
Efficient Models Deep Reinforcement Learning for NetHack Strategies

Yasuhiro Onuki, Yasuyuki Tahara a, Akihiko Ohsuga b and Yuichi Sei c

The University of Electro-Communications, Tokyo, Japan
ohnuki.yasuhiro@ohsuga.lab.uec.ac.jp, {tahara, ohsuga, seiuny}@uec.ac.jp

Keywords: Deep Reinforcement Learning, Game Agents, Additional Rewards, VAE, NLE.

Abstract: Deep reinforcement learning (DRL) has been widely used in agent research across various video games,
demonstrating its effectiveness. Recently, there has been increasing interest in DRL research in complex
environments such as Roguelike games. These games, while complex, offer fast execution speeds, making
them useful as a testbeds for DRL agents. Among them, the game NetHack has gained of research attention.
In this study, we aim to train a DRL agent for efficient learning with reduced training costs using the NetHack
Learning Environment (NLE). We propose a method that incorporates a variational autoencoder (VAE). Ad-
ditionally, since the rewards provided by the NLE are sparse, which complicates training, we also trained a
DRL agent with additional rewards. As a result, although we expected that using the VAE would allow for
more advantageous progress in the game, contrary to our expectations, it proves ineffective. Conversely, we
find that the additional rewards are effective.

1 INTRODUCTION

Research on Deep Reinforcement Learning (DRL)
has been conducted in video games such as Atari
2600, Minecraft, and NetHack. DRL research in
games is useful not only for gameplay but also for
game design and testing (Bergdahl et al., 2020).

With this context, DRL research in complex and
stochastic environments such as Roguelike games has
also attracted attention (Kanagawa and Kaneko, 2019;
Hambro et al., 2022; Izumiya and Simo-Serra, 2021).

Roguelike games refer to games with similar char-
acteristics to Rogue, which was released in 1980. Ex-
amples of Roguelike games include NetHack and the
Pokémon Mystery Dungeon series. Roguelike games
have characteristics including the following: the prob-
ability of encountering the same situation multiple
times is extremely low, there is partial observability
in which players cannot see areas they have not vis-
ited, and if the playing character dies, the game must
be restarted from the beginning.

NetHack is a Roguelike game which released in
19871, 2. The NetHack play screen, as shown in Fig-
ure 1, is represented the game’s stats using letters

a https://orcid.org/0000-0002-1939-4455
b https://orcid.org/0000-0002-2552-6717
c https://orcid.org/0000-0001-6717-7028
1NetHack Homepage:https://www.nethack.org/
2NetHack Wiki:https://nethackwiki.com/

and symbols. The goal of the game is to explore
over 50 floors, collect amulets, and offer them to
the gods. NetHack has the following characteristics,
among others: eating too much can cause suffocation,
there are instant-death traps, and the game is lengthy
with over 50 levels to explore.

There is a study titled “The NetHack Learning
Environment” (NLE) (Küttler et al., 2020) that used
NetHack as a reinforcement learning (RL) environ-
ment. NetHack is known for being a challenging RL
environment, making it difficult for DRL agents to
succeed in the game (Piterbarg et al., 2023).

Figure 1: This is an example of playing NetHack scene.

The authors of NLE have recommended using the
Score task, which rewards in-game score such as the
number of enemies defeated, the dungeon depth (dun-
geon level) and other factors. However, the Score task

556
Onuki, Y., Tahara, Y., Ohsuga, A. and Sei, Y.
Efficient Models Deep Reinforcement Learning for NetHack Strategies.
DOI: 10.5220/0013253100003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 556-563
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



only provides rewards to the agent when certain situ-
ations are met. As a result, the rewards in the Score
task are sparse, making it difficult for the agent to
learn the value of its actions.

In recent years, research on RL using Variational
Autoencoder (VAE) (Kingma and Welling, 2014) has
progressed (Ha and Schmidhuber, 2018; Hafner et al.,
2024). Of these, the high-performing agent “Dream-
erV3” (Hafner et al., 2024) has been developed.

