
Agent-Based Computational Geometry

Akbarbek Rakhmatullaev a, Shahruz Mannan b, Anirudh Potturi c and Munehiro Fukuda d

Division of Computing and Software Systems, University of Washington Bothell, U.S.A.
{akbarbek, mannans1, anii, mfukuda}@uw.edu

Keywords: Agent-Based Modeling, Data Streaming, Message Passing, Computational Geometry, Cluster Computing.

Abstract: Cluster computing can increase CPU and spatial scalability of computational geometry. While data-streaming
tools such as Apache Sedona (we simply call Sedona) lines up built-in GIS parallelization features, they require
a shift to their programming paradigm and thus a steep learning curve. In contrast, agent-based modeling is
frequently used in computational geometry as agent propagation and flocking simulate spatial problems. We
aim to identify if and in which GIS applications agent-based approach demonstrates its efficient paralleliz-
ability. This paper compares MASS, Sedona, and MPI, each representing agent-based, data-streaming, and
baseline message-passing approach to parallelizing four GIS programs. Our analysis finds that MASS demon-
strates its simple programmability and yields competitive parallel performance.

1 INTRODUCTION

Cluster computing gives more CPU and spatial scal-
ability to GIS parallelization. Actual implementa-
tions include SpatialHadoop (Eldawy and Mokbel,
2015) and Apache Sedona (Yu et al., 2019), many
of which maintain spatial data in distributed storage
such as Hadoop; process the data in batches with data-
streaming tools including Spark; and respond to an-
ticipated GIS queries through a front-end interface,
(e.g., HIVE). However, the nature of data streaming is
their major challenge: besides their unique program-
ming paradigm, they need to flatten, stream, shuffle,
and sort spatial data structures at every computational
stage, all resulting in substantial overheads.

In contrast to data streaming, we consider an
agent-based approach that maintains GIS data as a
multi-dimensional or graph structure over distributed
memory; dispatches agents as active data analyzers;
and solves spatial queries through collective group
behaviors among the agents, (e.g., agent propaga-
tion, swarming, and collision) over the data structure.
Our research motivation is to verify the efficiency of
the agent-based approach to computational geometry,
as compared to the conventional data-streaming ap-
proach. We believe that this research makes two con-
tributions to parallel computing in computational ge-

a https://orcid.org/0009-0005-3376-0684
b https://orcid.org/0009-0009-4628-5316
c https://orcid.org/0000-0002-9270-9628
d https://orcid.org/0000-0001-7285-2569

ometry: (1) a development of geometric benchmark
programs demonstrates that agent code is intuitive
and smoothly fits the idea of spatial cognition (Freksa
et al., 2019) and (2) agent-based approach is competi-
tive to data streaming in some geometric applications
that take advantage of agent flocking in a 2D space
or agent traversing over a tree, both performed over a
cluster system.

The rest of the paper is organized as follows: Sec-
tion 2 explores related work; Section 3 explains the
MASS (Multi-Agent Spatial Simulation) library; Sec-
tion 4 parallelizes GIS programs in agent-based, data-
streaming, and message passing approach; Section
5 compares their parallelization; and Section 6 con-
cludes our work.

2 RELATED WORK

Below we explore related work in data-streaming and
agent-based approach to GIS parallelization.

2.1 Challenges in Parallelizing
Geometric Problems

GEOS and CGAL are well-known C++ libraries
that implement computational-geometry algorithms
as built-in functions. Their native executions with
multithreading are the fastest but limited to a sin-
gle machine. The problem is that they are not so
worthwhile being parallelized over a cluster system

Rakhmatullaev, A., Mannan, S., Potturi, A. and Fukuda, M.
Agent-Based Computational Geometry.
DOI: 10.5220/0013240800003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 515-522
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

515

that only incurs more communication overheads than
their single-machine execution. JavaGeom and JTS
are Java versions of computational-geometry libraries
that intend to ease geometric computation. Due
to their interpretive execution, they do not outper-
form C++ libraries but show competitive processing
throughput if a dataset size is maximized to the under-
lying memory space. In general, sequential or multi-
threaded execution runs fastest but its spatial scalabil-
ity is restricted to a single machine’s memory space.

