
Using LLM-Based Deep Reinforcement Learning Agents to Detect Bugs
in Web Applications

Yuki Sakai, Yasuyuki Tahara, Akihiko Ohsuga and Yuichi Sei
The University of Electro-Communications, Japan

s2230061@edu.cc.uec.ac.jp, {tahara, ohsuga, seiuny}@uec.ac.jp

Keywords: Black-Box GUI Testing, Web Applications, Deep Reinforcement Learning, Large Language Model,
Automated Testing.

Abstract: This paper presents an approach to automate black-box GUI testing for web applications by integrating deep
reinforcement learning (DRL) with large language models (LLMs). Traditional GUI testing is often inefficient
and costly due to the difficulty in generating comprehensive test scenarios. While DRL has shown potential
in automating exploratory testing by leveraging GUI interaction data, such data is browser-dependent and not
always accessible in web applications. To address this challenge, we propose using LLMs to infer interaction
information directly from HTML code, incorporating these inferences into the DRL’s state representation. We
hypothesize that combining the inferential capabilities of LLMs with the robustness of DRL can match the ac-
curacy of methods relying on direct data collection. Through experiments, we demonstrate that LLM-inferred
interaction information effectively substitutes for direct data, enhancing both the efficiency and accuracy of
automated GUI testing. Our results indicate that this approach not only streamlines GUI testing for web ap-
plications but also has broader implications for domains where direct state information is hard to obtain. The
study suggests that integrating LLMs with DRL offers a promising path toward more efficient and scalable
automation in GUI testing.

1 INTRODUCTION

In software development, testing is a crucial process.
Particularly in web applications (web apps), black-
box GUI testing can be costly (Bertolino, 2007). As
a result, research efforts are underway to automate
the creation and execution of test scenarios (Sneha
and Malle, 2017). Additionally, exploratory testing,
which does not rely on predefined scenarios, has been
proposed as a testing methodology. Exploratory test-
ing leverages the intuition and experience of testers to
discover bugs, and it is considered an effective means
for bug detection (Itkonen and Rautiainen, 2005).

The primary approach to automating exploratory
testing is through deep reinforcement learning (DRL).
Recent studies have shown that leveraging interac-
tion information of GUI elements, rather than focus-
ing solely on their states, can enhance performance
(Romdhana et al., 2022). However, in web apps,
the interaction information of HTML elements de-
pends on the browser, and some browsers cannot re-
trieve this information. Thus, large language models
(LLMs) can be used to infer interaction information
from HTML and incorporate these inferences into the

state, in order to verify whether accuracy remains
comparable to using actual interaction data (Brown
et al., 2020).

DRL is known for its robustness (Carlini and Wag-
ner, 2017), whereas LLM inference results are prob-
abilistic (Xia et al., 2024). We hypothesize that these
characteristics are compatible. If this hypothesis is
confirmed, it could have applications in various fields.
Since the extensive knowledge of LLMs is not limited
to web apps (Chang et al., 2024), they can be utilized
when obtaining states in DRL is difficult, or serve as
clues during agent training.

2 RELATED RESEARCH

2.1 Black-Box GUI Testing with DRL

Various approaches have been proposed for automat-
ing black-box GUI testing (Wetzlmaier et al., 2016)
(Adamo et al., 2018). Recently, methods utilizing
DRL have also been proposed. Eskonen et al. pro-
posed a method for web apps that uses GUI screen-
shots as input for DRL, achieving higher exploration

Sakai, Y., Tahara, Y., Ohsuga, A. and Sei, Y.
Using LLM-Based Deep Reinforcement Learning Agents to Detect Bugs in Web Applications.
DOI: 10.5220/0013248800003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1001-1008
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

1001

accuracy than random search and Q-learning-based
methods (Eskonen et al., 2020).

Andrea Romdhana et al. proposed ARES, a DRL-
based Android app testing framework (Romdhana
et al., 2022). GUI is retrieved in XML format via
Appium. A vector consisting of the visibility of
GUI elements and the effectiveness of interactions
is used as the state. Error discovery and new ele-
ment exploration are used as positive rewards. As a
result, it achieved higher exploration accuracy than
Q-learning-based methods. In recent years, besides
ARES, further research targeting mobile apps has
been conducted (Cai et al., 2021) (Tao et al., 2024).