DRL consumes a substantial amount of computa-
tional resources, especially in complex environments
and tasks. The high usage of GPUs, CPUs, and mem-
ory consumption also leads to increased costs. Given
the increasing costs, it is essential to reduce them
in order to use resources efficiently in research and
small-scale development project. Additionally, when
training takes a long time, the cycles of experimenta-
tion and improvement slow down, making it crucial
to reduce learning costs and achieve faster training.

In this study, we aim to develop an agent that pro-
gresses more efficiently in the NLE by using a DRL
approach that reduces learning costs and enables effi-
cient learning. To achieve this, we train agents with
both the rewards from the NLE Score task and ad-
ditional rewards, and compare them with agents that
receive only the rewards from the Score task. Fur-
thermore, the agent is divided into two parts: one for
learning latent representations using a VAE and the
other for learning action selection using a DRL agent,
in order to train the agent efficiently.

As a result, although the integration of the VAE
was expected to enhance the DRL agent’s efficiency,
the anticipated improvement fails to appear. In con-
trast, the additional rewards provide the necessary
information for progressing more efficiently in the
NLE, contributing to more efficient learning.

This paper proceeds as follows. In Section 2, re-
lated work is introduced. Section 3 provides a de-
tailed explanation of the proposed method, and Sec-
tion 4 presents the experimental methods and results.
In Section 5, a discussion is provided, and Section 6
concludes the paper and discusses future study.

2 RELATED WORK

2.1 NetHack Learning Environment

The NetHack Learning Environment (NLE) (Küttler
et al., 2020) is a study that uses the Gym Environment
(Brockman et al., 2016) to set up NetHack as a RL en-
vironment and presents the results of baseline models.
In NLE, the number of environment steps per episode
is generally limited to a maximum of 5000 steps.

The observation space in NLE consists of ele-
ments such as glyphs, blstats and message. Glyphs
represent the 2D symbolic dungeon observation space
(the purple-framed area in Figure 1). Blstats repre-
sent the agent’s coordinates and character attributes
(the green-framed area and the white ‘@’ symbol at-
tributes in Figure 1). Message represent displayed
messages (the red-framed area in Figure 1). NLE has
an action space of 93 available actions and includes
seven initial tasks, such as Score task, which feature
different reward functions and action space.

The authors of NLE have considered it currently
very difficult for machine learning approaches to
solve NetHack, and have recommended using the
Score task with in-game score as the reward function.
Therefore, in this study, we use the Score task.

In the NLE baseline models, learning was con-
ducted using IMPALA and RND. The observation
space was composed glyphs, blstats, and 9×9 area
centered around the agent (the yellow-framed area in
Figure 1, hereafter referred to as glpyh99), and a re-
duced action space with 23 dimensions was used.

The baseline models were trained with 1 billion
environment steps using the Score task, and “Monk-
Human-Neutral-Male”. The reported average dun-
geon level was 5.4, with a maximum of 11. However,
NetHack requires descending as many as 50 dungeon
levels, so it is essential to develop agents capable of
exploring deeper levels.

In this study, we aim to advance the exploration
of NLE while reducing learning costs and achieving
efficient learning. We consider IMPALA (Espeholt
et al., 2018) which DRL models use multi-learners
and RND (Burda et al., 2019) which involve training
multiple neural networks simultaneously. However,
these method are associated with high learning costs
and are deemed to have high learning costs and are
limited in supporting efficient learning. Therefore, we
decided to use different algorithms.

2.2 DRL Research on NLE

In recent years, research using Large Language Mod-
els (LLMs) in NetHack has been conducted (Klis-
sarov et al., 2023). Klissarov et al. explored the
capabilities and limitations of LLM (GPT-4-Turbo)
as a zero-shot agent to investigate how LLMs func-
tion without prior training. Their results showed that
LLM performed to a certain degree in zero-shot due to
its expensive knowledge and versatility. However, in
complex and dynamic environments like NLE, chal-
lenges remained in terms of strategic decision-making
and planning abilities. The computational cost of
LLMs is enormous, and in Section 1, they are mis-

Efficient Models Deep Reinforcement Learning for NetHack Strategies

557



aligned with the purpose of this study to reduce the
learning cost. Thus, we decided not to use LLMs.

