
Towards a Classification Framework for the Digital Twin Tools: A
Taxonomy

Mert Ozkaya1 and Alper Turunc2

1Department of Computer Engineering, Yeditepe University, Istanbul, Turkey
2DFDS, Istanbul, Turkey

Keywords: Digital Twin, Classification Framework, Taxonomy, Tools, Technologies.

Abstract: Digital twins (DTs) have gained an ever-increasing popularity in many industries for the real-time monitoring
of physical systems and performing useful operations such as predictive maintenance and early fault detection.
Many commercial and open-source DT tools are available on the market, which offer services or development
environment for developing and using DTs. However, our research shows that practitioners still use conven-
tional programming technologies for developing DTs in-house rather than using the DT-specific tools. We
believe that one reason here is to do with the lack of any taxonomy for the determining the DT tools that are of
use for the practitioners. In this paper, we propose our attempt for a classification framework that can be used
for analysing and comparing different DT tools. Having reviewed the literature and practitioners’ needs, we
addressed twelve main features for DT tools, which are divided into sub-features. These are (i) domain, (ii) de-
ployment, (iii) type, (iv) maturity, (v) knowledge management, (vi) system integration, (vii) quality assurance,
(viii) reusability, (ix) extensibility, (x) abstraction, (xi) enabling technology, and (xii) development platform.
We believe that our classification framework will be useful for different stakeholders: (i) practitioners who
wish to develop and use DTs, (ii) tool vendors who can determine strengths and weaknesses of their tools, (iii)
researchers who address the tool weaknesses.

1 INTRODUCTION

Digital twin (DT) is nowadays considered as one of
the hottest topics of computer science and used in
several industries for the real-time monitoring of any
physical systems remotely and optimising the product
development lifecycle (Rasheed et al., 2020; Jones
et al., 2020; Hu et al., 2021). These include such
industries as aerospace, automotive, manufacturing,
mining, energy, construction, healthcare, agriculture,
smart cities, and oil and gas (Singh et al., 2022).
DTs can offer several advantages for those indus-
tries which include the real-time simulation for the
optimised solutions, personalisation of products, en-
hanced communication among stakeholders, reduced
cost of prototyping, early detection of errors and pre-
dictive maintenance, and remote accessibility (Singh
et al., 2021; Rasheed et al., 2020).

As DTs have gained an ever-increasing popularity
in industries, several different software development
companies offer DT tools whose goal is essentially
to help users solving their business problems effec-
tively and productively. DT development companies

can provide varying solutions for the DT develop-
ment. Some companies release DT tools that actually
offer a development platform with APIs, frameworks,
and libraries which can be used by practitioners in de-
veloping domain-specific DTs for the specific needs.
Also, some companies offer DT tools as a service and
such DT tools provide several DT operations that can
be used over cloud licenses (or on-premise) for par-
ticular domains and industries. Besides, some com-
panies offer DT tools with an open-source support for
the development of specific DTs using re-usable and
customisable generic code under certain constraints.
Table 1 shows some of the well-known DT tools1.

To understand the use of DT tools in practice, we
focussed on the results of our recent industry survey
that has been conducted online between June-August
2024 and addresses practitioners’ perspectives on the
DT techniques and technologies. Our survey received
131 responses from diverse industries and profiles2.

1The full list of DT tools is accessible here: https:
//zenodo.org/records/13956879

2The survey questions and the raw response data are ac-
cessible here: https://zenodo.org/records/13628837

Ozkaya, M. and Turunc, A.
Towards a Classification Framework for the Digital Twin Tools: A Taxonomy.
DOI: 10.5220/0013239900003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 263-272
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

263



Table 1: The list of DT tools.
Digital Twin Tool Website
AnyLogic www.anylogic.com
Tecnomatix www.plm.sw.siemens.com/en-US/tecnomatix
aPriori www.apriori.com
XMPro App Designer www.xmpro.com
Autodesk Tandem www.intandem.autodesk.com
Azure Digital Twins www.azure.microsoft.com/en-us/products/digital-twins
Unlearn.AI www.unlearn.ai

Ansys Twin Builder www.ansys.com
Bentley Systems www.bentley.com/software/infrastructure-digital-twins
Rockwell Automation www.rockwellautomation.com
General Electric www.ge.com
Mimic Simulation www.mimicsimulation.com/simulation-software
Veerum www.veerum.com
CADMATIC eShare www.cadmatic.com/en/products/cadmatic-eshare
Archilogic www.archilogic.com
Golem www.golem.at

Value Chain
Resilience GmbH

www.vcresilience.com

Agrilogic www.agrilogicconsulting.com
Twinzo www.twinzo.eu
Eclipse Ditto www.eclipse.dev/ditto
Eclipse BaSyx www.eclipse.dev/basyx
iTwin.js www.itwinjs.org
SewerAI www.sewerai.com
Bosch IoT Suite www.bosch-iot-suite.com
Oracle IoT Production

Monitoring Cloud
www.docs.oracle.com/en/cloud/saas/iot-production-cloud

OpenSpace Group Ltd www.open-space.io
Process Genius Oy www.processgenius.fi
Blackshark www.blackshark.ai

So, we learned that despite many DT tools being
available on the market, practitioners still use the con-
ventional programming languages (e.g., Python and
Java) to develop their DTs in-house from scratch.
Practitioners also face with challenges on such con-
cerns as the system integration, security, performance,
data quality, organisation, environment, development
platform, and abstraction. Despite many commer-
cial and open-source DT tools, no any classification
framework is available for analysing and comparing
the DT tools. As discussed in Section 3, while the lit-
erature includes several analytical works about DTs,
none of them provide any lists of the existing DT
tools, any list of criteria for comparing the DT tools,
or any work that provide the comparison of the DT
tools for some specific requirements.