2.2 Data Streaming to CPU Cores

As data streaming keeps receiving great popularity
in big data, it is quite natural and convenient to in-
tegrate data-streaming tools into a GIS system for
scalable spatial analysis. A typical architecture mod-
ifies a Lambda service layer tool, (e.g., HIVE) for
a real-time GIS query interface, uses data-streaming
tools such as MapReduce and Spark for preparing an-
ticipated query responses, and maintains entire spa-
tial datasets in a backend database including Post-
GreSQL. For instance, SpatialHadoop interfaces to
users through Pigeon, a SQL-like language, which re-
lays their queries to MapReduce for geometric com-
putation (Eldawy and Mokbel, 2015). Sedona re-
ceives a spatial query through its Spatial SQL API
that chooses the corresponding geometric algorithm,
(e.g., range search, distance joining, and KNN) in the
Spatial Query Processing Layer. The selected algo-
rithm is then carried out though operations on Spatial
RDDs, an extension of Spark RDDs (Resilient Dis-
tributed Datasets) (Yu et al., 2019). For graph com-
puting, GraphX extends Spark RDDs to edge and ver-
tex RDDs, and supports Pregel’s graph API (Spark
GraphX, 2018)

In general, data streaming must disassemble GIS
files into texts and repeat series of data shuffle and
sort, as computational geometry is optimized in the
divide-and-conquer paradigm, which may slow down
geometric analysis.

2.3 Migrating Agents over GIS Data

We consider applying agent-based modeling (ABM)
to computational geometry. This idea is found in the
following three ABM libraries:

NetLogo approximates a 2D radical propaga-
tion of agents by repetitively cloning agents to von-
Neumann and Moore neighborhoods in an alterna-
tive fashion (Wilensky, 2013). Using this agent
propagation from each data point, NetLogo com-
poses a Voronoi diagram as collision lines between
agents. Repast Simphony (North et al., 2007) pop-

ulates agents on all the four boundary lines of a 2D
space and march them toward the center of the space.
This is a simulation of wrapping data points with an
elastic band, which forms the convex hull. GeoMA-
SON allows agents to migrate on geospatial compo-
nents such as line segments and polygons (Sullivan
et al., 2010). It also computes the shortest path on
a network of line segments and their intersections as
built-in functions.

Their biggest challenge is single-machine execu-
tion. Because of their difficulty in being extended to
cluster computing, they cannot support spatial scala-
bility nor parallelize file I/Os. This is our motivation
to apply MASS, a parallel ABM library to more ad-
vanced spatial problems.

3 COMPUTATIONAL MODEL

This section summarizes the MASS library’s compu-
tational model and introduces its extension to graph
and geometric computing.

3.1 MASS Library

MASS distinguishes two classes: Places and Agents.
The former is a multi-dimensional array distributed
over a cluster system. Each array element is called
“place” and is identified with a platform-independent
logical index. The latter is a collection of mobile ob-
jects, each called “agent”, capable of moving to a dif-
ferent place.

Listing 1 shows MASS code. The main() function
serves as a simulation scenario. MASS.init() launches
a multithreaded, TCP-communicating process at each
machine (line 3). Lines 4-6 create an x× y 2D Places
and populate Agents. Places has two parallel func-
tions: callAll() to invoke a given function, (e.g., up-
date func on line 7) at each place in parallel and ex-
changeAll() to have each place communicate with all
its neighbors, (e.g., diffuse func in line 8). Agents
has two parallel functions, too. One is callAll() that
schedules agent behavior with spawn(), kill(), and mi-
grate() (line 9). The other is manageAll() that com-
mits their scheduled behaviors (line 10). Finally,
MASS.finish() closes all MASS processes (line 11).

Listing 1: MASS abstract code.

1public class MassAppl {
2 public static void main(String args[]) {
3 MASS.init();
4 Places map = new Places("Map", args, x, y);
5 Agents crawlers
6 = new Agents("Crawlers", args, map);
7 map.callAll(update func, args);
8 map.exchangeAll(diffuse func);

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

516

9 crawlers.callAll(walk func, args);
10 crawlers.manageAll();
11 MASS.finish();
12} }

3.2 Agent Descriptions in Graph and
Geometric Problems

To facilitate GIS computation, MASS improved the
following five features: (1) GraphPlaces: a Places
sub-class that instantiates place objects as graph ver-
tices whose emanating edges are defined in the neigh-
bors list as one of their data members; (2) Binary-
TreePlaces: a special form of GraphPlaces to distin-
guish only left and right child vertices, which eases
KD-tree operations in range search; (3) SpacePlaces:
a 2D contiguous space, using QuadTreePlaces that re-
duces the number of place objects in memory as well
as mitigates unnecessary agent migration. The closet
pair of points, convex hull, and Voronoi problems use
this class; (4) SmartAgents: an Agents sub-class that
automates agent propagation over a GraphPlaces, a
BinaryTreePlaces, and a SpacePlaces instance, each
used in the breadth-first search, the range search, and
all the 2D geometric problems; and (5) GUI: an in-
terface to the JShell interpreter and the Cytoscape vi-
sualizer. These features make MASS competitive to
data-streaming tools in programmability and in exe-
cution performance.

