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Abstract: Accurate shadow detection and correction are critical for improving image classification and segmentation
but remain challenging due to the lack of well-labeled datasets and the context-specific nature of shad-
ows, which limit the generalizability of supervised models. Existing unsupervised approaches, on the
other hand, often require specialized data or are computationally intensive due to high parameterization.
In this paper, we introduce ShadowScout, a novel, low-parameterized, unsupervised deep learning method
for shadow detection using standard RGB images. ShadowScout is fast, achieves performance compara-
ble to state-of-the-art supervised methods, and surpasses existing unsupervised techniques across various
datasets. Additionally, the model can seamlessly incorporate extra data, such as near-infrared channels, to
enhance shadow detection accuracy further. ShadowScout is available on the authors’ GitHub repository
(https://github.com/EluciDATALab/elucidatalab.starterkits/tree/main/models/shadows).

1 INTRODUCTION

Shadows form an omnipresent element in most cases
of real-life imagery, the result of light blocked by ob-
jects present in the physical world. In recent years, as
the demand for AI-based scene understanding in com-
puter vision has grown, accurately detecting and sub-
sequently correcting shadows has emerged as a sig-
nificant challenge. Shadow regions often have incom-
plete spectral information, lower intensity, and fuzzy
boundaries leading to information loss and poorer
scene representation. This ultimately reduces the per-
formance of image segmentation and classification al-
gorithms (Wang et al., 2017; Vazquez et al., 2008;
Zhang et al., 2014). This is particularly relevant in
the case of remote sensing aerial images, where vege-
tation and infrastructure creates complex shadows of
varying intensity, shape and size (Luo et al., 2019; He
et al., 2022). This underscores the importance of im-
plementing a shadow correction processing step be-
fore image analysis.

A crucial step in the shadow correction process
consists in their detection. While shadow detection is
often addressed using a supervised approach, this re-
quires the availability of ground truth shadow masks
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to train a model, typically deep learning-based, to
carry out the shadow detection. Such approaches face
two major challenges:

• Only a few publicly available, annotated datasets
exist (ISTD (Wang et al., 2018), AISD (Luo et al.,
2020) or CUHK-Shadow (Hu et al., 2021)), and
creating a dedicated labeled dataset requires sig-
nificant time and effort and it is a very costly pro-
cess.

• Images from different contexts show significant
variability in lighting, object types, camera set-
tings, and other factors. Our observation is that
shadow detection models trained on available
datasets lack robustness and struggle to general-
ize to different scenarios.
In view of these limitations, unsupervised shadow

detection methods, where shadow masks are derived
from the images by perceived differences between
shadow and non-shadow regions, offer a promising
alternative, especially when a dedicated model can
be trained for each dataset. However, the complex-
ity of shadows, which vary in intensity, shape, and
texture based on light conditions, object shapes, and
surfaces make unsupervised shadow detection a chal-
lenging task, particularly in deep learning approaches.
Few studies have explored this path(see (Koutsiou
et al., 2024; Zhou et al., 2022)). Several physics-
based models for unsupervised shadow detection ex-
ist, but they often require access to data sources that
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are not always available, such as spectral differences
(Finlayson et al., 2007; Makarau et al., 2011) or ge-
ometric features (Salvador et al., 2004; Wang et al.,
2017). He et al. (2022) propose a physics-based
model using thresholding of the hue (H), saturation
(S), and intensity (I) channels in RGB images, opti-
mized via particle swarm optimization. Though ef-
fective on the AISD, this method is computation-
ally heavy as it optimizes per image, always identi-
fies two groups regardless of shadow presence, under-
performs in highly saturated images, and requires ex-
tensive parameter tuning to adapt to different datasets.

We present here ShadowScout, an unsupervised
deep learning method that processes channels derived
from the HSI color model to infer image-specific
thresholds to determine shadow regions in the image.
The approach addresses the limitations mentioned out
above to make a fast, robust and precise shadow de-
tection method across datasets with images of differ-
ent types. Our key contributions are:

• The separation of the pixels in an image into
shadow and non-shadow groups based on an en-
semble of images, allowing to better capture the
properties of shadows.

• The use of a convolutional neural network (CNN)
for thresholding, reducing the parameterisation
degree of the approach and leveraging the in-
herent capabilities of CNNs to process local
and global image/shadow properties (Krizhevsky
et al., 2012).

• The use of a novel, adapted Calinski-Harabsz met-
ric (Caliński and Harabasz, 1974) as loss to the
CNN model, which confers the model higher ro-
bustness in the thresholding process.

• The ability to seamlessly extend the model inputs
to extra data sources, such as the near-infrared
band, for increased performance.

2 RELATED WORKS

The shadow detection problem involves assigning bi-
nary value to each pixel in an image, identifying
shaded regions as the positive class. Shadow detec-
tion methods are broadly categorized into supervised
and unsupervised methods: while supervised meth-
ods rely on annotated datasets to learn abstract image
features for binary classification, unsupervised meth-
ods make use of intrinsic physical and statistical prop-
erties of shadow regions to separate them from non
shadow regions (He et al., 2022).

Supervised methods generally achieve the best
performance but often struggle to generalize beyond

their training datasets. In contrast, unsupervised
methods are valuable when labeled datasets are un-
available or when annotating data is impractical due
to the time and effort involved. The BDRAR model
(Zhu et al., 2018), a supervised approach, has shown
notable outcomes by using a bidirectional feature
pyramid architecture and a recurrent attention resid-
ual module to enhance shadow details and reduce
false detections.

