
Natural Language Interface for Goal-Oriented Knowledge Graphs
Using Retrieval-Augmented Generation

Kosuke Yano1, Yoshinobu Kitamura2 and Kazuhiro Kuwabara2

1Graduate School of Information Science and Engineering, Ritsumeikan University, Ibaraki, Osaka, 567-8570, Japan
2College of Information Science and Engineering, Ritsumeikan University, Ibaraki, Osaka, 567-8570, Japan

Keywords: Function Decomposition Tree, Retrieval-Augmented Generation, Large Language Model.

Abstract: A search method leveraging Retrieval-Augmented Generation (RAG) for goal-oriented knowledge graphs is
proposed, with a specific focus on function decomposition trees. A function decomposition tree represents
hierarchically functions of artifacts or actions of human with explicit descriptions of purposes and goals. We
developed a schema to convert the trees into RDF, enabling structured and efficient searches. Through RAG
technology, a natural language interface converts user’s inputs into SPARQL queries, retrieving relevant data
and subsequently presenting them in an accessible and chat-based format. Such a flexible, and purpose-
driven searches enhance usability in complex knowledge graphs. We demonstrate the tool effectively retrieves
actions, intentions, and dependencies using an illustrative and a real-world example of function decomposition
trees.

1 INTRODUCTION

This paper proposes a natural language search sys-
tem for goal-oriented knowledge graphs called func-
tion decomposition trees (Kitamura and Mizoguchi,
2003), (Kitamura et al., 2004). The proposed search
system utilizes a chat-based search interface powered
by Retrieval-Augmented Generation (RAG) technol-
ogy, incorporating a Large Language Model (LLM)
to operate on function decomposition trees converted
to RDF.

A function decomposition tree is a descriptive
method, originally proposed for functional knowl-
edge of artifacts in the engineering design field (Ki-
tamura et al., 2004). It has been extended to proce-
dural knowledge of human actions called CHARM
(Convincing Human Action Rationalized Model) in
the health care field (Nishimura et al., 2013). Its fea-
ture is explicit descriptions of purposes or goals of
actions. For example, the purposes or goals of “wear-
ing a face-mask” is “preventing from catching a cold”
or “preventing secondary infections to other people.”
The traditional methodologies like flowcharts, BPML
and IDEF3 are fundamentally procedure-oriented. In
such procedure-oriented notations, the sequence of
steps of actions is emphasized, which often leads to
the implicit nature of the action’s purpose and ratio-
nale. The application of CHARM suggests that it

enhances the efficiency of learning support and pro-
motes flexible nursing practices through a better un-
derstanding of goals. Moreover, function decomposi-
tion trees and CHARM have been applied in various
fields including auditing of accounting (Taki et al.,
2023).

Many studies have explored systems that allow
searching knowledge graphs using natural language.
For example, FREyA (Damljanovic et al., 2012) is
a natural language interface that generates SPARQL
queries from user’s input. This research aims to de-
velop a search tool that processes natural language
inputs and generates responses in natural language
based on the search results, specifically focusing on
function decomposition trees. The research com-
prises two main components: developing a tool for
universally converting function decomposition trees
to Resource Description Framework (RDF) data, and
the development of a chat-based search tool for query-
ing the RDF-converted function decomposition tree
data.

First, to convert function decomposition trees into
RDF format, it is essential to define a framework that
outlines the vocabulary used in RDF, known as Re-
source Description Framework Schema (RDFS). This
involves identifying the key concepts that make up the
function decomposition tree and describing a RDFS
schema based on these definitions. Subsequently, we

Yano, K., Kitamura, Y. and Kuwabara, K.
Natural Language Interface for Goal-Oriented Knowledge Graphs Using Retrieval-Augmented Generation.
DOI: 10.5220/0013245700003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 975-982
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

975

will utilize the schema to develop a tool that converts
function decomposition tree data into RDF format.