Research focusing on web apps is also important,
and there are two reasons for this. The first reason
is the difference in release spans. Typically, releas-
ing a mobile app requires store review, which can
take from several days to up to seven days (Apple,
2024) (Google, 2024). Because releasing takes time,
so does releasing bug fixes, so thorough testing is re-
quired before introducing new features. By contrast,
web apps can be released simply by uploading files
to the server. Through automated testing, the testing
process can be streamlined, enabling more frequent
releases. The second reason is differences in frame-
works and types of interactions. During automated
test execution, Appium is used for mobile apps, while
Selenium is used for web apps. However, the infor-
mation that can be obtained and the operations that
can be performed differ based on the framework. For
these reasons, applying methods proposed for mobile
apps to web apps is valuable.

2.2 GUI Test Specialized LLM Agent

Yoon et al. proposed a GUI testing framework uti-
lizing LLMs (Yoon et al., 2023). The framework con-
sists of four types of agents: Planner, Actor, Observer,
and Reflector. First, the Planner generates high-level
test cases considering diversity, realism, difficulty,
and importance. Next, the Actor determines and ex-
ecutes specific actions to achieve the generated test
cases. The Observer monitors the post-action state of
the GUI and outputs it. Finally, the Reflector reviews
the execution and provides feedback to the Planner.
This approach demonstrated significant results in ex-
ploration and functional coverage. Yoon et al. identi-
fied monetary cost as a challenge because their frame-
work relies on LLMs accessed through the OpenAI
API.

2.3 LLMs as a Reward Function

Kwon et al. proposed a method that utilizes LLMs
as reward functions in reinforcement learning (Kwon
et al., 2023). Designing reward functions in rein-
forcement learning is challenging because it is diffi-
cult to specify desired behaviors through reward func-
tions, and creating effective reward functions requires
specialized knowledge. Therefore, by using LLMs,
Kwon et al. enabled the use of natural language as
an interface, successfully reducing the difficulty of
designing reward functions. Users provide examples
or descriptions of desired behaviors as text prompts
to the LLM. The LLM outputs reward signals based
on these prompts to update the behavior of the re-
inforcement learning agent. In multiple tasks, the
proposed method demonstrated superior performance
compared to conventional methods. This approach
uses LLMs as reward functions of DRL. In reinforce-
ment learning, executing actions and obtaining states
can also require specialized knowledge, which signif-
icantly impacts learning. Therefore, the application
of LLMs is anticipated in these areas.

3 PROPOSED METHOD

3.1 Reinforcement Learning Method

In this study, we use Proximal Policy Optimization
(PPO) as the DRL algorithm (Schulman et al., 2017).
For implementing the DRL algorithm, we use Stable
Baselines3 (Raffin et al., 2021). The system overview
is shown in Figure 1. We defined the action space
as the indices in the dictionary that stores GUI ele-
ments, and the state space as a one-hot vector con-
sisting of the visibility and clickability of GUI ele-
ments. The reward assigns a numerical value based
on the cumulative number of new states discovered
in the web page. The aim of this research is not
to improve performance through changes in the rein-
forcement learning method, but to examine how sub-
stituting LLM inference results affects performance.
Consequently, we adopt PPO for its stability in train-
ing. PPO is chosen as OpenAI’s default reinforcement
learning algorithm due to its ease of use and excellent
performance(OpenAI, 2024b).

3.2 Utilization of Inference Results by
LLMs

Web apps are generally operated through a browser.
However, even with the same source code, behavior

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1002

Figure 1: The System Overview.

can vary across different browsers. Therefore, it is
advisable to conduct black-box GUI testing for each
browser. Selenium is a well-known automated testing
framework for web apps. It provides drivers for each
browser, which allows tests to be conducted individu-
ally.

In this study, we use interaction information,
specifically whether HTML elements are clickable, in
our learning process. Because we employ Selenium
as the test framework, the interaction information ob-
tainable differs from that in Appium, which is used
for mobile apps. Furthermore, determining whether
an element is clickable is a runtime process that must
be performed through the browser. For Chrome, Se-
lenium provides an interface to execute the necessary
Chrome DevTools Protocol commands. Meanwhile,
although such data can be obtained via the developer
tools in Safari or Firefox, Selenium does not provide
an interface for these browsers. Some browsers may
not support retrieving interaction information at all.
Therefore, we propose a method using LLMs to in-
fer whether HTML elements are clickable and incor-
porate this inference into the DRL state. Although
the appearance of buttons and other GUI elements
varies across sites, the act of inferring clickability
from HTML is largely unaffected. If the inference
results prove sufficient as a substitute, more efficient
black-box GUI testing can be conducted across vari-
ous browsers.