MiniHack (Samvelyan et al., 2021) is an envi-
ronment based on NLE that provides an interface
for RL experiments across a range of settings, from
simple rooms to complex worlds. While simpler
tasks in MiniHack were successfully completed, more
challenging tasks were not. It was also found that
RL methods struggle to generalize at scale. Conse-
quently, DRL agents in complex environments must
possess the ability to handle this complexity.

The NetHack Challenge (Hambro et al., 2022a) at
NeurIPS 2021 competition saw several agents surpass
the baseline model, but none completed the NLE. Ad-
ditionally, agents that used symbolic approaches out-
performed those using neural approaches. Among the
neural approaches agents, those that combined sym-
bolic methods with neural networks achieved the best
results. Therefore, it is considered that neural network
approaches require efficient exploration and accurate
state understanding.

2.3 DRL with VAE

DreamerV3 (Hafner et al., 2024) adopted an approach
that simulates the environment using World Mode (Ha
and Schmidhuber, 2018) based on a VAE to determine
optional actions based on future prediction. As a re-
sult, it has become a DRL agent with advantages such
as efficient asmple use, fast learning, and a highly
versatile design. DreamerV3 is also the first algo-
rithm to collect diamonds in Minecraft from scratch
without external tuning or prior knowledge. Inspired
by its high performance as a DRL network that uses
a VAE, this study incorporates a VAE into the DRL
neural network. However, unlike DreamerV3, we do
not perform future predictions. Instead, we aim to di-
rectly leverage the latent representations for decision-
making to enable efficient agent decisions.

3 PROPOSED METHOD

The reward function for the Score task in the NLE
only provides rewards when certain situations occur,
resulting in sparse rewards for DRL agents. To ad-
dress this, we propose additional rewards for the agent
beyond those provided by the Score task. Addition-
ally, we introduce a DRL agent that uses a VAE,
with separate training for the VAE component and the
other neural networks.

In this Section, we describe both the additional re-
wards and the neural network architecture of the DRL
agent that incorporates the VAE.

3.1 Additional Rewards

In this study, we propose additional rewards, which
are combined with the rewards from Score task and
used for the agent’s learning. The purpose and com-
ponents of the additional rewards are as follows.

• The reward related to the agent’s parameters: a
positive reward is given to the agent if the param-
eters stay within a certain range, and a negative
reward if they fall outside of that range.

– Reward of Hit points (HP):
min((current HP) / (MAX HP)−0.5,0.3)/100.

– Reward of Hunger status: Table 1.

• Rewards that assist in progressing through the
game: These are provided as reference informa-
tion to help advance the gameplay.

– The dungeon level up: 20.
– The unexplored areas have decreased except

the above: (Number of reductions)/32.
– The agent level up: 15.
– The agent stay in the same position for the last

12/16 steps: -0.01.

• Rewards related to specific actions: These are
given to Mitigation or addition of penalty, and in-
crease the value of necessary actions.

– The agent select the go down command when a
down staircase is present in glyph99: 0.02.

– The agent select the go down command when
except the above: 0.005.

– The agent select the kick command: 0.01.
– The agent failed to specify the direction to kick

when it was necessary: -0.02.
– The agent walk towards the wall: -0.01.

Table 1: Reward of Hunger status.

Hunger stats Select eat command? reward
Satiated Yes -0.01
Not hungry No 0.001
hungry Yes 0.02

No -0.01
Weak Yes 0.02

No -0.02
Fainting Yes 0.02

No -0.03

3.2 Architecture of DRL with VAE

In this study, we propose a DRL agent’s neural net-
work using VAE.

For the VAE, beta-VAE (Higgins et al., 2017) is
adopted. The VAE network is shown in Figure 2,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

558



Figure 2: This is proposed VAE Networks. BS means Batch Size.

where the inputs are glyphs and glyph99, and sepa-
rate encoders and decoders are used for each.

The DRL agent’s neural network is shown in Fig-
ure 3, with inputs consisting of the encoder’s out-
put from the VAE, along with blstats and message.
The DRL agent’s network is based on PPO agents,
and Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is used to retain information
from previous steps within the same episode.