Second, to develop the search tool for func-
tion decomposition tree data, we will focus on
Retrieval-Augmented Generation (RAG) technology
within Large Language Model (LLM). RAG gener-
ates database search queries from natural language
statements and uses the search results to formulate
natural language responses. We will first generate
SPARQL queries to search function decomposition
tree data based on user’s inputs in natural language.
Next, the tool will execute the SPARQL query and
retrieve the results. Finally, it will utilize the results
to generate responses using LLM. This process aims
to achieve the search for function decomposition tree
data through natural language. We demonstrate the
proposed tool through an illustrative example in the
healthcare field, followed by a real-world applica-
tion in the auditing domain of accounting (Taki et al.,
2023).

2 RELATED WORK

2.1 Function Decomposition Tree

A function decomposition tree is a framework used to
hierarchically decompose functuions or actions into
ways of sub-functions or sub-actions, representing
them in a tree structure as a form of knowledge graph.
Figure 1 illustrates an example of function decompo-
sition tree aimed at handling a cold.

The function decomposition tree is composed of
function nodes, way nodes, and relation nodes, which
are depicted by ellipses, squares, and rectangles with
arrows, respectively. The function node represents
a function, to be realized by artifacts or actions to
be performed by humans. The way node represents
a way of function/action achievement, indicating the
approach used to achieve a function or an action.
In a tree, a function node is decomposed into way
nodes, which are further decomposed into function
nodes, thereby recursively detailing the action. Fig-
ure 1 illustrates that handling a cold can be achieved
through either “Prophylaxis way” or “symptomatic
way”. This hierarchical structure effectively demon-
strates the different pathways available for achieving
the desired outcome. In short, it represents goal-
method relationship between actions.

In addition, function nodes can also specify the
functional category. Functional category indicates
the nature of a function or an action. For instance, in
Figure 1, the action “Prevent virus invasion into the
body” is categorized as a prevention function, which

is shown in purple. On the other hand, the counter
functions are shown in yellow.

Relation nodes describe the dependencies be-
tween way nodes. Some ways, when selected, can
impact other ways. For example, in Figure 1, choos-
ing the “Mask-wearing way” as a way node for “Pre-
vent virus invasion into the body” also fulfills the ac-
tion “Prevent secondary infections”, as indicated by
the relation node “Interlocking Selection.”

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) combines
Large Language model (LLM) with external database
search systems (Gao et al., 2023). Traditional LLMs
face challenges when processing queries that fall out-
side their training data, often resulting in hallucina-
tions and difficulties in tracking reasoning processes.
RAG addresses these issues by incorporating knowl-
edge from external databases, thereby enhancing ac-
curacy and reliability. In RAG, user queries trigger
searches in an external database, and responses are
generated based on the search results. In RAG, vector
databases are typically utilized as a reference. In con-
trast, this study enables indirect searches of function
decomposition trees by referencing RDF-converted
function decomposition tree data. This approach re-
quires the generation of SPARQL queries from natu-
ral language inputs.

The technology for converting text to SPARQL
has been extensively researched (Damljanovic et al.,
2012), (Kovriguina et al., 2023), (Avila et al., 2024).
These studies have primarily focused on general RDF
datasets; however, this research specifically targets
RDF representations tailored to function decomposi-
tion trees for SPARQL generation.

3 METHODS

In this research, we implemented a natural language
search tool for function decomposition tree data. Ini-
tially, we identified the key concepts underlying the
function decomposition tree and developed a schema
tailored specifically for it. Using this schema, we
then developed a tool to convert function decompo-
sition trees into an RDF dataset. Finally, leveraging
the converted function decomposition tree data, we
implemented a chat-based search interface utilizing a
Retrieval-Augmented Generation (RAG) for efficient
querying of the function decomposition tree.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

976

Function node

Function node
(Prevention function)

Function node
(Counter function)

Way node

Relationship node

Figure 1: Example of function decomposition tree about handling a cold.