3.3 Robustness of Machine Learning
Models and LLMs

In this study, we utilize the LLM’s inference results
as part of the DRL state. This approach is based on
the hypothesis that the imperfect inference accuracy
of LLMs is compensated by the robustness of DRL
models, making them an effective combination. The
inference accuracy of LLMs is not 100% due to fac-
tors such as the incompleteness of training data, the
probabilistic nature of LLMs, and the ambiguity of

Figure 2: Test Application.

natural language. On the other hand, DRL models
are characterized by robustness, meaning they are re-
silient to noise. This implies that even if some noise is
present in the input, the model’s output remains sta-
ble. By leveraging these characteristics, we expect
that incorporating LLMs’ inference results into the
DRL state will enhance performance.

4 EXPERIMENTS

In this study, we first verify that utilizing the inter-
action information of HTML elements in web appli-
cations can enhance the efficiency of learning. Next,
we use an LLM to infer the interaction information
of HTML elements and incorporate these results as
part of the state in DRL. We then verify whether in-
corporating these inferred results allows us to achieve
accuracy comparable to that when the inferred results
are not used.

4.1 Original Test Application Creation

In this study, we created and used a custom web ap-
plication as the test subject. There are two reasons
for this. The first reason is that test apps in research
on automating black-box GUI testing of web apps are
not generalized. The second reason is that to ver-
ify the use of LLMs as part of the DRL state. The
created web application is shown in Figure 2. It has
three states, and there are three buttons at the top of
the screen. Clicking any of these buttons switches the
state, which is then displayed as text at the bottom of
the screen. The web app was developed using Vue.js
(You, 2024). All buttons are implemented using the
button tag and are clickable. The current state dis-
play is implemented using a div tag. This app is cre-
ated as a single-page application, so the URL does not
change.

4.2 Exp. 1: Application to Web Apps

First, we trained an automated test agent on the
custom web application. Through this training, we

Using LLM-Based Deep Reinforcement Learning Agents to Detect Bugs in Web Applications

1003

Figure 3: Exp. 1: System Architecture.

verified that utilizing interaction information in web
apps accelerates learning and improves accuracy of
an DRL model. The system overview is shown in
Figure 3. The web app was operated and obtained
state through Selenium, and converted into an Ope-
nAI Gym environment (OpenAI, 2024a). We then
performed training using PPO with Stable Baselines3.

Selenium is a browser automation framework
commonly used in automated testing of web apps.
OpenAI Gym is an open-source toolkit provided by
OpenAI to facilitate the development and comparison
of DRL algorithms. Stable Baselines3 uses OpenAI
Gym environments as the interface between the rein-
forcement learning algorithms and the environment.
Therefore, to use the web app as a learning environ-
ment, we adapted it to conform to the OpenAI Gym
interface using Selenium.

The parameters for training were set as follows.
For parameters not listed below, the default values of
Stable Baselines3 were used.

Environments Concurrency. 20 envs

Update the Network. Every 512 steps per environ-
ment, i.e., every 10,240 steps in total.

Test Cycle. At the end of each epoch.

I will explain the custom environment.

Episode. 1 episode consists of 3 steps. One HTML
element is clicked per step. Information is reset at
the end of the episode.

Observation. 2×n-dimensional matrix. The first el-
ement of each row indicates whether the web el-
ement is on the screen, and the second element
indicates whether it is clickable.

Action. The index of the clickable HTML element in
the HTML element dictionary.

Reward. If the first state is discovered, give +0.1;
if the second is discovered, give +0.2; and if all
three are discovered, give +1.0.

Because the first column in the action space indi-
cates whether each HTML element is on screen, we
determine new states by comparing those conditions.
The list of discovered states were reset at the end of
the episode.

Figure 4: Step Sequence.