In this paper, we aim to propose a classification
framework which describes the important features
that need to be considered for developing and using
DT systems. We believe that our classification frame-
work will be useful for many stakeholders. Practi-
tioners can use the framework for analysing and com-
paring the DT tools with regard to their needs. Re-
searchers can identify the key features of any DT tools
and conduct relevant researches. Tool vendors can
identify the weakness and strengths of their DT tools.

Our classification framework is depicted in Fig-
ure 1, which consists of twelve different features.
These are (i) domain, (ii) knowledge management,

(iii) system integration, (iv) quality assurance, (v)
reusability, (vi) development platform, (vii) deploy-
ment, (viii) type, (ix) extensibility, (x) abstraction, (xi)
enabling technology and (xii) maturity, and each fea-
ture is further divided into a set of sub-features. In the
rest of the paper, we initially introduce our methodol-
ogy for identifying the DT tool features and discussed
similar works in the literature. Then, we discuss each
tool feature separately in terms of their sub-features.

In the rest of the paper, we initially discuss our
methodology for the DT domain analysis. Then, we
discuss the similar studies in the literature. Next, we
introduce our classification framework in terms of its
features and sub-features. Lastly, we discuss a case
study based on the analysis of a well-known DT tool
in terms of our classification framework.

2 DOMAIN ANALYSIS

To come up with a set of features for classifying DT
tools, we performed a comprehensive domain analy-
sis. To this end, we firstly used google scholar and
searched for the papers that discuss (i) the defini-
tions of DTs and their characteristics (Barricelli et al.,
2019; Singh et al., 2021; Mihai et al., 2022; Rasheed
et al., 2020; Jones et al., 2020; Tao et al., 2019; Hu
et al., 2021; Fuller et al., 2020), (ii) the enabling
DT technologies and any challenges in applying those
technologies (Michael et al., 2022; da Rocha et al.,
2022; Qi et al., 2021; Lv and Xie, 2022; TAO et al.,
2024; Newrzella et al., 2022; Shao and Helu, 2020),
(iii) the applications of DTs in different industries
(Ghaboura et al., 2023; Lin et al., 2022; Perno et al.,
2022; Biesinger et al., 2019; Purcell and Neubauer,
2023; Ali et al., 2023), and (iv) the analysis of DT
applications and technologies from different perspec-
tives (Gil et al., 2024; Liu et al., 2022; Alcaraz and
Lopez, 2022; Minerva et al., 2020; Wu et al., 2021;
Lo et al., 2021). Having identified the relevant pa-
pers, we went through each paper and identified any
attributes that are discussed in the paper and can be
considered as the DT tool features. A DT tool fea-
ture here can either be a commonly considered func-
tionality by the DT users, a crucial quality concern
for DT tools, a technique or technology needed for
developing DT tools, or some other requirement for
the effective use of the DT tools. All identified at-
tributes that represent the candidates for being the DT
tool features have been stored on an Excel file. We
created a separate sheet for each feature in the Ex-
cel file. We analysed each feature for determining the
sub-features that represent the main concern(s) about
that feature. To this end, we searched the literature

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

264



Figure 1: The taxonomy for DT tools.

and identified any well-cited papers that discuss the
feature-related techniques, approaches, and concerns.
By doing so, we were able to determine a set of sub-
features for each feature and stored those sub-features
in the relevant sheets of the Excel file.

After identifying the DT tool features by means
of the analysis of the relevant papers, we further used
the results of our recent industry survey2 for under-
standing practitioners’ perspectives on the DT tech-
nologies. The results of our survey lead to many in-
teresting findings about the practitioners’ (i) adoption
of DT technologies, (ii) motivations for using and de-
veloping DTs, (iii) development experiences on DTs,
and (iv) their challenges from diverse perspectives.
The survey results revealed many interesting features
that practitioners are concerned with but was not so
explicit in our literature analysis (e.g., the reusability
and abstraction). So, we further extended the Excel
file with the newly identified features for the DT tools.

After documenting the features, we performed a
pilot study with one academic and two practitioners
who have considerable experiences on DTs. The aca-
demic and two practitioners have been provided with
the Excel file that includes the extracted features from
the papers and requested to provide a review based on
their knowledge and experience on DT systems. By
doing so, we were able to remove any redundancies
and inconsistencies, and add any missing features. So,
we ended up with a taxonomy of the DT tool features

that is depicted in Figure 1. Our taxonomy consists
of twelve different features each of which is decom-
posed into a cohesive set of sub-features.

3 RELATED WORK

The literature includes several papers that discuss DTs
from different perspectives, which includes the (i)
characterisations of DTs (e.g., (Barricelli et al., 2019;
VanDerHorn and Mahadevan, 2021; Jones et al.,
2020; Liu et al., 2021)), (ii) applications of DTs in
different domains (e.g., (Cimino et al., 2019) for man-
ufacturing, (Sun et al., 2023) for healthcare, (Ver-
douw et al., 2021) for farming, and (Opoku et al.,
2021) for construction), (iii) challenges that can be
faced with when using and developing DTs (Verdouw
et al., 2021), (iv) the analysis of DTs from particular
aspects (e.g., simulation (Boschert and Rosen, 2016),
fault monitoring (Bofill et al., 2023), and maintenance
(Errandonea et al., 2020)), and (v) case studies for di-
verse problems (e.g., (Mendi, 2022; Lu et al., 2020;
Peng et al., 2020)).