3.1 Components in a Function
Decomposition Tree

As the elements of the function decomposition tree,
we defined two key components: functional cat-
egories and relation. Functional categories indi-
cate the types of functions or action nodes possess,
while relation represents the relationships between
way nodes.

Nodes representing functions within a function
decomposition tree are defined as Systemic processes,
which are characterized by an initial state and an end
state, with the end state serving as the goal state. Such
processes can be categorized into two sub-classes
based on their goals: intended goal processes and un-
intended goal processes. The proposed method lever-
ages these two types of processes to define function
decomposition trees.

3.1.1 Functional Category

Functional categories refer to the various types of
function or action nodes within the function decom-
position tree. Each functional category is treated as
a specialization of function nodes. The counter func-
tion and the prevention function as described below
are definded as subclasses of the Systemic Process.

3.1.2 Functional Category: Counter Function

A function decomposition trees may contain not only
the actions that should be taken described, but also
the failure events and side-effects associated with the
execution of these actions. These elements are classi-
fied into counter functions. For instance, in Figure 1,
the subtree rooted at the node labeled “worsening of

symptoms” shown in yellow exemplifies this type of
action. By documenting failure events and side ef-
fects, the intent behind actions becomes clearer, po-
tentially leading the prevention of defects (Kitamura
et al., 2004). Similarly to regular actions shown in
blue, failure events or side effects are decomposed the
results of higher-level nodes into causes at lower-level
nodes. However, unlike regular actions, failure events
or side effects are not intended to be executed. We
defined counter function as a subclass of unintended
goal processes within RDFS.

3.1.3 Functional Category: Prevention Function

Some actions in a function decomposition tree are
aimed at prevention. They are categorized into pre-
vention function. For instance, in Figure 1, the sub-
tree rooted at the purple node labeled “prevent a cold”
exemplifies this type of action. These preventive ac-
tions are distinct from typical actions, as they focus
on averting specific outcomes rather than achieving
them.

In the context of processes aimed at prevention,
we can decompose the concept of intended goal pro-
cesses into two categories: action and function. Ac-
tion refer to processes executed by living organisms,
while function are carried out by inanimate entities.
Both categories can be oriented towards prevention.
We define prevention actions as a subclass of ac-
tion, and prevention function as a subclass of func-
tion. Since their overaching concepts of actions and
functions are not differentiated in a funtion decompo-
sition tree, prevention action and prevention function
are treated as the same type of functional category.
However, these concepts are defined as separate enti-
ties in an RDF to support efficient querying.

Natural Language Interface for Goal-Oriented Knowledge Graphs Using Retrieval-Augmented Generation

977

3.1.4 Dependencies Between Ways

In a function decomposition tree, certain ways are de-
pendent on others for their selection state. This de-
pendency is categorized into two primary relationship
types: interlocking selection relation and exclusive re-
lation. The interlocking selection relation relation-
ship occurs when the selection of one way necessi-
tates the selection of another. Conversely, the exclu-
sive relation relationship ensures that if one way is se-
lected, the other is precluded. The exclusive relation
is further subdivided into sibling relation and contra-
dictory relation. A sibling relation occurs when both
ways share the same parent node, whereas a contra-
dictory relation arises when the two ways are distant
from each other within the tree structure. Both In-
terlocking selection Relation and Exclusive relation
are represented in the function decomposition tree us-
ing relationship nodes. For instance, in Figure 1, the
node connecting the two Mask-wearing ways with a
dotted line represents an Interlocking selection Rela-
tion relationship node. In the proposed method, we
define the dependencies between ways by treating re-
lationship nodes as RDF properties. These nodes are
described as sub-properties of each dependency type,
allowing for a structured representation of the depen-
dencies within the function decomposition tree.

3.1.5 Schema

Based on the components of the function decom-
position tree defined in Section 3.1, we described
schema in the RDFS. Figure 2 graphically represents
the schema of a function decomposition tree in RDFS.
For simplification, the label and ID are described
with the identical content; thus, the label is omitted.
Additionally, the descriptions of rdfs:Class and
rdf:Property in some parts of Figure2 is omitted for
simplification, because the descriptions of rdf:type
can be inferred through the use of rdfs:subClassOf
and rdfs:subPropertyOf.