In this study, we determined whether an HTML
element is clickable by checking if a click event lis-
tener is attached. The DOM elements obtained via
Selenium do not provide a direct method to determine
clickability. Although it is possible to generally in-
fer clickability based on HTML tags like button or
div, this method is not straightforward. Buttons can
be disabled, making them non-clickable, and div tags
can have click events attached, making them click-
able. Therefore, we decided that an element is click-
able if it has a click event listener attached. Event
listeners attached to HTML elements are runtime in-
formation that need to be obtained via the browser’s
developer tools. Selenium provides drivers for each
browser, but the ability to use developer tool APIs
varies by browser. The Chrome driver has an inter-
face for calling developer tool APIs, but Firefox and
Safari do not. Therefore, we used the Chrome driver
in this study.

The step-by-step flow is shown in Figure 4. First,
the action determined by the learning module is ex-
ecuted on the web application using Selenium. Once
the action is complete, the HTML elements of the web
app are retrieved via Selenium. Then, event listen-
ers attached to each element are obtained using the
Chrome DevTools Protocol. If the element has a click
event listener, it is determined to be clickable. Based
on this information, the state is updated and the re-
ward is calculated. Finally, the state and reward are
returned to the learning module, and various networks
are updated.

In this system, the uniqueness of HTML elements
was determined using the hash value of the DOM
element’s outerHTML. While there is a possibility
of hash collisions in complex web apps, the web
app used in this study only has elements with iden-
tical outerHTML. Therefore, the hash value of outer-
HTML was used as a unique ID for each element.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1004

4.3 Exp. 2: Preliminary Experiment
with Random Noise

In this study, we use LLMs to infer whether HTML
elements are clickable, but the inference accuracy of
LLMs is not 100%. This is because LLMs are proba-
bilistic models. While using high-performance mod-
els or refining prompts can improve accuracy, it can
never reach 100%. Therefore, we introduced random
noise into the clickability portion of the state space in
Exp. 1 to determine the level of inference accuracy
that can be tolerated. Since LLM inference errors dif-
fer from random noise, we used random noise only
as a rough guideline. In this experiment, the random
noise ratios were set at 0%, 10%, and 20%. We com-
pared learning efficiency and accuracy for each ratio.

4.4 Exp. 3: Inference of Clickability by
LLMs

In Exp. 2, we examined how different ratios of ran-
dom noise affect learning efficiency and accuracy.
Having established a benchmark for the accuracy that
should be achieved by LLMs’ inference, In Exp. 3,
we aimed to improve inference accuracy through en-
hancements to the model and prompts.

In this study, we use inference results as the state
in reinforcement learning, so we need to perform in-
ference at each step. Using paid services such as the
OpenAI API is not cost-effective, so we built an in-
ference environment using a local LLM. Based on the
results of Exp. 2, we set a benchmark and ended the
experiment once we found a model-prompt combi-
nation that exceeded it. We also manually extracted
40 HTML elements from multiple websites. The tar-
get websites are GitHub, YouTube, Count Characters,
and LetterFan. To mirror the conditions of actual in-
ference in web apps, we included both clickable and
non-clickable elements.

4.5 Exp. 4: Substitution Using LLMs
Inference Results

In Exp. 4, we replaced the vector indicating clickabil-
ity in the state space used in Exp. 1 with LLM infer-
ence results for training. Figure 5 shows the system
overview for Exp. 4. The LLM inference was imple-
mented as an API accessible on a server independent
of the learning module and environment. Since in-
ference takes time, executing it at every step would
increase the simulation time. Therefore, we reduced
inference time by caching responses, which shortened
the total training time.

Figure 5: Exp. 4: System Architecture.

Figure 6: Exp. 1: Average Reward Transition.

5 RESULTS

5.1 Exp. 1: Application to Web Apps

In Exp. 1, we examined changes in learning efficiency
and accuracy by utilizing click information. Figure 6
shows the transition of the average episode rewards
after each epoch, based on the average reward ob-
tained over 10 episodes. The solid line represents
the case without click information, while the dashed
line indicates the case with click information. When
the clickability of HTML elements was included in
the action space, both learning efficiency and accu-
racy improved compared to when click information
was not included. In the reinforcement learning envi-
ronment used in this study, the maximum reward per
episode is 1.3. With click information, it took only
four epochs to achieve a reward of 1.3, whereas with-
out click information, it took 10 epochs. These re-
sults confirm that, even in web apps, including the
interaction information of GUI elements in the state
improves learning efficiency and accuracy.