The classification frameworks in the literature fo-
cus on, e.g., software evolution (Mens et al., 2003),
architecture description languages (Medvidovic and
Taylor, 2000), problem solving techniques in par-
ticular domains (e.g., the taxonomy for schedul-
ing algorithms for wireless mesh networks (Gabale

Towards a Classification Framework for the Digital Twin Tools: A Taxonomy

265



et al., 2013)), component-based software engineering
(Crnkovic et al., 2011), software connectors (Mehta
et al., 2000) and software change impact (Lehn-
ert, 2011). The literature also includes classification
framework studies about the software tools, such as
the classifications of software testing tools (Graham,
1991), static code analysis tools (Novak et al., 2010),
software fault monitoring tools (Delgado et al., 2004),
model transformation tools (Kahani et al., 2019), and
manufacturing scheduling tools (Dios and Framinan,
2016). However, no any effort has been made for clas-
sifying the DT tools. While some generic classifica-
tion frameworks have been proposed for classifying
software tools in general such as (Firth et al., 2018),
those studies may not be so helpful due to lacking
support for the DT context.

4 DT TOOL FEATURES

In this section, we discuss each DT tool feature that is
depicted in Figure 1 in terms of its sub-features.

4.1 Domain

As indicated in our survey results2, DTs are used in
many industries for solving diverse problems. There-
fore, we consider the domain as an important fac-
tor for classifying the DT tools. The domain fea-
ture here is concerned with the problem domain for
which any DT tool is developed and used, and con-
sists of two sub-features - i.e., industry and domain-
specificity. While the industry sub-feature represents
the industry(ies) that a DT tool can support (e.g., man-
ufacturing, defense, and automotive), the domain-
specificity sub-feature represents the specific prob-
lem(s) that is(are) addressed in a particular industry.
For instance, (Fahim et al., 2022) shows the use of
predictive modeling in wind turbines, (Peker and Ak-
dur, 2019) shows the real-time simulation for signal
processing in the defense industry, and (Hodavand
et al., 2023) shows the fault detection and diagnosis
for the smart buildings in the construction industry.

4.2 Knowledge Management

Knowledge management for any system is to do with
managing the information and resources, which in-
cludes collecting, analysing information and trans-
forming them into knowledge that can be stored,
shared, and evolved (Despres and Chauvel, 1999).
Knowledge management for a DT tool consists of
several sub-features, which are (i) forum, (ii) mailing
list, (iii) video, (iv) tutorial, (v) certification, (vi) white

paper, (vii) case study, and (viii) user guide. Forum
represents an online discussion platform for the DT
tool users to ask questions and get useful responses
from tool experts. Mailing list represents a collection
of e-mails that belong to the subscribed users for a
DT tool, and the DT tool vendor can send broadcast
e-mails for notifying the users about tool-related news
(e.g., version updates). Video represents any visual
presentations that introduce either the features of any
DT tool, usage patterns, user guide, or case-studies
which can be useful for the DT tool users. Tuto-
rial represents any visual presentation or textual doc-
ument that can teach users how to use the DT tool in
a series of stages. Certification represents the confir-
mation that can be granted by the tool vendors or any
contracted organisation for any DT tool user so as to
prove their abilities on the DT tool. White paper rep-
resents any report that discusses an innovation, issue
or technique about a DT tool from a scientific point
of view. Case study represents any document that dis-
cusses the evaluation of a DT tool on a particular case
or real-problem. User guide represents a document
that describes how to use a DT tool and its features.

4.3 Deployment

Deployment is concerned with the making a DT tool
available for the users so that users can use the DT
tool and perform their goals. Here, we consider two
deployment options (i.e., the sub-features), which are
cloud-based license and on-premise license. Cloud-
based license is based on the subscription method
where the users of a DT tool choose any package and
pay its price on a monthly or yearly basis so as to rent
the DT tool which is operated on cloud. On-premise
license prompts a DT tool software to be installed on
the local servers of customers through which users
can access the DT tool.

4.4 Type

Type for a DT tool is concerned with the functional-
ities that can be performed with the DT tool. There-
fore, types can be distinguished with their operations
on the DT model that represent the abstraction(s) over
the physical system. We consider five types of DTs,
which are visualisation DTs, prediction DTs, simu-
lation DTs, maintenance DTs, and DTs for interop-
erability (Liu et al., 2021; Piroumian, 2021). Note
that any DT tool may be of multiple types at the
same time. A visualisation DT focuses on visualis-
ing any model of the physical system in various nota-
tions (e.g., physical, mathematical, logical) which can
be updated dynamically with the data collected from

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

266



the physical system. A prediction DT uses AI tech-
niques (e.g., machine learning, deep learning, deci-
sion trees) and makes useful predictions on the mod-
els that represent abstractions over the physical sys-
tem. A simulation DT focuses on executing the mod-
els of the physical system and checking if certain sce-
narios are satisfied or not. A maintenance DT fo-
cuses on analysing the models of the physical sys-
tems for some quality properties so as to predict any
future failures and thus planing and scheduling the
system maintenance. A DT for interoperability fo-
cuses on managing the communication and coordi-
nation among a set of physical devices (e.g., sensors
and actuators) and the physical system in a way that
certain standards (e.g., security protocols, simulation
standards, communication protocols) are followed.

4.5 System Integration

System integration is concerned with the support for
developing a DT by means of integrating several het-
erogenous systems in a way that those systems can in-
teract and exchange data without any problems (Perno
et al., 2022). We consider here the system integration
in terms of the support for (i) integration, (ii) inter-
operability, and (iii) compatibility. Integration is con-
cerned with the support for (i) integrating with exter-
nal systems that can provide useful services and (ii)
developing DTs in terms of the composition of exist-
ing systems. Interoperability is concerned with the
support for enabling the heterogenous systems (e.g.,
sensors and actuators) to exchange data with a DT.
Compatibility is concerned with the support for in-
tegrating heterogenous systems that run on different
platforms and adopt different protocols of interac-
tions.