4 PARALLELIZED
ALGORITHMS

Our expectation is two-fold: agents could identify
a given geometric shape faster if their flocking con-
verges to a small space, and they could quickly re-
spond to geometric queries if they use the same data
structure that stays in memory. From these view-
points, we have chosen the following four geomet-
ric problems for our comparative work: (1) convex
hull, (2) Euclidean shortest path, (3) largest empty cir-
cle, and (4) range search. Below we parallelize these
programs using MASS, Sedona, and MPI, each rep-
resenting agent-based, data-streaming, and conven-
tional message-passing approach.

4.1 Convex Hull (CVH)

4.1.1 Agent-Based Approach

MASS has agents swarm inward from the outer edges
of a given space until they encounter any data points,
which simulates wrapping all points with a rubber

band. The algorithm is coded in Listing 2. It popu-
lates agents on the four boundary edges of a size×size
space (lines 4-5), marches them until they hit a point
(lines 10-13), excludes unvisited points (lines 15), and
retrieves all data points on the final convex hull (lines
16-17). As some data points may be mistakenly de-
tected as vertices of the convex hull, they must be re-
moved by Andrew’s monotone chain algorithm.

Listing 2: Convex hull using MASS.

1public class CVH {
2 public static void main(String args[]) {
3 Places places = new Places("AreaGrid", size , size)

;
4 Agents agents = new Agents("RubberBandAgent",
5 places, size * 4);
6 agents.callAll(RubberBandAgent.
7 SET START POSITION);
8 agents.manageAll();
9 // March agents toward the center like a rubber

band
10 while (agents.nAgents() > 0) {
11 agents.callAll(RubberBandAgent.MOVE);
12 agents.manageAll();
13 }
14 // Remove inner points and collect those on the hull
15 places.callAll(AreaGrid.CLEAR INNER PLACES)

;
16 Object[] oResults
17 = places.callAll(AreaGrid.GET PTS, null);
18} }

4.1.2 Data-Streaming Approach

Sedona takes a divide-and-conquer approach that
spreads out all data points to partitions, creates a per-
partition convex hull, and aggregates together all the
partial hulls into the final convex hull. In order to
achieve this, we first create a spatialRDD and then
partition it using Sedona’s EQUALGRID type, as it
shows the best execution performance among other
grid types. Next, each partition creates a list of its
points, from which we create a multi-point object of
Sedona’s Geometry class. Then, we call Sedona’s
built-in convexHull() function on this multi-point ob-
ject to create a per-partition convex hull, where each
convex hull is stored as a singleton collection. Fi-
nally, we aggregate all partial hulls into a table and
apply Sedona’s SQL functions ST ConvexHull and
ST Union Aggr to produce the final hull, a single-row
dataset representing the complete convex hull.

4.1.3 Message-Passing Approach

MPI needs to sort input data, based on the x coordi-
nate. Then, it partitions the data and distributes the
subsets to each rank. Thereafter, the monotone chain
algorithm is used to compute the convex-hull points at
each rank. The algorithm constructs the upper and the

Agent-Based Computational Geometry

517

lower hull separately, followed by combining them
into a complete hull.

After creating a partial hull on every rank,
MPI Send() and MPI Recv() are called between two
neighboring ranks to merge their partial hulls into a
larger hull. A typical O(N) merging algorithm is used
to find the upper/lower tangent lines connecting two
hulls and to remove the points between them. This
merging step is repeated until all hulls are combined
into the final convex hull at rank 0.

4.2 Euclidean Shortest Path (ESP)

4.2.1 Agent-Based Approach

Starting from a source, agents repeat bouncing obsta-
cles or terminating themselves if others have visited
the current grid, which eventually carries the fastest
agent to a given destination. Listing 3 initializes a
2D space with obstacles (line 4), positions a Rover
agent at a source point (lines 5-8), and then falls into
an agent propagation loop (lines 9-19) until an agent
reached the goal (line 9). Each iteration clones agents
if they are the first visitor on the current grid that is
not yet the destination (lines 13-16); moves all the
cloned agents to non-blocking neighbors (lines 17-
18); marks each grid with the first agent’s footprint
(line 10); and kills all slower agents (lines 11-12).