3.2 Conversion to RDF Data

Based on the schema created in Section3.1.5, a pro-
gram was developed to convert function decomposi-
tion tree data into the Turtle format, one of the for-
mats used in RDF. In function decomposition trees,
procedures and methods within actions are broken
down into a tree structure, with each node described in
text form. These textual descriptions were described
using the rdfs:label property in a converted RDF
dataset. This enabled users to perform RDF searches
using text-to-SPARQL, allowing natural language in-
put to be queried. However, this approach required

exact text matches, leading to search failures when
user input differed from the descriptions in the func-
tion decomposition tree, even if the meanings were
similar or nearly identical. To address this issue, we
introduced an additional :keyword property along-
side rdfs:label. By employing LLM, keywords
were extracted from the content of rdfs:label and
recorded under the :keyword property. This en-
hancement allowed for RDF searches based on key-
words, significantly reducing search problems caused
by variations in textual expressions.

3.3 Searching for RDF Data Using a
Chat-Based Interface with RAG

We developed a chat-based interface for querying a
function decomposition tree. User-provided natural
language input is transformed into a SPARQL query
through the application of a large language model
(LLM). We employed OpenAI’s gpt-4o-mini model
for this transformation. The results obtained from ex-
ecuting the SPARQL query are subsequently used to
formulate a response via an LLM. We identified three
unique patterns in users’ queries, detailed below, and
designed prompts specifically to address each input
pattern. In the following discussion, we use the func-
tion decomposition tree illustrated in Figure 1 as an
example.

3.3.1 Decomposition of Actions and Ways

In the first pattern, the tool infers and responds to the
user specific actions or ways within the function de-
composition tree. The procedure begins by extract-
ing keywords from the natural language sentence pro-
vided by the user. These keywords are then utilized
to perform a filtering process on the :keyword as de-
scribed in Section 3.2. This filtering helps in narrow-
ing down the search to identify the node that is consid-
ered to be the closest match to the user’s input. Next,
a SPARQL query is generated to search for func-
tion nodes or way nodes that indicate the approach
to achieving the identified node. The results from
executing this query are then used to construct the
response. This SPARQL query functions to identify
sub-nodes that exist beneath a specific node within a
function decomposition tree.

Let us consider the input: What are the ways
to prevent virus invasion? as illustrated in
Figure 3. The tool extracts keywords from the input,
specifically “prevent,” “virus,” and “invasion,” and
uses these to filter and search for relevant nodes. Sub-
sequently, it identifies the subordinate nodes under
the matched node and returns results such as “Mask-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

978

:has_Process

:has_Relation :Interlocking_selection_
Relation

:Systemic_Process

:Sibling_Relation

:Contradictory_
Relation

:Exclusive_relation

:Way_of_Achievement

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:range

rdfs:domain

rdfs:range

rdfs:range
rdfs:domain

rdf:Property

rdf:type

:Counterfunction

:Intended_
GoalProcess

:Unintended
GoalProcess

:Function :Prevention_function

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

:Action :Prevention_actionrdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type

rdfs:subClassOf

rdfs:Class

rdf:type

:has_Way_of
Achievement

rdf:type

rdfs:domain

Figure 2: RDF Schema of function decomposition tree.

[namespace: /chat] 切断

sample_rdf_bot quiz_bot mock_gpt echo

sample_rdf_bot

sample_rdf_bot

sample_rdf_bot

sample_rdf_bot

送信

(control + Enter で送信) RDF Viewer :start :reset

LLM Chat Demo

LLM Chat Demo Color

:load KangoENG

Loaded KangoENG

What are the ways to prevent virus invasion?