5.2 Exp. 2: Preliminary Experiment
with Random Noise

In Exp. 2, we aimed to determine a benchmark for
inference accuracy by substituting part of the action
space with the inference results of an LLM. Figure 7
shows the transition of the average episode rewards
when random noise is included at multiple ratios.
Evaluation was carried out at the end of each epoch.
Each line represents results with 0%, 10%, or 20%
noise. The dotted line indicates 0%, the dashed line

Using LLM-Based Deep Reinforcement Learning Agents to Detect Bugs in Web Applications

1005

Figure 7: Exp. 2: Average Reward Transition by Noise
Ratio.

indicates 10%, and the solid line indicates 20%. With
0% noise, the agent reached a reward of 1.3 by the
5th epoch; with 10% noise, it took 6 epochs; and with
20% noise, it took 4 epochs. Based on these results,
in Exp. 3, we aimed for an LLM and prompts capable
of achieving at least 80% inference accuracy.

5.3 Exp. 3: Inference of Clickability by
LLMs

In Exp. 3, we explored a combination of an LLM and
prompts capable of inferring clickability of HTML
elements with over 80% accuracy. When selecting
the model, we prioritized running on a local machine
and inference performance. As a result, we chose
google/gemma-7b. Figure 8 shows the prompt, which
takes HTML as input and returns 0 or 1 to indicate
whether an element is clickable. The prompt structure
included sections for [INSTRUCTION] to give com-
mands, [ADVICE] for inference advice, [THINK-
ING STEPS] to outline the thought process, and [EX-
AMPLES] to provide concrete examples.

As a result, the inference results on the manually
extracted validation data averaged 81.5% over five tri-
als. Additionally, the inference accuracy in the cus-
tom web application averaged 100.0% over five trials.

5.4 Exp. 4: Substitution Using LLMs
Inference Results

In Exp. 4, the LLM and prompts selected in Exp. 3
were used to infer whether HTML elements are click-
able, and these results were incorporated into the state
space for DRL.

Figure 9 shows the training results. The graph
represents the average reward obtained across 10
episodes after each epoch. The solid line indicates the
scenario without click information, the dashed line
shows the scenario using LLM-based inference, and
the dotted line corresponds to the scenario without
LLM-based inference. Although it is not clearly visi-

[INSTRUCTION]
Dete rmine whe the r t h e f o l l o w i n g HTML e l e m e n t i s c l i c k a b l e

o r n o t .
Answer 1 i f t h e e l e m e n t i s c l i c k a b l e , and 0 i f i t i s n o t .
P l e a s e answer wi th 0 or 1 , and answer on ly a t t h e

b e g i n n i n g o f your r e s p o n s e . Do n o t i n c l u d e any
e x p l a n a t i o n s .

Think wi th f o l l o w i n g t h e s t e p s .

[ADVICE]
− Do n o t c o n s i d e r c h i l d e l e m e n t s i n your judgment .

[THINKING STEPS]
1 . Check i f t h e g i v e n HTML element ’ s t a g i s i n h e r e n t l y

c l i c k a b l e l i k e <b u t t o n> t a g s , <s e l e c t> and so on .
I f so , t h e g i v e n html e l e m e n t i s c l i c k a b l e .
T h e r e f o r e r e t u r n 1 , and t h e n f i n i s h t h i n k i n g
s e q u e n c e .

2 . I f n o t i n h e r e n t l y c l i c k a b l e , i t become c l i c k a b l e due
t o an a t t r i b u t e . Examples i n c l u d e <a> t a g s wi th
h r e f a t t r i b u t e s o r <div> t a g s wi th o n c l i c k
a t t r i b u t e s and so on . I f t h e e l e m e n t i s c l i c k a b l e
due t o t h i s , r e t u r n 1 .

3 . When e l e m e n t s such as c l a s s names o r t e x t c o n t e n t
s u g g e s t t h a t t h e y a r e c l i c k a b l e , t h e y s h o u l d be
t r e a t e d as c l i c k a b l e .