4.6 Quality Assurance

Quality assurance is concerned with the support for
checking the quality of a DT system that is developed
or used via a DT tool. Here, we consider 3 main qual-
ity properties that are important for the development
of high-quality DTs (Perno et al., 2022). These are (i)
security, (ii) data quality, and (iii) performance. Secu-
rity is concerned with the support for minimising any
security threats for the physical and software compo-
sitions of DTs that can cause issues in terms of the
availability, integrity and confidentiality of system re-
sources (i.e., data and services) (Alcaraz and Lopez,
2022). Data quality is concerned with the support for
accessing the right data from the right data sources
in a way that meets the system quality requirements.
Performance is concerned with the support for the ef-

ficient use of software and hardware resources so that
system data can be exchanged between the physical
and software systems with minimum latency.

4.7 Reusability

In our survey2, reusability (Prieto-Diaz, 1993) has
been observed as one of the top crucial challenges
for the practitioners who develop DTs. Reusability
is concerned with reducing the cost of designing, de-
veloping and operating DT systems and maximising
the quality by means of reusing the tested and proven
solutions and any existing applications. Here, we con-
sider 4 sub-features, which are design reuse, develop-
ment reuse, simulation reuse, and application reuse.
The design reuse sub-feature is concerned with the
support for the reusable design of DT systems and
thus making quality design decisions with the least
cost possible by means of, e.g., design patterns, ar-
chitecture styles, design languages, etc. The develop-
ment reuse sub-feature is concerned with the support
for the re-usable implementation of DT systems by
means of, e.g., programming frameworks, APIs, etc.
The simulation reuse sub-feature is concerned with
the support for the re-usable specifications of simu-
lation models that can be executed for the real-time
simulation by means of, e.g., model libraries, simula-
tion modeling languages, etc. The application reuse
sub-feature is concerned with the support for re-using
external applications (e.g., COTS) by means of soft-
ware connectors (or adaptors) that handle the adapta-
tion of external systems to the DT systems.

4.8 Development Platform

Some DT tools may provide a development platform
which provides interesting facilities for users and im-
proves the DT development processes by maximising
users’ productiviness and effectiveness. As indicated
in our survey2, practitioners use different DT devel-
opment platforms for diverse problem domains and
indeed face with challenges. Given our analysis of
our survey results, we consider here six different sub-
features for the development platforms, which are (i)
web access, (ii) no-code (or low-code) development
editor, (iii) versioning, (iv) multi-user collaboration,
(v) exporting, and (vi) code analysis. Web access en-
ables users to use the DT development platform over
internet without having to download and install any
tools. No-code (or low-code) development editors
provide graphical editors and enable users to specify
high-level visual models for the DT systems and gen-
erate fully (or partially) executable code. Versioning
enables managing the versions of the DT development

Towards a Classification Framework for the Digital Twin Tools: A Taxonomy

267



artifacts (e.g., code) and performing such operations
as comparing, merging, and accessing previous ver-
sions. Multi-user collaboration enables multiple users
to work together on the development of the same DT
system and perform the design and coding activities
at the same time in a synchronised way. Automated
code analysis enables the users to check their DT de-
velopment code automatically and detect any bugs or
quality issues.

4.9 Extensibility

Extensibility is concerned with the ability of extend-
ing the software tools (e.g., adding new functionali-
ties or quality attributes) without breaking their core
architectures and violating the principal design deci-
sions (Kazman et al., 2022). DT tools are expected to
be extensible since the desired requirements can al-
ways change and the DT tools need to be adapted.
Otherwise, any changes lead to unmanageable costs
and cause the DT tools to be discontinued being used.
As revealed in our survey results2, many practition-
ers prefer to use conventional programming technolo-
gies (e.g., Python and Java) in developing DTs in
house despite many DT development platforms that
are available on the market.

We consider the DT tool extensibility in terms of
(i) white-box extensibility, (ii) glass-box extensibil-
ity, and (iii) black-box extensibility (Zenger, 2004).
White-box extensibility enables the DT source-code
to be changed by the users directly such as the open-
source software projects. Glass-box extensibility en-
ables the source-code to be accessed as read-only and
any extensions are performed on a separate copy of
the source-code from the original version. The inher-
itance and dynamic binding mechanisms of object-
oriented programming are the common examples of
glass-box extensibility. Black-box extensibility en-
ables users to extend a DT by means of interfaces that
abstract users from reaching the DT source-code and
prompt any extensions to be performed under certain
rules and constraints using such techniques as APIs,
plug-in development tools, model-driven engineering
tools.

4.10 Abstraction

Abstraction promotes the management of complexity
and solving complex problems by (i) suppressing ir-
relevant details and focusing on important aspects and
(ii) generalising the problems by separating the com-
mon parts from the varying parts (Kramer, 2007). As
DTs are considered as complex systems, abstraction
is a key skill and needs to be adopted throughout he

DT development processes. We consider here the fol-
lowing abstraction techniques that can be supported
by the DT tools, which are (i) model-driven engi-
neering, (ii) software product-line engineering, (iii)
modeling language, (iv) meta-modeling, (v) object-
oriented programming. Model-driven engineering
(MDE) (Schmidt, 2006) promotes the specifications
of high-level, abstract models of any DTs from differ-
ent viewpoints, the automated transformation of ab-
stract DT models into useful artifacts such as simula-
tor code, programming code, or any useful documen-
tation . Software product-line engineering (SPLE)
(Metzger and Pohl, 2014) promotes the development
of similar products (e.g., similar DTs for a particular
domain) using the minimum time and budget by sep-
arating commonalities of similar products from their
variations. SPLE can be applied in different stages
of the DT development including the analysis, design
and implementation, and maximises the reusable de-
velopment of DTs that derive from the same prod-
uct family which possess common and varied fea-
tures. Meta-modeling (Ozkaya and Akdur, 2021).
promotes the definition of DT modeling languages in
terms of abstract and concrete notation sets through
which DT models can be specified (e.g., (Ozkaya,
2024)). Lastly, object-oriented programming (OOP)
promotes the notion of classes that is the unit of ab-
straction which consists of a common set of methods
and attributes and can be specialised using the inheri-
tance mechanism (Stroustrup, 1987).