Figure 3: This is proposed DRL Networks. BS means Batch
Size.

4 EXPERIMENTS

In this study, we used Windows 11 with WSL2, an
NVIDIA GeForce RTX 3090 as the GPU, and an In-
tel i9-10850K as the CPU. Due to computational re-
source constraints, the agents were trained using a
single setting of “Monk-Human-Neutral-Male”. Ad-
ditionally, for all learning, rewards were clipped us-
ing tanh(r/16), and the Adam optimizer (Kingma and
Ba, 2015) was used. The action space was set to a 23-
dimensional action space, as in NLE.

4.1 PPO vs DQN

First, we compared and decided on the algorithm to
be used as the DRL agent, choosing between Deep Q-
Network (DQN (Volodymyr et al., 2015): to adopted
prioritized experience replay (Schaul et al., 2016),
Double Q-Network (Van Hasselt et al., 2016), and
Dueling Network (Wang et al., 2016)) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017).

We trained the DQN for 10,000 episodes (25 mil-
lion environment steps), and the PPO for 25 million
environment steps. The neural network for DQN and
PPO is shown in Figure 4, and the main hyperparame-
ters are listed in Table 2. For DQN, the Q-values (the
output of the neural network) were calculated follow-
ing the implementation of the Dueling Network.

Table 2: Main Hyperparameters of DQN and PPO. ‘*’ used
the triangular mode of CyclicLR.

Hyperparameter DQN PPO
Learning Rate 5×10−4 [10−4,3×10−4]*
Batch size 64 512
Weight decay 10−5 -
Discount (γ) 0.96 0.99
GAE param (λ) - 0.95
Num. Actor - 20
Horizon (T ) - 1536
Num. Epochs - 5
Epsilon clip - 0.2
c1 / c2 - 1 / 0.002

Figure 5 shows reward progression for DQN and
PPO, and Figure 6 shows dungeon levels and agent
levels. After training each agent, we evaluated them
500 episodes, and the results are shown at the top
of Table 3. From Table 3, PPO agent outperformed
DQN in all metrics, including rewards of the Score
task, plus rewards, dungeon level and agent level.

Efficient Models Deep Reinforcement Learning for NetHack Strategies

559



Figure 4: This is DQN and PPO Networks.

Figure 5: This is the transition of rewards for DQN and
PPO.

Figure 6: This is the transition of dungeon level (depth) and
agent levels (levels) for DQN and PPO.

These results indicate that PPO can progress
learning more effectively than DQN. Therefore, in the
following experiments, we adopt PPO as the DRL al-
gorithm.

4.2 Comparison of Three PPO Agents

In this section, we compare three types of PPO agents:
a PPO agent with only the rewards from the Score
task, a PPO agent with both the rewards from the
Score task and additional rewards, and a PPO agent
using both the additional rewards and the VAE.

In the following, we evaluate the effectiveness of
the additional rewards, and then proceed to train the

PPO agent using both the additional rewards and the
VAE. In this study, aiming to progress through NLE,
we focus particularly on dungeon levels.

4.2.1 Additional Rewards

To evaluate the effectiveness of the additional re-
wards, we trained two PPO agents for 100 million
environment steps: one with only the rewards from
the Score task, and the other with both additional re-
wards and the rewards from the Score task. We used
the hyperparameters listed in Table 2, and the same
neural network architecture in the previous section.

Figure 7 shows the progression of rewards for the
PPO agent with only the rewards from the Score task
and the PPO agent with both the additional rewards
and the rewards from the Score task, Figure 8 shows
the progression of dungeon levels, and Figure 9 shows
the progression of agent levels. After training each
agent, we evaluated them 500 episodes, and Table 3
shows the results at the bottom.

As a result, the DRL agent with the additional re-
wards outperformed the one with only the rewards
from the Score task in terms of rewards from the
Score task, dungeon level, and other metrics. There-
fore, we consider the additional rewards in Section 3.1
to be effective and proceed to compare a DRL agent
using VAE that receives both the additional rewards
and the rewards from the Score task.