Listing 3: Euclidean shortest path using MASS.

1public class ESP {
2 public static void main(String args[]) {
3 Places places = new Places("Cell", sizeX, sizeY);
4 places.callAll(Cell.init , dataset);
5 Agents agents = new Agents("Rover", places, 1);
6 agents.callAll(Rover.starting point,
7 (new int[]{starting x, starting y}));
8 agents.manageAll();
9 while (!foundTarget && agents.nAgents() > 0) {

10 places.callAll(Cell.update);
11 agents.callAll(Rover.update termination);
12 agents.manageAll();
13 Object target = agents.callAll(Rover.clone,
14 new Object[agents.nAgents()]);
15 agents.manageAll();
16 if (target) break;
17 agents.callAll(Rover.migrate all);
18 agents.manageAll()
19} } }

4.2.2 Data-Streaming Approach

Sedona first includes the starting and ending points as
well as all obstacle corner points in a dataset, from
which we generate a visibility graph by forming a
Cartesian product of all points to get potential edges.
Each edge is then checked to see if it intersects any
obstacles; if not, it is considered visible between the

points and added to a list for later distance calcula-
tions. With all visible vertex combinations identified,
we apply Dijkstra’s algorithm to compute the shortest
path from the start to the endpoint.

4.2.3 Message-Passing Approach

MPI constructs a visibility graph and applies Dijk-
stra’s algorithm on it as Sedona does. Input points are
partitioned to all MPI ranks where a per-rank visibil-
ity graph is created from the subset. The simplest but
greedy approach compares every pair of points from
each subset for checking if it is a visibility edge. Once
a per-rank visibility graph is constructed, the informa-
tion is saved as a Hash-Map at each rank, where the
key is a vertex, and the value is a list of the vertices
which can create a visibility edge with this specific
vertex. Thereafter, all the partial visibility graphs are
sent back to rank 0 and combined into a complete vis-
ibility graph of all the data points. Lastly, Dijkstra’s
algorithm is used for finding the shortest path.

4.3 Largest Empty Circle (LEC)

Sedona, MASS, and MPI all take the same LEC
algorithm - convex hull and Voronoi diagram con-
structions followed by computing the center of LEC
from all Voronoi vertices and intersections between
the convex hull and the Voronoi diagram. All their
parallelization strategies also take data decomposi-
tion where each RDD partition in Sedona, each place
in MASS, and each rank in MPI reports its poten-
tial point of LEC to main(). This is because, if we
use agent propagation in MASS, the agents diverge
their population from each Voronoi vertex, thus waste
memory space, and do not perform faster.

4.3.1 Agent-Based Approach

MASS first uses Fortune’s sweep-line algorithm to
create a Voronoi diagram sequentially from input data
points that are located within a space of w width and
h height (line 5). It then distributes the Voronoi ver-
tices and edges into nP partitions (lines 7-13). From
them, MASS creates Places (line 14), each of which
takes a different partition (line 15), computes the in-
tersections between Convex Hull edges and Voronoi
edges in the partition (line 16), and identifies a po-
tential LEC center (line 18). Finally, main() collects
potential circles from all the Places and finds the final
LEC (lines 20-23).

Listing 4: Agent-based largest empty circle.

1public class LEC {
2 public static void main(String args[]) {

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

518

3 Point2D[] points = dataPoints();
4 // Create Voronoi Diagram
5 Voronoi diagram = new Voronoi (w, h, points);
6 // Partition vertices
7 int vSize = diagram.vertices.length;
8 int[][] v = partitionData(diagram, vSize, nP);
9 // Partition Edges

10 int eSize = diagram.edges.length;
11 int[][] e = partitionData(diagram, eSize, nP);
12 // Create subsets
13 Object[] partitions = createPartitions(v, e, nP);
14 Places places = new Places("Partitions", nP);
15 places.callAll(Parititions.Init, partitions);
16 places.callAll(Parititions.Intersections);
17 // Compute Largest Empty Circle
18 places.callAll(Partitions.LEC, points);
19 // Return all Largest Empty Circles
20 Object[] results
21 = places.callAll(Partitions.Collect);
22 // Get The largest empty circle from all the circles
23 max(results);
24} }

