Until now, the selection of views for captures has 
been random. Low self-confidence can be added as 
weighted selection criteria to the capture selection 
step. The self-confidence of each object is calculated, 
and the less self-agreement there is in within the data 
attached to an object, the more likely it should be 
within the next captures frame. This was achieved by 
finding the closest object in the lowest 5% of self-
confidence and linearly interpolating the camera 
transform towards the object. 

The extension was run for a further 75 captures. 
This led to the identification of a further 25% of the 
objects, with 87% of the objects in the room now 
being identified with 59% having self-confidence in 
the ID over 50%. Figure 7 shows the small effective 
difference between correct identification percentage 
and self-confidence in identification after 300 cycles.  

The objects with zero correct identifications after 
300 cycles are a book, a carpet, 2 plates, 3 flowers, 3 
pieces of paper and a vase. Most of these can be traced 
down to occlusion, something that cannot be 
overcome using optical sensors for 3D reconstruction. 
The books spine is difficult to differentiate against the 
other books. The flower stems are thin, so it is 
unsurprising that the raycasts consistently ‘missed’ 
the location, hitting the out of bounds exterior walls. 
The paper and vase not being identified are outliers, 
without an apparent reason the AI could not identify 
them. Possibly, they were unfortunate and not 
included in any capture, or the AI is simply unable to 
identify them, even under perfect conditions. The 
extension to the informed capture selection ensured 
that the objects and areas with less self-confidence 
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were given focus and this had a clear impact on the 
results, improving the viability of the approach. 

4.4 Capturing Semantic Data 

The final part of this section concerns the capture of 
additional semantic data, providing additional 
meaning and context to the identified geometry. More 
than being able to identify the information, it is 
valuable to capture tacit information. Recent 
advances in 2D AI have begun to facilitate this 
(Gemini Team et al., 2024).  

For this proof of concept, the English order of 
adjectives was used to get additional information 
about the seen objects (Cambridge Dictionary, 2024). 
The size of the object was generally always in self-
agreement, despite only being able to assume the 
scale. A giant apple would likely still be classified as 
small. Interestingly, the 2D AI occasionally tried to 
give specific dimensions, which unsurprisingly were 
nowhere close to accurate. 

Physical quality typically described the surface of 
the object, or for around half of instances simply said 
‘solid.’ Shape, Age and Origin were either ‘unknown’ 
or incorrect guesses and were included for 
completeness. 

The Material of each object was identified, but in 
vague categories, such as ‘Wood’ or ‘Ceramic,’ 
without specifics such as grain or deterioration. When 
paired with colour or other semantic data, realistic or 
predefined textures could be applied as part of a 3D 
reconstruction process, using textures and materials 
applied from 3D libraries.  

Type and Purpose provide means to categorise the 
objects further. Automatic identification is helpful, 
but being able to further contextualise the objects can 
provide more rich value, for example in the push for 
spatially aware AI. For instance, correct barrels 
identifications also supplied a range of additional 
semantic information such as: ‘container, cask, 
storage, to store liquids, for transport.’ 

Spatial arrangements were also able to be 
identified with an addition to the prompt: ‘positional 
relationships between the objects. Adjacencies and 
relative positions can be helpful when providing 
instructions on how to achieve tasks, for example to 
direct towards a specific location ‘on a table’ or 
‘opposite the doorway.’ The spatial arrangements 
must be captured before the cropping step, but then 
processed and attached to the data after the cropping 
step. In future work, the combinatorial use of this 
semantic data will be used as input for Spatial AI with 
faculty for 3D spatial reasoning. This will be 
described in Section 6. 

Successful identification of 68 objects after 300 process 
cycles. 

Self-confidence in identification of 68 objects after 300 
process cycles. 

Green (Left) indicates 100% accurate identification, red, 
0%, and grey boxes were never identified and had no 
attached data. 

Figure 7: Comparing the difference between successful 
identification and self-confidence in that identification after 
300 cycles. 

5 LIMITATIONS 

In this section, we discuss the generalisability and the 
limitations of the process and the study.  

One of the key challenges for scene identification 
is the considerable number of representations and 
filetypes for 3D spaces. The process in Figure 3 is 
datatype agnostic, assuming the datatype can be 
loaded into a game engine. For this testing scenario, 
a scene with separate geometries for each object was 
utilised.  

A common datatype for this kind of scene is point 
clouds, due to the range of sensors available. For 
example, many VR headsets have on board point 
cloud sensors that are used for localisation. The 
proposed process in this paper could be run on these 
point clouds dynamically.  

The attachment of data to the 3D file will remain 
datatype dependant. For example, instead of a 
raycast, a mask will be required for a point cloud, and 
the reprojection of semantic data will need to be 
associated with all points within the mask 
reprojection. This could significantly impact storage 
requirements if not managed appropriately. 

Only one room was tested for this pilot, to explore 
the feasibility of the approach, focusing on depth of 
analysis and challenges. By running the process on 
many rooms in different configurations and from 
various origins, the potential of this approach can be 
further scrutinised and improved. 
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The AIs used is also limiting factor. They can 
only identify objects that they are trained to identify 
and that have sufficient representation in the training 
data. The process should be AI agnostic, using web 
interfaces to connect to two AIs with differing 
capabilities. There are alternative AI candidates that 
could be used (Kirillov et al., 2023; Redmon et al., 
2016). The novelty of this papers is the dynamic 
cropping procedure and the reprojection back into the 
scene. 

Finally, offloading the processing to external 
servers, which involves streaming 3D scenes and the 
people within them, conflicts with privacy 
protections. Consequently, many HMDs by default 
do not allow capture or recording of passthrough 
sensors. Whilst enabling this capability unlocks many 
opportunities, it requires strict adherence to privacy 
regulations which are foundational to protect 
individual rights, and maintaining public trust must 
be a priority in all applications. 

6 CONCLUSIONS 

Multiple multi-modal AI were used that had different 
inputs and differing capabilities. Both are only 
capable with 2D images; however, their 
combinatorial use enabled the identification of 
objects in 3D space. After 300 cycles 87% of objects 
were correctly identified, albeit because of noun 
synonyms, only 59% having self-confidence over 
50%. Semantic data was also captured, providing a 
range of descriptors, object use and positional 
relationships to other objects.  

A Game Engine acted as the intermediary system, 
with the ability to load many 3D formats and to 
interface with cloud-based AI systems. The addition 
of weighted capture selection towards objects with 
lower self-confidence improved the process. 

The semantic data was reprojected back into 3D 
space and attached to the objects in the scene. Objects 
with predefined geometries and collisions were used 
in this study, but the process could be extended to 
other datatypes, for example, using masks and point 
clouds. The value of the process is the reprojection 
and attachment of the 2D AI findings back into 3D 
space, utilising 2D AI capabilities in 3D contexts. 

6.1 Future Work 

Through this paper, several opportunities for future 
work have been identified. The process can be 
improved with an additional step to ensure that 
exteriors, surfaces, and containers are appropriately 

identified. The outcomes may also be improved by 
using semantic closeness of the AI responses, to have 
more representative and accurate self-confidence 
measures. 

Other datatypes should also be considered, such 
as NeRFs and point cloud clouds. This approach is 
suitable for any 3D datatype interoperable with games 
engines but has only been implemented using a scene 
with static geometries. The tagging process will 
depend on the datatype. 

Substantial work is being conducted in areas such 
as multi-modal large language models, commonsense 
reasoning and spatial AI, that look to facilitate and 
enhance everyday tasks. This process of dynamically 
interpreting 3D scenes and translating to human 
readable semantic information can serve as spatial 
inputs to these advanced and complex models. 
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