[EXAMPLES]
Here a r e some examples :
Example 1 :
Given HTML: <a h r e f =” h t t p s : / / www. example . com”>Link
Answer : 1
Example 2 :
Given HTML: <a>Link
Answer : 0
Example 3 :
Given HTML: <p>Text</p>
Answer : 0
Example 4 :
Given HTML: <div><b u t t o n>C l i c k Me</ b u t t o n></d iv>
Answer : 0
Example 5 :
Given HTML: <b u t t o n>C l i c k Me</ b u t t o n>
Answer : 1
Example 6 :
Given HTML: <d i v o n c l i c k =” a l e r t (’ C l i c k e d ! ’)”>C l i c k Me</

d iv>
Answer : 1

[ACTUAL]
GIVEN HTML:

Figure 8: Prompt for Inference.

ble in the figure, the dashed and dotted lines overlap,
indicating no observable difference in learning perfor-
mance up to the 12th epoch, regardless of LLM usage.
In this environment, the maximum achievable reward
per episode is 1.3. With click information (whether
using LLM or not), the agent reached 1.3 by the 5th
epoch, whereas without click information, it took un-
til the 11th epoch. These results confirm that includ-
ing LLM inference as part of the state attains learn-
ing efficiency and accuracy comparable to using di-
rect click information.

6 DISCUSSION

6.1 Improving Accuracy

The aim of this study is to demonstrate that LLM in-
ference results can be utilized as states in DRL. By
simplifying the web application to a minimal config-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1006

Figure 9: Exp. 4: Average Reward Transition.

uration, we confirmed that substituting with LLM in-
ference is effective. The web app used in this study
has a simple structure and uses representative tags
like button and div. However, typical web apps are
more complex, so the system developed in this study
may not achieve sufficient inference accuracy, poten-
tially hindering successful learning. Therefore, when
applying this approach to more general web apps, it
is necessary not only to refine the LLM and prompts
but also to improve inference accuracy through model
fine-tuning and partially supervised learning. In addi-
tion to improving inference accuracy, enhancing the
robustness of DRL is also important. DRL is known
for its robustness to noise, although the level of ro-
bustness varies among models. In this study, we se-
lected PPO for its stability in training, but by using a
model that is more resistant to noise, it will be possi-
ble to build a system that is even more robust to LLM
noise.

6.2 Generalization

In this study, we conducted training using an original
web app as the target. Furthermore, we demonstrated
that including the values inferred by the LLM into the
state space improves learning efficiency and accuracy.
In prior research focusing on mobile apps (Romdhana
et al., 2022), 68 open-source apps selected from Su
et al.’s paper were used. On the other hand, for web
apps, no generalized test set exists. Therefore, to val-
idate general apps, it is necessary to start from the
creation of a test set.

One of the factors that improved learning effi-
ciency and accuracy by utilizing the inference results
of the LLM in this study is that the learning target was
a simple, original web app. When the web app being
learned becomes more complex, the number of pos-
sible states increases, leading to an expansion of the
state space. Since the inference accuracy of the LLM
is not 100%, there is a risk that learning efficiency and
accuracy may decrease when the state space becomes
bloated. Therefore, it is necessary to conduct training
on complex web apps to verify how effective the pro-

posed method is. Though not included in this paper
due to time constraints, we are currently conducting
the experiment.

There are two issues in generalizing the proposed
method. The first is whether the values inferred by
the LLM and added to the state contribute to improv-
ing learning efficiency and accuracy. In this study,
we inferred clickability and added it to the state be-
cause previous research had shown that adding it to
the state improves learning efficiency and accuracy.
However, in environments other than web apps, it is
often unclear what kind of values contribute to im-
proving learning efficiency and accuracy. Therefore,
it is necessary to establish a method to evaluate how
important the inferred values are. The second issue
is determining the degree of accuracy required for the
inferred values added to the state. In this study, pre-
liminary experiments led us to judge that an inference
accuracy of 80% or higher is sufficient. However,
this threshold is likely to vary depending on the en-
vironment and the values to be inferred. Therefore,
an evaluation method is needed to set guidelines for
inference accuracy.

6.3 Application to Other Fields

Possible applications of this study include black-box
environments like consumer games and domains that
handle complex environmental information, such as
autonomous driving. In consumer games, there is
typically no API to obtain environment information;
however, by using an LLM to infer environmental
data from images, these games can be more easily
utilized as DRL tasks. In autonomous driving, which
often involves high-dimensional camera footage, ex-
tracting summary information from images or videos
with an LLM and incorporating it into the state space
is expected to improve learning efficiency. For ex-
ample, by inferring danger levels and including them
in the state space, the system can be guided toward
safer actions. The extensive knowledge contained in
LLMs is anticipated to support learning in these envi-
ronments.