4.11 Enabling Technology

As aforementioned, DTs are complex systems that re-
quire the interactions of physical and software sys-
tems and perform complex operations including the
real-time data analysis, modeling and simulation,
visualisation, intelligent decision making, and AI-
supported diagnosis and prediction. As revealed
with our survey2, practitioners prefer several differ-
ent technologies for developing DTs. We consider
here the enabling technologies for DTs in terms of
five main features that represent the distinct categories
of the DT technologies which have been proposed by
Qi et al. (Qi et al., 2021). These are (i) cognising
and controlling the physical world, (ii) modeling, (iii)
data management, (iv) application services, and (v)
connection. The feature for cognising and controlling
the physical world is concerned with any technolo-
gies that enable gathering data from different phys-
ical devices (e.g., sensors and camera), transforming
data into knowledge, and controlling physical systems
using the transformed knowledge. Modeling is con-
cerned with any technologies that enable the model-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

268



ing of a product that is monitored by a DT in terms
of different viewpoints including the 3D geometric
modeling of the product shapes, structural modeling
(e.g., the physical and logical structures), behaviour
and interaction modeling, and rule modeling. Data
management is concerned with any technologies that
enable the data management activities which are the
data collection, data transmission, data storage, data
processing, data fusion, and data visualisation. Ap-
plication services are concerned with the technologies
that enable monitoring, simulation, diagnosis and pre-
diction. Connection is concerned with any technolo-
gies that enable the communication, coordination and
complex interactions for the physical and virtual sys-
tems that compose DTs such as the technologies for
the secure data communications, human-computer in-
teraction, and standard communication interfaces.

4.12 Maturity

DT tools can vary depending on their level of matu-
rity which is concerned with the tool vendors’ support
for the tool evolution so as to promote the continu-
ous improvement of their tools with regard to chang-
ing technologies, user demands, rules and regulations
(Becker et al., 2009). We consider the DT tool ma-
turity in terms of five key sub-features, which are the
(i) version history (ii) first release year, (iii) live sup-
port, (iv) technical support, and (v) company founda-
tion year. Version history is concerned with the num-
ber of tool versions that have been released so far and
any details about the versions such as the version re-
lease dates, the changes that are included in each ver-
sion, and any errors corrected. The first release year is
concerned with the date on which the first, initial ver-
sion of the DT tool has been released. The technical
support team is concerned with such facilities as live
chat, e-mail service, and help desk through which the
tool users can be supported in resolving any technical
issues that they face with while using the DT tools.
Lastly, company foundation year represents how long
the company has been working on the relevant ares
and their level of experience.

5 CASE STUDY

In this section, we demonstrate the use of our classi-
fication framework that is discussed in Section 4 for
AutoDesk Tandem3, which is one of the most well-
known development platforms for developing DTs.
To collect data about each feature and their sub-

3AutoDesk Tandem: https://intandem.autodesk.com

features for our classification framework, we used
AutoDesk Tandem’s free version and searched over
their comprehensive web-site.

Concerning the domain feature, AutoDesk Tan-
dem is specific for the buildings domain and promotes
for smarter buildings. AutoDesk Tandem is used by
the architecture, engineering, construction, and oper-
ations industry.

Concerning the knowledge management, Au-
toDesk Tandem supports community forums for the
users to share their ideas with each other. AutoDesk
Tandem provides several e-learning resources such as
online courses and tutorials, which can be categorised
depending on the DT software, industry and users’ job
positions. Moreover, AutoDesk Tandem provides cer-
tifications for the students and practitioners to prove
their skills on the use of AutoDesk Tandem for the
DT development. AutoDesk Tandem provides a com-
prehensive blog page through which several white pa-
pers and case studies have been published. Lastly,
AutoDesk provides several user guide documents for
different aspects of the DT development platform.

Concerning the deployment, AutoDesk Tandem
can only be used over a cloud platform and it is not
possible to install the DT development software on a
local machine.

Concerning the type, AutoDesk Tandem provides
a visualisation support for the 3D graphics modeling
of the buildings and simulation support for analysing
the building performance.

Concerning the system integration, AutoDesk
Tandem provides several facilities for managing the
integration, interoperability, and compatibility issues.
These facilities include streams, services, connectors,
converters, data mappers, filters, channels and gate-
ways, which can be used over a no-code development
platform without having to write any code.

Concerning the quality assurance, AutoDesk Tan-
dem provides an authentication API for the DT secu-
rity. AutoDesk Tandem provides a data dashboard for
managing the data quality such as checking the data
correctness and completeness for different elements
of the buildings. However, we could not reach any
resources for improving the performance of DT sys-
tems.

Concerning the reusability, AutoDesk Tandem
provides development reusability via the API libraries
and application reusability via the integration facili-
ties (e.g., plugins, connectors, etc.).