4.3.2 Data-Streaming Approach

Sedona first constructs a convex hull, using the al-
gorithm described in Section 4.1.2. It then gener-
ates a Voronoi diagram from these points, using its
built-in VoronoiDiagramBuilder class. Thereafter,
Sedona clips the diagram along the convex hull edges
to obtain Voronoi polygons. These polygons, com-
bined with the convex hull, help identify candidate
points. The candidate points are then converted to
spatial RDD which gets partitioned, using Sedona’s
EQUALGRID. A nearest neighbor search is applied
to them within each partition to determine the center
and radius of the largest empty circle. Finally, Se-
dona combines all the centers and radiuses from all
partitions to find the one with the largest radius.

4.3.3 Message-Passing Approach

Rank 0 sequentially creates a Voronoi diagram from
input points, using the Fortune’s sweep-line algo-
rithm. It then creates the convex hull as described
in Section 4.1.3. Next, the Voronoi vertices, Voronoi
edges, and the convex hull points are split into parti-
tions and distributed to all MPI ranks. They compute
the intersection points between the subsets of Voronoi
Edges and the Convex Hull edges in their partition.
All the ranks iteratively examine their Voronoi ver-
tices and the intersection points to calculate the radius
to their closest original data point. Their local LECs
are collected at rank 0 that finds the largest one.

4.4 Range Search (RGS)

4.4.1 Agent-Based Approach

Listing 5 outlines agent propagation down over a KD
tree from its root in search for all tree nodes in a given

range. First, MASS creates a KD tree from Graph-
Places (lines 3-4), which is the slowest part of the
code as the tree is recursively constructed from main()
(line 5). Thereafter, the initial agent starts a KD tree
search from its root (line 6) and repeats propagating
its copies along the left/right tree branches (line 7-
10). Upon every propagation down to the next tree
level, agents report back to main() if they encounter
tree nodes within a queried range (lines 8-9). Lines 6-
10 can be repetitively used for responding to different
queries. The MASS implementation’s strength is a
global KD tree construction over distributed memory.

Listing 5: Agent-based range search.

1public class RGS {
2 public static void main(String args[]) {
3 ArrayList<Point2D> points = getPoints(inputFile);
4 GraphPlaces kdTree = new GraphPlaces("KDTree")

;
5 constructTree(kdTree, points);
6 Agents rovers = new Agents("Rover", kdTree, 1);
7 while(rovers.nAgents() > 0) { // tree traverse
8 Object results[] = rovers.callAll(Rover.search);
9 Collections.addAll(results); // range identified

10 rovers.manageAll();
11} } }

4.4.2 Data-Streaming Approach

Sedona uses SpatialRangeQuery, a built-in function.
It requires only a few parameters to operate: a spatial-
RDD with data points, an Envelope defining the query
boundaries, a spatial predicate, and a boolean to spec-
ify index usage. This configuration enables Sedona to
identify all points within the Envelope in spatialRDD.
Before processing a query, the spatialRDD is parti-
tioned using GridType.EQUALGRID, and results are
subsequently collected.

4.4.3 Message-Passing Approach

First, data points are read from a CSV input file,
equally partitioned, and distributed to all MPI ranks.
Each rank constructs its local KD tree by recursively
selecting dimension X or Y in turn, sorting the local
points in terms of the selected dimension, splitting the
smaller and the larger half in the left and right sub-
trees. Upon a tree completion, a query about finding
points in a given range is passed to all the ranks, each
traversing its own local KD tree. Once all the ranks
have completed querying their trees, MPI Gather() is
called to collect into rank 0 all the points that are
found in a specified range.

4.5 Programmability

Having coded the four benchmark programs with the
three libraries, we summarized their programmabil-

Agent-Based Computational Geometry

519

Table 1: Programmability comparison.