4.2.2 Learning of DRL Architecture with VAE

Next, we trained a PPO agent using the DRL archi-
tecture with the additional rewards rom Section 3.1
and the VAE from Section 3.2, to compare whether it
could progress further than a standard PPO agent. We
trained a PPO agent using beta-VAE and additional
rewards for 100 million environment steps.

In Figure 2, Conv2D, Deconv2D and FC without
‘*’ have ReLU as the activation function. Addition-
ally, in Figure 3, ReLU was used before the first con-
catenation, and ELU was used thereafter.

In the first 16 iterations, we trained only the VAE,
setting the number of VAE epochs to eight. After that,
we trained both VAE and PPO, setting the number of
VAE epochs to two, the number of PPO actors to 24,
and the learning rate to the range [2×10−4,3×10−4].

Figure 7 shows the progression of rewards for the
PPO agent with the additional rewards and the VAE,
Figure 8 shows the progression of dungeon levels, and
Figure 9 shows the progression of agent levels.

Figure 7 shows the transition of rewards during
training. The rewards for PPO and Proposed (Ad-
ditional rewards) initially increased, then decreased,
and subsequently increased again. On the other hand,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

560



Table 3: This table shows the average values from the evaluation conducted after 500 episodes of training. “Reward” mean
score task’s reward, and “Plus Reward” refers to the Score task’s reward excluding the penalty. The number in parentheses to
Dungeon level represents the maximum value of Dungeon level.

Agent Reward Plus Reward Dungeon level Agent level
DQN (25M step) -33.49 10.18 1.03(3) 1.00
PPO (25M step) 54.36 62.55 1.24(4) 1.18

PPO (100M step) 41.00 46.88 1.18(5) 1.08
Proposed (Additional Reward 100M step) 58.76 66.01 1.28(6) 1.18
Proposed (VAE+Additional Reward 100M step) 33.59 42.79 1.16(4) 1.09

Figure 7: This is the transition of rewards for 3 agents.
“Addr” means Additional rewards. The thin dashed line rep-
resents the sum of the rewards from the Score task and the
additional rewards.

Figure 8: This is the transition of dungeon level for 3 agents.

the rewards for Proposed (VAE and Additional re-
wards) consistently grew but did not surpass those of
the other agents.

Figure 8 shows the transition of dungeon levels.
For PPO and Proposed (Additional rewards), the lev-
els went up and down repeatedly but started to in-
crease around 60 million steps. On the other hand, for
Proposed (VAE and Additional rewards), the dungeon
levels began to increase around 60 million steps and
reached values comparable to PPO at approximately
100 million steps.

Figure 9 shows the transition of agent levels. For
PPO and Proposed (Additional rewards), the agent
levels exhibited a trend similar to the dungeon levels.
On the other hand, for Proposed (VAE and Additional
rewards), the agent levels showed a gradual increas-
ing trend but did not surpass those of the other agents.

Figure 9: This is the transition of agent level for 3 agents.

After training the agent, we evaluated them 500
episodes, and Table 3 shows the results at bottom.

The results indicate that the DRL agent employ-
ing additional rewards and VAE underperformed the
standard PPO agent in terms of dungeon level pro-
gression. Although particular emphasis was placed on
dungeon level performance, the DRL agent with ad-
ditional rewards and VAE was ineffective compared
to the conventional PPO agent.

5 DISCUSSION

In this study, we have placed particular emphasis on
dungeon level from the perspective of progressing in
NLE. The rewards from the Score task are compre-
hensive measures based on factors such as the number
of defeated enemies and the amount of coins picked
up, which allows for higher rewards by remaining on
the same floor. Conversely, in NetHack, there are
challenges like “score runs,” where players aim to
complete the game with lower in-game scores, and
“level 1 clears,” where players complete the game
without leveling up the hero at all. Therefore, we
consider it inappropriate to view the rewards from the
Score task as a direct measure of dungeon progres-
sion. Consequently, in this study, we focus on dun-
geon level, considering that in a hierarchical game
like NetHack, the depth of the dungeon reached and
progress made are closer indicators of progress than
other metrics.