Concerning the development platform, AutoDesk
Tandem provides a web application for developing
and using DTs. No-code/low-code development plat-
forms are provided for the system integration facili-
ties. The past data used by DTs can be stored and

Towards a Classification Framework for the Digital Twin Tools: A Taxonomy

269



accessed at any time, which can further be used for
reverting any changes on the DT systems. AutoDesk
Tandem enables multi-users to collaborate while de-
veloping and using DT systems. No any code analysis
support is provided.

Concerning the extensibility, AutoDesk Tandem
supports the black-box extensibility via their APIs
and plugin tools.

Concerning the abstraction, AutoDesk Tandem
supports model-driven engineering only. That is, 3D
building models can be specified, executed for sim-
ulation purposes and managed in terms of different
viewpoints.

Concerning the enabling technologies, AutoDesk
Tandem supports cognising and controlling the physi-
cal world thanks to its APIs and system integration fa-
cilities. AutoDesk Tandem also supports the 3D mod-
eling of buildings, management of data via its data
dashboard features, application services (i.e., moni-
toring, simulation and diagnosis), and the connection
technologies.

Concerning the maturity, AutoDesk Tandem’s first
release has been announced on July 12, 2021 and sev-
eral releases have been published so far. AutoDesk
Tandem does not provide any live support. Technical
support is provided via the customer representatives
upon request. Lastly, the the AutoDesk company has
been founded in 1982.

6 CONCLUSION

Many DT tools are available on the market, which can
be used by the practitioners to obtain DT solutions
for their business problems. DT tools can either offer
a DT development platform (e.g., APIs, frameworks,
and libraries), any DT products that can be rented for
solving specific problems, or an open-source environ-
ment for extending an existing DT tool. Despite many
DT tools existing, practitioners develop their DTs in-
house using the conventional programming technolo-
gies. We believe that an important reason here is that
no any classification framework for comparing the DT
tools have been proposed so far. Therefore, it is not
easy for the practitioners to determine the DT tools
available on the market, compare the tools among
each other, and choose the DT tool(s) that best fit their
requirements.

In this paper, we aimed to propose a classification
framework for the DT tools. To this end, we firstly
analysed the DT literature and further conducted a
practitioner survey among 131 practitioners from di-
verse industries. Performing a pilot study on our anal-
ysis results on the DT domain, we proposed a tax-

onomy which consists of twelve different features.
These are knowledge management, domain, deploy-
ment, system integration, type, extensibility, quality
assurance, abstraction, reusability, enabling technol-
ogy, development platform, and maturity. Each fea-
ture is further decomposed into a set of sub-features.
Moreover, we demonstrated our classification frame-
work using one of the most well-known DT develop-
ment platforms called AutoDesk Tandem.

We are currently working on validating our clas-
sification framework with some well-known DT tools
besides AutoDesk Tandem. We will further conduct
a survey and interviews among the practitioners who
work for the defense industry and frequently use and
develop DTs so as to validate our classification frame-
work. Besides, we will analyse 80 different DT tools
with regard to the features of our classification frame-
work. By doing so, we aim to provide a really useful
guide that can be used by the practitioners for identi-
fying the existing DT tools, analysing the features of
interest, and choosing the DT tool(s) that best meet
their needs.

REFERENCES

Alcaraz, C. and Lopez, J. (2022). Digital twin: A compre-
hensive survey of security threats. IEEE Communica-
tions Surveys & Tutorials, 24(3):1475–1503.

Ali, W. A., Fanti, M. P., Roccotelli, M., and Ranieri,
L. (2023). A review of digital twin technology for
electric and autonomous vehicles. Applied Sciences,
13(10).

Barricelli, B. R., Casiraghi, E., and Fogli, D. (2019). A
survey on digital twin: Definitions, characteristics,
applications, and design implications. IEEE Access,
7:167653–167671.

Becker, J., Knackstedt, R., and Pöppelbuß, J. (2009). Devel-
oping maturity models for it management. Business &
Information Systems Engineering, 1(3):213–222.

Biesinger, F., Kraß, B., and Weyrich, M. (2019). A survey
on the necessity for a digital twin of production in the
automotive industry. In 2019 23rd International Con-
ference on Mechatronics Technology (ICMT), pages
1–8.

Bofill, J., Abisado, M., Villaverde, J., and Sampedro, G. A.
(2023). Exploring digital twin-based fault monitoring:
Challenges and opportunities. Sensors, 23(16).

Boschert, S. and Rosen, R. (2016). Digital Twin—The Sim-
ulation Aspect, pages 59–74. Springer International
Publishing, Cham.

Cimino, C., Negri, E., and Fumagalli, L. (2019). Review of
digital twin applications in manufacturing. Computers
in Industry, 113:103130.

Crnkovic, I., Sentilles, S., Vulgarakis, A., and Chaudron,
M. R. (2011). A classification framework for software

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

270



component models. IEEE Transactions on Software
Engineering, 37(5):593–615.

da Rocha, H., Pereira, J., Abrishambaf, R., and Espir-
ito Santo, A. (2022). An interoperable digital twin
with the ieee 1451 standards. Sensors, 22(19).

Delgado, N., Gates, A., and Roach, S. (2004). A taxon-
omy and catalog of runtime software-fault monitoring
tools. IEEE Transactions on Software Engineering,
30(12):859–872.

Despres, C. and Chauvel, D. (1999). Knowledge man-
agement(s). Journal of Knowledge Management,
3(2):110–123.

Dios, M. and Framinan, J. M. (2016). A review and classi-
fication of computer-based manufacturing scheduling
tools. Computers & Industrial Engineering, 99:229–
249.

Errandonea, I., Beltrán, S., and Arrizabalaga, S. (2020).
Digital twin for maintenance: A literature review.
Computers in Industry, 123:103316.