Generated SPARQL Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <https://example.org/>
SELECT ?obj_label
WHERE {
 {
 SELECT ?s (COUNT(?s) AS ?s_count)
 WHERE {
 ?s ex:keyword ?kwd .
 FILTER(contains(?kwd, "prevent") || contains(?kwd, "virus") || contains(?kwd, "invasion")) .
 }
 GROUP BY ?s
 ORDER BY DESC(?s_count)
 LIMIT 1
}
?s (ex:has_Way_of_Achievement | ex:has_Process) ?obj .
?obj rdfs:label ?obj_label .
}

Context:
obj_label: Hand-wasing way
obj_label: Gargling way
obj_label: Mask-wearing way

To prevent virus invasion, there are several ways you can employ:
the "Hand-washing way," the "Gargling way," and the "Mask-wearing
way."

[User: a] ログアウト

2025/01/09 16:56 LLM Chat Demo

localhost:8000 1/1

Figure 3: Decomposing an action.

wearing way,” “Gargling way,” and “Hand-washing
way.” Finally, using these results, the tool presents
the following response to the user: To prevent
virus invasion, there are several ways
you can employ: the "Hand-washing way,"
the "Gargling way", and the "Mask-wearing
way." This approach enables the tool to output
actions related to the identified ways if the matched
nodes are way nodes. Conversely, if the matched
nodes are action nodes, the tool can suggest ways to
achieve specific actions.

3.3.2 Identifying Purpose of Actions

In the second pattern, the tool infers and presents to
the user a purpose or a goal of a action or function
associated with a specific action or a way within the
function decomposition tree. The procedure begins
similarly to Section 3.3.1, where keywords are ex-
tracted from the natural language sentence provided
by the user. These keywords are then used to filter
nodes via the :keyword property, enabling the tool

to identify the node that best matches the user’s in-
put. Subsequently, a SPARQL query is generated to
search for function nodes that are positioned above the
specified node, which serves as the goal in either func-
tion nodes or way nodes. The results of executing this
query are then used to construct the response. This
SPARQL query is designed to locate action nodes that
exist above a given node within the function decom-
position tree.

Let us suppose a user inputs: What is the
purpose of wearing a mask? as illustrated in
Figure 4. The tool extracts “wear” and “mask” as
keywords and uses filtering to locate the relevant
node. It then searches for action nodes above this
node in the tree (Figure 1), resulting in the out-
put: The purpose of wearing a mask is to
"Prevent virus invasion into the body."
The act of preventing virus invasion has
a "prevention Function." This approach allows
the tool to output function nodes located above the
node corresponding to the user’s input. Additionally,
it can present the type of function that the function
node aims to achieve.

3.3.3 Identifying Dependencies Between Ways

In the third pattern, the tool identifies and presents
dependencies between ways within the function
decomposition tree to the user. The procedure begins
by extracting keywords from a natural language sen-
tence provided by the user, following the procedures
similar to those in Sections 3.3.1 and 3.3.2. These
keywords are then used to filter nodes to identify the
way node that best matches the user’s input. Next,
properties are searched for where the node in question
serves as the subject and another way node acts as
the object. Finally, the results are utilized to generate
a response. As defined in Section 3.1.5, a relation
node is characterized by the has Relation property,

Natural Language Interface for Goal-Oriented Knowledge Graphs Using Retrieval-Augmented Generation

979

[namespace: /chat] 切断

sample_rdf_bot quiz_bot mock_gpt echo

sample_rdf_bot

sample_rdf_bot

sample_rdf_bot

sample_rdf_bot

送信

(control + Enter で送信) RDF Viewer :start :reset

LLM Chat Demo

LLM Chat Demo Color

:load kangoENG

Loaded kangoENG

What is the purpose of wearing a mask?