Efficient Models Deep Reinforcement Learning for NetHack Strategies

561



As shown in Table 3, in the evaluation, The PPO
with additional rewards achieved the highest dungeon
level and reward, followed by the PPO only the re-
wards from the Score task, and finally the PPO with
VAE and additional rewards.

Therefore, the findings suggest that using VAE
as the neural network for DRL may limit efficient
progress. In contrast, it is shown that the additional
rewards are effective for progress in NLE.

5.1 Disscusion on DQN and PPO

In the process of learning, the reward progression of
the DQN agent showed an increasing trend initially,
followed by a decreasing trend, with negative values
in the evaluation reward. This is considered to be be-
cause DQN adopts the ε-greedy method.

Figures 7, 8 and 9 show that the PPO agent with
a standard neural network experienced particularly
sharp variations in reward, indicating instability in
learning. This instability is believed to be due to the
sensitivity of the agent to hyperparameters. This sen-
sitivity can explain why the PPO agent trained for 25
million steps outperformed the agent trained for 100
million steps in terms of reward and dungeon level.

5.2 Disscusion on Additional Rewards

The DRL agent with a standard neural network, when
given additional rewards, outperformed the agent
without additional rewards in terms of metrics such
as reward and dungeon level. In environments with
sparse rewards, we argue that providing additional re-
wards to the DRL agent improves the reward func-
tion provided by the environment and effectively con-
tributes to progress in the game.

5.3 Disscusion on VAE Architecture

The PPO agent with VAE showed a consistent upward
trend in rewards. However the reward increase oc-
curred at a slower pace compared to other agents, and
it did not reach the levels achieved by the other agents.
This is assumed that this results from using VAE to
map the state into a latent representation, which the
DRL agent then uses as input. Therefore, it is nec-
essary to transform the VAE encoder’s output into a
form that the DRL agent can more easily understand.

The training time was approximately 57.54 hours
for PPO using VAE and 59.67 hours for standard
PPO, with the VAE-based PPO finishing the train-
ing faster. The CPU usage was nearly the same for
both agents, while the GPU usage was slightly lower
(around 1%) for PPO with VAE. Therefore, using

a VAE is considered to contribute to more efficient
training.

In this study, we provided the latent representa-
tions of glyphs and glyph99 generated by a VAE di-
rectly as inputs to the DRL agent. However, the re-
sults did not surpass those achieved by standard PPO.
Therefore, it is necessary to explore how best to uti-
lize VAEs in the context of NLE. We are currently
examining what input information should be used for
the VAE and how the encoder outputs of the VAE can
be effectively employed. Additionally, we aim to in-
vestigate whether it is possible to design VAE outputs
in a form that is easier for DRL to understand, rather
than simply utilizing a VAE in its standard form.

6 CONCLUSIONS

In this study, we developed an efficient DRL agent
and examined its ability to progress in NLE. As ef-
ficient DRL agents, we developed and trained two
agents: one agent that added additional rewards to
the rewards from NLE Score task, and another agent
that used both additional rewards and beta-VAE in the
neural network.

The results suggest that, despite expectations for
more efficient learning and improved performance in
the DRL agent through VAE integration, there is a de-
parture from these initial predictions. Conversely, we
have demonstrated that using additional rewards is ef-
fective for promoting efficient learning.

There are three main challenges for future work.
The first is the adjustment of additional rewards

and hyperparameters. We believe that the additional
reward scheme requires revision. Furthermore, we
plan to develop an algorithm that automatically ad-
justs both additional rewards and hyperparameters,
aiming to create an agent capable of autonomously
achieving optimal performance.

The second is incorporating state-of-the-art meth-
ods and symbolic-based approaches. In this study,
we used the fundamental DRL algorithms, DQN and
PPO, and compared their performances. However, in
NLE, symbolic-based approaches have also demon-
strated effective results, and there are several high-
performing DRL algorithms. Therefore, we would
like to consider combining symbolic approaches with
DRL or employing the latest DRL algorithms.