Benchmark Metrics Sedona MASS MPI

CVH LoC 113 710 316
Boilerplate % 43 3.8 8.8

Cyclomatic complexity 4.4 3.4 4.2
ESP LoC 191 692 523

Boilerplate % 31 5.1 4.7
Cyclomatic complexity 3.8 4.1 3.1

LEC LoC 210 767 612
Boilerplate % 41 2.5 5.2

Cyclomatic complexity 4.1 3.1 3.5
RGS LoC 120 368 233

Boilerplate % 47 4.1 8.5
Cyclomatic complexity 4.0 2.6 3.1

ity in # lines of code (LoC), boilerplate (i.e., paral-
lel code) percentage, and Cyclomatic complexity, as
shown in Table 1. In general, as Sedona lines up
built-in GIS functions, all its benchmark LoCs are the
smallest. However, this code compactness results in
increasing Sedona’s boilerplate percentage even with
a few additional statements that prepare distributed
datasets. Since the MPI benchmarks are manual ver-
sions of divide-and-conquer algorithms, their LoC is
three to five times larger than Sedona’s. However,
MPI’s boilerplate percentage and Cyclomatic com-
plexity are smaller than Sedona. This is because MPI
directly accesses each data item while Sedona repet-
itively prepares different datasets, each using lambda
expressions that handle a list of data items. In con-
trast, MASS programs end up in the largest LoC
while demonstrating the smallest boilerplate percent-
age and Cyclomatic complexity, both indicating less
semantically gapped and less branching code. Al-
though MASS facilitates intuitive agent-based coding
and parallelization, its current GIS supports such as
Graph/Tree/SpacePlaces and SmartAgents still need
to automate and to integrate more GIS features into
MASS agents.

5 EVALUATION

We conducted benchmark measurements on our own
research cluster system at University of Washington
Bothell. The system consists of 20 computing nodes,
all that are 64-bit Linux servers, each with 4 CPU
cores (@2.20-3.10GHz) and 16GB memory. Our
evaluations utilized a diverse range of GIS datasets,
as summarized in Table 2.

5.1 Convex Hull (CVH)

Figures 1 and 2 compare parallel performance of Se-
dona, MASS, and MPI when running CVH with the

Table 2: Datasets used for evaluation.

Datasets Size (points) Benchmark Programs

National USFS fire occurrence 581,541 RGS, CVH (small)
Crime locations in LA, US 938,458 RGS, CVH (large)
US private school locations 22,346 LEC (small)
Randomized spatial points 50,000 LEC (large)
Randomized 300 polygons 1,200-1,700 ESP (small)
Randomized 500 polygons 2,000-3,000 ESP (large)

Figure 1: CVH with fire.csv.

small and the large dataset respectively. The trend
in their execution performance does not change be-
tween the small and the large datasets. Overall, Se-
dona’s total execution time is the slowest due to its
considerable data-loading overheads. Yet even focus-
ing on its computational time only, Sedona performs
slower than MASS total execution. This is because
MASS agents converge to a convex hull much faster
than Sedona’s repetitive data shuffle-and-sort opera-
tions. Despite that MASS needs to create a 2D Places
space, its total execution time is competitive to MPI or
even better than MPI as increasing the number of ma-
chines beyond eight. This is because MASS can read
input data in parallel while MPI needs to distribute
date from rank 0 to the other worker ranks. Using 18
or 20 machines, Sedona’s shuffle-and-sort overheads
diminish, which makes Sedona competitive to MASS.
On the other hand, MASS agent migration over ma-
chine boundary gets increased with more computing
nodes, which slows down MASS execution time be-
yond four machines.

5.2 Euclidean Shortest Path (ESP)

Figures 3 and 4 show all the three libraries’ parallel
performance of ESP execution, each computing with
300 and 500 obstacles respectively. While the small
dataset ranks MASS as the slowest execution, its par-
allel performance continuously improves as increas-
ing the number of machines, which makes MASS the
fastest with 20 computing nodes. The main reason
is that agent propagation actually controls the agent

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

520

Figure 2: CVH with crime.csv.

Figure 3: ESP with 300Obstacles.txt.

population rather than explodes it since many agents
hit obstacles to stop their propagation. As the number
of computing nodes gets increased, each computing
node has less agents that even alleviate their propaga-
tion. This trend is even clearer with the large dataset
that includes more obstacles. On the other hand, Se-
dona suffers from its Cartesian product computation
that is bound to O(n2). This quadratic complexity
also slows down Sedona’s total execution with the
larger dataset, while still showing its parallel perfor-
mance. MPI’s visibility graph construction similarly
increases quadratic to the data size, but its total ex-
ecution time is the fastest until 16 computing nodes
as each computation of line intersections is computa-
tionally negligible.