Fahim, M., Sharma, V., Cao, T. V., Canberk, B., and Duong,
T. Q. (2022). Machine learning-based digital twin for
predictive modeling in wind turbines. IEEE Access,
10:14184–14194.

Firth, R., Mosley, V., Pethia, R. D., Gold, L. R., and Wood,
W. (2018). A Guide to the Classification and Assess-
ment of Software Engineering Tools.

Fuller, A., Fan, Z., Day, C., and Barlow, C. (2020). Digi-
tal twin: Enabling technologies, challenges and open
research. IEEE Access, 8:108952–108971.

Gabale, V., Raman, B., Dutta, P., and Kalyanraman, S.
(2013). A classification framework for scheduling al-
gorithms in wireless mesh networks. IEEE Communi-
cations Surveys & Tutorials, 15(1):199–222.

Ghaboura, S., Ferdousi, R., Laamarti, F., Yang, C., and Sad-
dik, A. E. (2023). Digital twin for railway: A compre-
hensive survey. IEEE Access, 11:120237–120257.

Gil, S., Mikkelsen, P. H., Gomes, C., and Larsen, P. G.
(2024). Survey on open-source digital twin frame-
works–a case study approach. Software: Practice and
Experience, 54(6):929–960.

Graham, D. R. (1991). Software testing tools: A new clas-
sification scheme. Software Testing, Verification and
Reliability, 1(3):17–34.

Hodavand, F., Ramaji, I. J., and Sadeghi, N. (2023). Dig-
ital twin for fault detection and diagnosis of building
operations: A systematic review. Buildings, 13(6).

Hu, W., Zhang, T., Deng, X., Liu, Z., and Tan, J. (2021).
Digital twin: a state-of-the-art review of its enabling
technologies, applications and challenges. Journal
of Intelligent Manufacturing and Special Equipment,
2(1):1–34.

Jones, D., Snider, C., Nassehi, A., Yon, J., and Hicks, B.
(2020). Characterising the digital twin: A systematic
literature review. CIRP Journal of Manufacturing Sci-
ence and Technology, 29:36–52.

Kahani, N., Bagherzadeh, M., Cordy, J. R., Dingel, J., and
Varró, D. (2019). Survey and classification of model
transformation tools. Software & Systems Modeling,
18(4):2361–2397.

Kazman, R., Echeverrı́a, S., and Ivers, J. (2022). Extensi-
bility. Technical Report CMU/SEI-2022-TR-002. Ac-
cessed: 2024-Oct-30.

Kramer, J. (2007). Is abstraction the key to computing?
Commun. ACM, 50(4):36–42.

Lehnert, S. (2011). A taxonomy for software change im-
pact analysis. In Proceedings of the 12th International
Workshop on Principles of Software Evolution and the
7th Annual ERCIM Workshop on Software Evolution,
IWPSE-EVOL ’11, page 41–50, New York, NY, USA.
Association for Computing Machinery.

Lin, Y., Chen, L., Ali, A., Nugent, C., Ian, C., Li, R., Gao,
D., Wang, H., Wang, Y., and Ning, H. (2022). Human
digital twin: A survey.

Liu, M., Fang, S., Dong, H., and Xu, C. (2021). Review of
digital twin about concepts, technologies, and indus-
trial applications. Journal of Manufacturing Systems,
58:346–361. Digital Twin towards Smart Manufactur-
ing and Industry 4.0.

Liu, Y. K., Ong, S. K., and Nee, A. Y. C. (2022). State-of-
the-art survey on digital twin implementations. Ad-
vances in Manufacturing, 10(1):1–23.

Lo, C., Chen, C., and Zhong, R. Y. (2021). A review of digi-
tal twin in product design and development. Advanced
Engineering Informatics, 48:101297.

Lu, Q., Parlikad, A. K., Woodall, P., Ranasinghe, G. D.,
Xie, X., Liang, Z., Konstantinou, E., Heaton, J., and
Schooling, J. (2020). Developing a digital twin at
building and city levels: Case study of west cam-
bridge campus. Journal of Management in Engineer-
ing, 36(3):05020004.

Lv, Z. and Xie, S. (2022). Artificial intelligence in the dig-
ital twins: State of the art, challenges, and future re-
search topics [version 2; peer review: 2 approved].
Digital Twin, 1(12).

Medvidovic, N. and Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. IEEE Trans. Software Eng.,
26(1):70–93.

Mehta, N. R., Medvidovic, N., and Phadke, S. (2000). To-
wards a taxonomy of software connectors. In Pro-
ceedings of the 22nd International Conference on
Software Engineering, ICSE ’00, page 178–187, New
York, NY, USA. Association for Computing Machin-
ery.

Mendi, A. F. (2022). A digital twin case study on automo-
tive production line. Sensors, 22(18).

Mens, T., Buckley, J., Zenger, M., and Rashid, A. (2003).
Towards a taxonomy of software evolution.

Metzger, A. and Pohl, K. (2014). Software product line en-
gineering and variability management: achievements
and challenges. In Herbsleb, J. D. and Dwyer, M. B.,
editors, Proceedings of the on Future of Software En-
gineering, FOSE 2014, Hyderabad, India, May 31 -
June 7, 2014, pages 70–84. ACM.

Michael, J., Pfeiffer, J., Rumpe, B., and Wortmann,
A. (2022). Integration challenges for digital twin
systems-of-systems. In Proceedings of the 10th
IEEE/ACM International Workshop on Software Engi-
neering for Systems-of-Systems and Software Ecosys-

Towards a Classification Framework for the Digital Twin Tools: A Taxonomy

271



tems, SESoS ’22, page 9–12, New York, NY, USA.
Association for Computing Machinery.