Generated SPARQL Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <https://example.org/>
SELECT ?obj_label ?obj_type_label
WHERE {
 {
 SELECT ?s (COUNT(?s) AS ?s_count)
 WHERE {
 ?s ex:keyword ?kwd .
 FILTER(contains(?kwd, "wear") || contains(?kwd, "mask")) .
 }
 GROUP BY ?s
 ORDER BY DESC(?s_count)
 LIMIT 1
 }
 {
 ?obj ex:has_Way_of_Achievement ?s .
 } UNION
 {
 ?p ex:has_Process ?s .
 ?obj ex:has_Way_of_Achievement ?p .
 }
 ?obj rdfs:label ?obj_label .
 ?obj rdf:type ?obj_type .
 ?obj_type rdfs:label ?obj_type_label
}

Context:
obj_label: Prevent virus invasion into the body,obj_type_label: Prevention Function

The purpose of wearing a mask is to "prevent virus invasion into the
body." The act of preventing virus invasion has a "Prevention
Function."

[User: a] ログアウト

2025/01/09 17:05 LLM Chat Demo

localhost:8000 1/1

Figure 4: Searching for purpose of actions.

which includes way nodes as both the subject and
predicate. Consequently, this SPARQL query is
designed to search for relation nodes associated with
a particular way within a function decomposition
tree. Let us consider the input: Which ways are
impacted when applying the mask-wearing
way? as illustrated in Figure 5. The tool then checks
if the identified way nodes have any associated
relational nodes. In this example, an “Interlock-
ing selection” relation node exists, linking to the
“Mask-wearing way.” Using this connection, the tool
generates the response: The mask-wearing way
has an "Interlocking selection relation"
with the "Mask-wearing way" for "Prevent
secondary infections." Therefore, when
applying the mask-wearing way, it not
only achieves the goal of "preventing
virus invasion into the body" but also
significantly impacts the prevention of
secondary infections. This response clarifies
that using the mask-wearing way for infection
prevention also helps prevent secondary infections
in others. In this pattern, the tool provides the user
with insights into additional outcomes that can be
achieved when selecting a specific way to accomplish
a particular action.

4 REAL-WORLD EXAMPLE

To demonstrate our approach, we present a real-
world example involving the function decomposi-
tion tree about audit procedures in accounting (Taki
et al., 2023). The function decomposition tree about
auditing procedures in accounting is based on the
document about asset accounting procedures (Finan-

[namespace: /chat] 切断

sample_rdf_bot quiz_bot mock_gpt echo

sample_rdf_bot

sample_rdf_bot

sample_rdf_bot

送信

(control + Enter で送信) RDF Viewer :start :reset

LLM Chat Demo

LLM Chat Demo Color

Which ways are impacted when applying the mask-wearing way?

Generated SPARQL Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <https://example.org/>
SELECT ?sp_label ?prop_type_label ?o_label ?op_label
WHERE {
 {
 SELECT ?s (COUNT(?s) AS ?s_count)
 WHERE {
 ?s ex:keyword ?kwd .
 FILTER(contains(?kwd, "mask") || contains(?kwd, "wear")) .
 ?s rdf:type ex:Way_of_Achievement .
 }
 GROUP BY ?s
 ORDER BY DESC(?s_count)
 LIMIT 1
 }
 ?sp ex:has_Way_of_Achievement ?s .
 ?sp rdfs:label ?sp_label .
 ?s ?prop ?o .
 ?o rdf:type ex:Way_of_Achievement .
 ?prop rdf:type ?prop_type .
 ?prop_type rdfs:label ?prop_type_label .
 ?o rdfs:label ?o_label .
 ?oParent ex:has_Way_of_Achievement ?o .
 ?oParent rdfs:label ?op_label
}

Context:
sp_label: Prevent virus invasion into the body,prop_type_label:
Interlocking_selection_Relation,o_label: Mask-wearing way,op_label: Prevent
secondary infections

The mask-wearing way has an "Interlocking selection relation" with
the "Mask-wearing way" for "Prevent secondary infections."
Therefore, when applying the mask-wearing way, it not only
achieves the goal of "preventing virus invasion into the body" but
also significantly impacts the prevention of secondary infections.