5.3 Largest Empty Circle (LEC)

As described in Section 4.3, Sedona, MASS, and
MPI take the same LEC parallelization strategy. Yet,
MASS does not improve parallel performance as its
main() function is the focal point that chooses the
final LEC among all potential LECs, each reported
from a different place element. Figures 5 and 6 show
that MASS parallel performance is always bound to
its main() function and does not change. Sedona runs

Figure 4: ESP with 500Obstacles.txt.

Figure 5: LEC with school.csv.

the slowest with 1-12 computing nodes even with the
large dataset but eventually outperforms MASS. This
is because Sedona’s lambda expressions repetitively
compare each pair of potential LECs, which incurs
large overheads with less computing nodes. However,
since Sedona has no focal point in parallelization, its
performance is improved with more machines added
to the computation. Finally, MPI serves as the best
baseline performance as its computation is coarsely
performed in each rank and a one-time reductive com-
munication takes only at the end of the execution to
find the final result among up to 20 potential LECs.

Figure 6: LEC with s.txt (random points).

Agent-Based Computational Geometry

521

Figure 7: RGS with fire.csv.

Figure 8: RGS with crime.csv.

5.4 Range Search (RGS)

Figures 7 and 8 measure the KD-tree construction and
range-query execution time elapsed by the three li-
braries, as feeding the USFS fire occurrence dataset
(581,541 points) and the LA crime location dataset
(938,458 points). MPI runs the fastest in both cases
while its query transactions, (i.e., MPI computation
time) receive more communication overheads when
increasing the number of machines. On the other
hand, Sedona always runs the slowest. Its main over-
head (which occupies 59% through 73% of the total
time) is its tree construction and results from Sedona’s
repetitive RDD shuffle-and-sort operations. These
operations also slow down query transactions in both
small and large datasets, each spending 2.6-1.9 times
and 2.3-1.4 times more than MASS query transac-
tions. MASS cannot outperform MPI while its total
execution time gets closer to MPI’s as increasing the
number of computing nodes beyond 16.

6 CONCLUSIONS

We parallelized four benchmark programs including
CVH, ESP, LEC, and RGS, using MASS, Sedona,
and MPI for the purpose of programmability and per-
formance comparisons. Sedona lines up major built-

in functions in computational geometry, which facil-
itates benchmark programming most efficiently. On
the other hand, MASS allows us to code the programs
from the viewpoint of spatial cognition, which makes
them easier to understand than MPI. While MPI runs
fastest in general due to its lowest-level paralleliza-
tion, MASS outperforms Sedona in most benchmark
programs. This demonstrates that agent flocking and
tree traversing are effective in GIS parallel execution.

ACKNOWLEDGMENTS

This paper is dedicated to Dr. Christian Freksa, a
former director of Bremen Spatial Cognition Center,
who gave us valuable hints on computational geom-
etry from the viewpoints of spatial cognition. This
research was supported by IEEE CS Diversity and In-
clusion Fund (IEEE CS D&I, 2023).

REFERENCES

Eldawy, A. and Mokbel, M. F. (2015). SpatialHadoop: A
MapReduce Framework for Spatial Data. In IEEE
31st International Conference on Data Engineering,
pages 1352–1363, Seoul, Korea. IEEE.

Freksa, C., Barkowsky, T., Falomir, Z., and van de Ven, J.
(2019). Geometric problem solving with strings and
pins. Spatial Cognition & Computation, 19(1):46–64.

IEEE CS D&I (2023). New Diversity and Inclusion Projects
Powered by the IEEE CS Diversity and Inclusion
Fund. 15 Feb. 2023 | D&I, DEI, Education, Focus35.

North, M. J., Tatara, E., Collier, N., and Ozik, J. (2007).
Visual Agent-based Model Development with Repast
Simphony. In Agent 2007 Conference on Complex In-
teraction and Social Emergence, Chicago, IL.

Spark GraphX (2018). Accessed on: November 2, 2024.
[Online]. Available: https://spark.apache.org/graphx/.

Sullivan, K., Coletti, M., and Luke, S. (2010). GeoMason:
Geospatial Support for MASON. Technical Report
GMU-CS-TR-2016-16, George Mason University.

Wilensky, U. (2013). NetLogo NW Extension, ac-
cessed on: October 5, 2023. [online]. available:
http://ccl.northwestern.edu/netlogo/5.0/docs/nw.html.

Yu, J., Zhang, Z., and Sarwat, M. (2019). Spatial data man-
agement in apache spark: the GeoSpark perspective
and beyond. Geoinformatica, 23(1):37–78.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

522