Mihai, S., Yaqoob, M., Hung, D. V., Davis, W., Towakel,
P., Raza, M., Karamanoglu, M., Barn, B., Shetve, D.,
Prasad, R. V., Venkataraman, H., Trestian, R., and
Nguyen, H. X. (2022). Digital twins: A survey on
enabling technologies, challenges, trends and future
prospects. IEEE Communications Surveys & Tutori-
als, 24(4):2255–2291.

Minerva, R., Lee, G. M., and Crespi, N. (2020). Digital
twin in the iot context: A survey on technical features,
scenarios, and architectural models. Proceedings of
the IEEE, 108(10):1785–1824.

Newrzella, S. R., Franklin, D. W., and Haider, S. (2022).
Three-dimension digital twin reference architecture
model for functionality, dependability, and life cy-
cle development across industries. IEEE Access,
10:95390–95410.

Novak, J., Krajnc, A., and Žontar, R. (2010). Taxonomy of
static code analysis tools. In The 33rd International
Convention MIPRO, pages 418–422.

Opoku, D.-G. J., Perera, S., Osei-Kyei, R., and Rashidi, M.
(2021). Digital twin application in the construction
industry: A literature review. Journal of Building En-
gineering, 40:102726.

Ozkaya, M. (2024). Towards an architecture modeling lan-
guage for specifying digital twin architectures using
C4. In Fujita, H., Meana, H. M. P., and Hernandez-
Matamoros, A., editors, New Trends in Intelligent
Software Methodologies, Tools and Techniques - Pro-
ceedings of the 23rd International Conference on
New Trends in Intelligent Software Methodologies,
Tools and Techniques (SoMeT 24), Cancun, Mexico,
September 24-26, 2024, volume 389 of Frontiers in
Artificial Intelligence and Applications, pages 151–
164. IOS Press.

Ozkaya, M. and Akdur, D. (2021). What do practitioners
expect from the meta-modeling tools? A survey. J.
Comput. Lang., 63:101030.

Peker, O. and Akdur, D. (2019). A method for elimination
of false iff target reports by using isls and rsls tech-
niques. In 2019 Signal Processing Symposium (SP-
Sympo), pages 315–318.

Peng, Y., Zhang, M., Yu, F., Xu, J., and Gao, S. (2020). Dig-
ital twin hospital buildings: An exemplary case study
through continuous lifecycle integration. Advances in
Civil Engineering, 2020(1):8846667.

Perno, M., Hvam, L., and Haug, A. (2022). Implementation
of digital twins in the process industry: A systematic
literature review of enablers and barriers. Computers
in Industry, 134:103558.

Piroumian, V. (2021). Digital twins: Universal interoper-
ability for the digital age. Computer, 54(1):61–69.

Prieto-Diaz, R. (1993). Status report: software reusability.
IEEE Software, 10(3):61–66.

Purcell, W. and Neubauer, T. (2023). Digital twins in agri-
culture: A state-of-the-art review. Smart Agricultural
Technology, 3:100094.

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang,
L., and Nee, A. (2021). Enabling technologies and

tools for digital twin. Journal of Manufacturing Sys-
tems, 58:3–21. Digital Twin towards Smart Manufac-
turing and Industry 4.0.

Rasheed, A., San, O., and Kvamsdal, T. (2020). Digital
twin: Values, challenges and enablers from a model-
ing perspective. IEEE Access, 8:21980–22012.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25–31.

Shao, G. and Helu, M. (2020). Framework for a digital twin
in manufacturing: Scope and requirements. Manufac-
turing Letters, 24:105–107.

Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray,
N., and Devine, D. (2021). Digital twin: Origin to
future. Applied System Innovation, 4(2).

Singh, M., Srivastava, R., Fuenmayor, E., Kuts, V., Qiao,
Y., Murray, N., and Devine, D. (2022). Applications
of digital twin across industries: A review. Applied
Sciences, 12(11).

Stroustrup, B. (1987). What is “object-oriented program-
ming”? In Bézivin, J., Hullot, J.-M., Cointe, P., and
Lieberman, H., editors, ECOOP’ 87 European Con-
ference on Object-Oriented Programming, pages 51–
70, Berlin, Heidelberg. Springer Berlin Heidelberg.

Sun, T., He, X., and Li, Z. (2023). Digital twin in
healthcare: Recent updates and challenges. DIGITAL
HEALTH, 9:20552076221149651.

TAO, F., SUN, X., CHENG, J., ZHU, Y., LIU, W., WANG,
Y., XU, H., HU, T., LIU, X., LIU, T., SUN, Z., XU, J.,
BAO, J., XIANG, F., and JIN, X. (2024). maketwin:
A reference architecture for digital twin software plat-
form. Chinese Journal of Aeronautics, 37(1):1–18.

Tao, F., Zhang, H., Liu, A., and Nee, A. Y. C. (2019). Dig-
ital twin in industry: State-of-the-art. IEEE Transac-
tions on Industrial Informatics, 15(4):2405–2415.

VanDerHorn, E. and Mahadevan, S. (2021). Digital twin:
Generalization, characterization and implementation.
Decision Support Systems, 145:113524.

Verdouw, C., Tekinerdogan, B., Beulens, A., and Wolfert, S.
(2021). Digital twins in smart farming. Agricultural
Systems, 189:103046.

Wu, Y., Zhang, K., and Zhang, Y. (2021). Digital twin net-
works: A survey. IEEE Internet of Things Journal,
8(18):13789–13804.

Zenger, M. (2004). Programming language abstractions for
extensible software components. PhD thesis, EPFL,
Lausanne.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

272