[User: a] ログアウト

2025/01/09 17:05 LLM Chat Demo

localhost:8000 1/1

Figure 5: Searching for the implication of selecting the way.

cial Services Agency, 2002) published by the Fi-
nancial Services Agency in Japan. The number of
nodes in the tree is 247 and the complex connections
among these nodes make manual searches exceed-
ingly difficult. Since function decomposition tree is
documented in Japanese, we conducted searches in
Japanese. Below, we provide examples of operations
for the three patterns discussed in Section 3.3.

4.1 Decomposition of Actions and Ways

As an example of the first pattern (“Decomposition
of Actions and Ways”) described in Section 3.3.1, we
show how to search for the ways of performing group-
ing in accounting audits (Figure 6). Here, grouping
refers to the process of dividing assets into indepen-
dent units.

Let us suppose that a user inputs the query:
What are the ways for grouping assets? The
tool identifies keywords within the input sentence
and utilizes them to filter nodes that align with the
user’s query. It then examines the sub-nodes linked
to these relevant nodes and generates a response
grounded in the search findings. In this example, the
generated response is: The ways to group assets
include "when there is goodwill," "when
there is no goodwill with shared assets,"
and "when there are shared assets."

In the reference document, this information is
dispersed across the sections titled “Handling of
Goodwill,” “Grouping of Assets”, and “Treatment of
Shared Assets”, making it difficult to manually locate.
By utilizing this tool, users can efficiently access and
view multiple ways of achieving the grouping at once.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

980

Figure 6: Searching for the ways of grouping assets.

4.2 Identifying Purpose of Actions

To show an example of the second pattern (“Identify-
ing Purpose of Actions“) described in Section 3.3.2,
we search for the purpose of comparing current
and projected future cash flows (Figure 7). Let us
suppose that a user inputs a query: What is the
purpose of comparing the total amount of
assets and the undiscounted future cash
flows? The tool extracts keywords from the input
sentence and uses them to filter nodes that match the
user’s query. Then, the tool searches the super-nodes
associated with the relevant nodes and formulates
a response based on the search results. In this
example, the generated response is: The purpose
of comparing the total amount of assets
and the undiscounted future cash flows is
"to recognize impairment losses."

These details, as outlined in the reference doc-
ument (Financial Services Agency, 2002), are de-
scribed as procedural steps, making it challenging for
users to understand the underlying purpose. By using
this tool, users can efficiently search for the purpose
behind their actions.

4.3 Identifying Dependencies Between
Ways

In this section, as the example of the pattern
described in Section 3.3.3, we search for im-
plications of selecting the way in the function
decomposition tree (Figure 8). For a user’s
query: What are implications of selecting
the book value allocation way?, the tool ex-
tracts keywords from the input sentence and uses
them to filter nodes that match the user’s query. If
the node that matches the user’s query has relation-
node, the tool searches the node that is connected to

Figure 7: Searching for the purpose of comparing cash
flows.

Figure 8: Identifying dependencies of the “book value allo-
cation way”.

relation-node.
In this example, the generated response is: The

book value allocation way has a "linked
selection relationship" with the way of
archiving the act of "determining the
grouping way for shared assets". By
choosing this way, the grouping way for
assets is determined.

In the reference document (Financial Services
Agency, 2002), the relationships between different
ways for each action are not described. By using this
tool, the relationships between the ways involved in
each action can be clearly presented to the user.

Natural Language Interface for Goal-Oriented Knowledge Graphs Using Retrieval-Augmented Generation

981

5 DISCUSSION

As demonstrated in Section 4, the proposed tool is
capable of efficiently retrieving specific information,
even when applied to a large-scale function decom-
position tree. For each of the three identified patterns,
we successfully extracted and presented both actions
and ways in response to users’ queries, using an RDF-
converted function decomposition tree. In particular,
as shown in Section 4.3, implicit knowledge from the
function decomposition tree can be extrated and pre-
sented to the user, offering insights not readily appar-
ent in the reference document.