The third is considering comparisons with other
methods and generalizability. In this study, due
to computational resource limitations, we conducted
training under the single setting of “Monk-Human-
Neutral-Male” for 100 million steps. In contrast,
many studies in NLE involve training for 1 billion

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

562



steps (Küttler et al., 2020; Izumiya and Simo-Serra,
2021). Therefore, considering the cost of implement-
ing and training other algorithms, we did not perform
comparisons with other methods. Thus, we aim to
further enhance the efficiency and speed of training,
conduct training for 1 billion environment steps, and
compare our method with others. Additionally, we
plan to include settings other than “Monk-Human-
Neutral-Male” to improve generalizability in NLE.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Numbers JP22K12157, JP23K28377, JP24H00714.

We acknowledge the assistance for the ChatGPT
(GPT-4o and 4o mini) was used for proofreading,
which was further reviewed and revised by the au-
thors.

REFERENCES

Bergdahl, J., Gordillo, C., Tollmar, K., and Gisslén, L.
(2020). Augmenting automated game testing with
deep reinforcement learning. In 2020 IEEE Confer-
ence on Games (CoG), pages 600–603.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nai gym. In arXiv preprint arXiv:1606.01540.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2019).
Exploration by random network distillation. In Inter-
national Conference on Learning Representations.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. (2018). IM-
PALA: Scalable distributed deep-RL with importance
weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80, pages 1407–1416.

Ha, D. and Schmidhuber, J. (2018). World models. In arXiv
preprint arXiv:1803.10122.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2024).
Mastering diverse domains through world models. In
arXiv preprint arXiv:2301.04104.

Hambro, E., Raileanu, R., Rothermel, D., Mella, V.,
Rocktäschel, T., Küttler, H., and Murray, N. (2022).
Dungeons and data: A large-scale nethack dataset. In
Advances in Neural Information Processing Systems,
volume 35, pages 24864–24878.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. (2017).
beta-VAE: Learning basic visual concepts with a con-
strained variational framework. In International Con-
ference on Learning Representations.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. In Neural Comput., volume 9, pages 1735–
1780. MIT Press.

Izumiya, K. and Simo-Serra, E. (2021). Inventory manage-
ment with attention-based meta actions. In 2021 IEEE
Conference on Games (CoG).

Kanagawa, Y. and Kaneko, T. (2019). Rogue-gym: A new
challenge for generalization in reinforcement learn-
ing. In arXiv preprint arXiv:1904.08129.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In International Conference
on Learning Representations.

Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes. In International Conference on Learn-
ing Representations.

Klissarov, M., D’Oro, P., Sodhani, S., Raileanu, R., Bacon,
P.-L., Vincent, P., Zhang, A., and Henaff, M. (2023).
Motif: Intrinsic motivation from artificial intelligence
feedback. In arXiv preprint arXiv:2310.00166.

Küttler, H., Nardelli, N., Miller, A. H., Raileanu, R.,
Selvatici, M., Grefenstette, E., and Rocktäschel, T.
(2020). The nethack learning environment. In 34th
Conference on Neural Information Processing Sys-
tems.

Piterbarg, U., Pinto, L., and Fergus, R. (2023). Nethack is
hard to hack. In Thirty-seventh Conference on Neural
Information Processing Systems.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J.,
Jiang, M., Hambro, E., Petroni, F., Küttler, H.,
Grefenstette, E., and Rocktäschel, T. (2021). Mini-
hack the planet: A sandbox for open-ended reinforce-
ment learning research. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016).
Prioritized experience replay. In arXiv preprint
arXiv:1511.05952.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. In arXiv preprint arXiv:1707.06347.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep re-
inforcement learning with double q-learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, AAAI’16, pages 2094–2100. AAAI
Press.

Volodymyr, M., Koray, K., David, S., A., R. A., Joel, V.,
G., B. M., Alex, G., Martin, R., K., F. A., Georg, O.,
Stig, P., Charles, B., Amir, S., Ioannis, A., Helen, K.,
Dharshan, K., Daan, W., Shane, L., and Demis, H.
(2015). Human-level control through deep reinforce-
ment learning. In Nature, number 518, pages 529–
533.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot,
M., and De Freitas, N. (2016). Dueling network archi-
tectures for deep reinforcement learning. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning, volume 48,
pages 1995–2003.

Efficient Models Deep Reinforcement Learning for NetHack Strategies

563