7 CONCLUSIONS

In this study, we demonstrated that in DRL-based
GUI black-box testing for web applications, learning
efficiency and accuracy can be improved by using in-
ferred clickability from HTML as part of the state.
Clickability is restrictive information that depends on
the browser. First, we used click information obtained
via the Chrome DevTools Protocol and trained with

Using LLM-Based Deep Reinforcement Learning Agents to Detect Bugs in Web Applications

1007

the Chrome driver, resulting in more efficient learn-
ing and higher accuracy. Next, we set up an environ-
ment to infer clickability from HTML and added the
inference results to the state, which led to equally ef-
ficient learning and improved accuracy compared to
not using the LLM-inferred values. This shows that
in DRL, incorporating LLM inference results as part
of the state is effective. As future work, it will be
necessary to validate on more complex web applica-
tions and to verify other types of information beyond
clickability.

ACKNOWLEDGEMENTS

This paper uses ChatGPT’s o1-preview and 4o for
translations from Japanese to English. This work
was supported by JSPS KAKENHI Grant Numbers
JP22K12157, JP23K28377, JP24H00714.

REFERENCES

Adamo, D., Khan, M. K., Koppula, S., and Bryce, R.
(2018). Reinforcement learning for android gui test-
ing. In Proceedings of the 9th ACM SIGSOFT Inter-
national Workshop on Automating TEST Case Design,
Selection, and Evaluation, A-TEST 2018, page 2–8,
New York, NY, USA. Association for Computing Ma-
chinery.

Apple (2024). App review. https://developer.apple.com/jp/
distribute/app-review. Access Date: 2024-05-23.

Bertolino, A. (2007). Software testing research: Achieve-
ments, challenges, dreams. In Future of Software En-
gineering (FOSE ’07), pages 85–103.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners.

Cai, L., Wang, J., Cheng, M., and Wang, J. (2021). Au-
tomated testing of android applications integrating
residual network and deep reinforcement learning.

Carlini, N. and Wagner, D. (2017). Towards evaluating the
robustness of neural networks. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 39–57, Los
Alamitos, CA, USA. IEEE Computer Society.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu,
K., Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W.,
Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., and Xie,
X. (2024). A survey on evaluation of large language
models. ACM Trans. Intell. Syst. Technol., 15(3).

Eskonen, J., Kahles, J., and Reijonen, J. (2020). Automat-
ing gui testing with image-based deep reinforcement
learning. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems
(ACSOS), pages 160–167.

Google (2024). Play console help. https://support.google.
com/googleplay/android-developer/answer/9859751?
hl=en. Access Date: 2024-05-23.

Itkonen, J. and Rautiainen, K. (2005). Exploratory testing: a
multiple case study. In 2005 International Symposium
on Empirical Software Engineering, 2005., pages 10
pp.–.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. (2023).
Reward design with language models. In The Eleventh
International Conference on Learning Representa-
tions.

OpenAI (2024a). Openai gym. https://github.com/openai/
gym.

OpenAI (2024b). Proximal policy optimization. https://
openai.com/index/openai-baselines-ppo/.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. (2021). Stable-baselines3: Reli-
able reinforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8.

Romdhana, A., Merlo, A., Ceccato, M., and Tonella, P.
(2022). Deep reinforcement learning for black-box
testing of android apps. ACM Trans. Softw. Eng.
Methodol., 31(4).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms.

Sneha, K. and Malle, G. M. (2017). Research on soft-
ware testing techniques and software automation test-
ing tools. In 2017 International Conference on En-
ergy, Communication, Data Analytics and Soft Com-
puting (ICECDS), pages 77–81.

Tao, C., Wang, F., Gao, Y., Guo, H., and Gao, J. (2024). A
reinforcement learning-based approach to testing gui
of mobile applications. World Wide Web, 27(2).

Wetzlmaier, T., Ramler, R., and Putschögl, W. (2016). A
framework for monkey gui testing. In 2016 IEEE In-
ternational Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 416–423.

Xia, T., Yu, B., Wu, Y., Chang, Y., and Zhou, C. (2024).
Language models can evaluate themselves via proba-
bility discrepancy.

Yoon, J., Feldt, R., and Yoo, S. (2023). Autonomous large
language model agents enabling intent-driven mobile
gui testing.

You, E. (2024). Vue.js. https://ja.vuejs.org/.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1008