However, in some instances, the search function-
ality is not performed effectively. When user queries
are brief, the limited number of available keywords
may lead to the retrieval of incorrect nodes. In the
demonstration in Section 4.2, the presence of addi-
tional keywords facilitated accurate retrieval. How-
ever, with six nodes containing both “assets” and “fu-
ture cash flow,” limited input keywords make it chal-
lenging to narrow down the nodes. This limitation can
lead to the extraction of incorrect information. With
the current tool, users need to formulate more precise
or detailed queries to obtain the desired information
in some cases.

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a tool that provides users
with goal-oriented knowledge through a natural lan-
guage interface. Users can retrieve (1) finer-grained
functions/actions, (2) goals/purposes, or (3) depen-
dencies, of specified functions/actions. Such knowl-
edge facilitates users’ understanding and performance
of functions of artifacts or human actions. The func-
tional categories of the function decomposition tree,
such as prevention and counter functions, particularly
clarify teleological roles of functions.

It should be mentioned that the functional cate-
gories defined in Section 3.1 are currently only used
for presentation to users, and not fully used in the
search process. Furthermore, as discussed in Sec-
tion 5, insufficient user’s input can lead to incorrect
results. Since the tool relies on extracting keywords
from sentences, a limited number of keywords makes
it challenging to narrow down potential answers. In
future, we aim to integrate these functional categories
more robustly into the search mechanism, comple-
menting the existing keyword extraction approach.

ACKNOWLEDGEMENTS

This work was partially supported by JSPS KAK-
ENHI Grant Number 24K15078.

REFERENCES

Avila, C. V. S., Vidal, V. M., Franco, W., and Casanova,
M. A. (2024). Experiments with text-to-sparql based
on chatgpt. In 2024 IEEE 18th International Confer-
ence on Semantic Computing (ICSC), pages 277–284.
IEEE.

Damljanovic, D., Agatonovic, M., and Cunningham, H.
(2012). Freya: An interactive way of querying linked
data using natural language. In The Semantic Web:
ESWC 2011 Workshops: ESWC 2011 Workshops,
Heraklion, Greece, May 29-30, 2011, Revised Se-
lected Papers 8, pages 125–138. Springer.

Financial Services Agency (2002). Opinion on set-
ting accounting standards for impairment of fixed
assets. https://www.fsa.go.jp/news/newsj/14/singi/
f-20020809-1/f-20020809c.pdf. Last accessed: 2024-
11-07.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. (2023). Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997.

Kitamura, Y., Kashiwase, M., Huse, M., and Mizoguchi, R.
(2004). Deployment of an ontological framework of
functional design knowledge. Advanced Engineering
Informatics, 18(2):115–127.

Kitamura, Y. and Mizoguchi, R. (2003). Organizing knowl-
edge about functional decomposition. In The 14th In-
ternational Conference on Engineering Design.

Kovriguina, L., Teucher, R., Radyush, D., Mouromtsev, D.,
Keshan, N., Neumaier, S., Gentile, A., and Vahdati, S.
(2023). Sparqlgen: One-shot prompt-based approach
for sparql query generation. In SEMANTiCS (Posters
& Demos).

Nishimura, S., Kitamura, Y., Sasajima, M., Williamson, A.,
Kinoshita, C., Hrao, A., Hattori, K., and Mizoguchi,
R. (2013). Charm as activity model to share knowl-
edge and transmit procedural knowledge and its ap-
plication to nursing guidelines integration. Journal of
Advanced Computational Intelligence Vol, 17(2):208–
220.

Taki, H., Sogawa, S., Mura, K., and KItamura, Y. (2023).
Ontological approach for modeling of a financial
statement audit -a model of actions of an audit of im-
pairment of fixed assets-. In The 37th Annual Confer-
ence of the Japanese Society for Artificial Intelligence,
pages 2L6GS305–2L6GS305. The Japanese Society
for Artificial Intelligence.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

982