In another study, Luo et al. (2020) used an
encoder-decoder residual structure to capture shadow
features across different layers, with deep supervision
enhancing performance. This method showed impres-
sive results on the CUHK-Shadow dataset. More re-
cently, Wang et al. (2024) introduced SwinShadow,
a transformer-based approach focusing on adjacent
shadows. The architecture includes encoding with
Swin Transformers, decoding with deep supervision
and double attention modules, and feature integra-
tion via multi-level aggregation, designed to improve
shadow-object distinction.

Luo et al. (2019) proposed a method to correct in-
consistencies between shadow and non-shadow areas
through separated illumination correction, focusing
on shadow-related illumination. This approach uses
a spatially adaptive weighted total variation model to
derive shadow-related illumination and shadow-free
reflectance, enabling object-oriented illumination cor-
rection. Its effectiveness was validated on an aerial
images dataset through visual inspection.

Zhu and Woodcock (2012) introduced Fmask for
detecting clouds and shadows in Landsat imagery us-
ing Top of Atmosphere (TOA) reflectance and Bright-
ness Temperature (BT). Fmask creates a cloud proba-
bility mask based on physical properties, temperature,
spectral variability, and brightness, and predicts cloud
shadows by analyzing the Near Infrared (NIR) band
along with satellite viewing and illumination angles.

In Sun et al. (2019), the authors developed a
combinational shadow index (CSI) using Sentinel-2A
Multispectral Instrument (MSI) images by combining
the shadow enhancement index, normalized differ-
ence water index, and the NIR band. He et al. (2022)
introduced DLA-PSO, an unsupervised shadow de-
tection algorithm. DLA-PSO is a customized Parti-
cle Swarm Optimization (PSO) algorithm that uses
Otsu’s method as its fitness function.

Ghandour and Jezzini (2019), presented their
SMS unsupervised algorithm which relies on thresh-
olding the value component of the HSV color space
using Otsu’s method in order to differentiate between
shadow and non shadow regions. Such method has a
limitation because a lot of valuable information is lost
by eliminating the hue and saturation components.
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(a) Original image. (b) H channel. (c) S channel. (d) I channel. (e) HI channel.
Figure 1: Example of an aerial image from the AISD dataset Luo et al. (2020) to show the importance of the HI, I and S
channels.

The method only measures the pixels’ similarity to
black and white colors.

Chung et al. (2008) proposed another unsuper-
vised algorithm for shadow detection called Suc-
cessive Thresholding Scheme (STS). This algorithm
separates pixels between shadow and non shadow
based on a interative thresholding scheme. Although
this method demonstrated promising results, it is
time-consuming, due to its iterative and sequential
per-image processes, extensive pixel-wise operations,
high memory usage for intermediate results, and lim-
ited parallelization.

Unsupervised methods, despite good results, face
notable challenges. They depend on specific data
types that may not always be available and require
significant parameter tuning, which demands deep
domain expertise and extensive experimentation, es-
pecially with new datasets. Moreover, optimizing
parameters is computationally intensive, and shadow
characteristics often vary by context, limiting the gen-
eralizability and adaptability of these methods across
different scenarios.

3 METHODOLOGY

Here we provide a detailed explanation of our unsu-
pervised framework for shadow detection, ShadowS-
cout, that optimizes thresholding across transformed
RGB images in the HSI color space, where shad-
ows are better characterized. A convolutional neu-
ral network (CNN) is used to dynamically determine
channel-specific thresholds, separating shadowed and
non-shadowed pixels. The model uses a custom loss
function based on an adapted Calinski-Harabasz in-
dex to maximize the clustering quality of shadow re-
gions, ensuring an optimal separation. This section
covers the selection and processing of model inputs,
the architecture, and the custom loss function.

3.1 Choice of Model Inputs

RGB channels are not directly suitable for the detec-
tion of shadows because they do not effectively sep-
arate brightness from color information. Shadows
primarily cause variations in luminance rather than
color, which means that in RGB space, shadows can
appear similar to other dark regions unrelated to shad-
ows, leading to poor discrimination. Additionally,
RGB channels are sensitive to illumination changes,
making it difficult to distinguish shadows from other
low-light areas without specific features that are in-
variant to lighting conditions. As such, and based on
the work by He et al. (2022), the original RGB image
is first converted to the HSI color space which con-
sists of hue (H), saturation (S) and intensity (I). The
conversion is obtained using the following formulas
(Gonzalez, 2009):

H =

{
θ, B ≤ G
360−θ, B > G

(1)

θ = arccos

(
(R−G)+(G−B)

2
√

(R−B)2 +(R−B)(G−B)

)
(2)

S = 1− 3
R+G+B

min(R,G,B) (3)

I =
(R+G+B)

3
(4)

In order to avoid Gaussian noise, which can af-
fect shadow detection, a Gaussian filtering is applied
on the three channels separately (Kotecha and Djuric,
2003).

The HSI channels are more effective for captur-
ing shadow effects than RGB channels. Shadows
generally exhibit lower intensity values (Liu et al.,
2011) and higher hue values due to reduced direct
light and increased indirect or ambient light. This ef-
fect can be explained using the Phong illumination
model (Li et al., 2015). While shadows are typi-
cally linked to lower saturation (Saha and Chatterjee,
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2017), this relationship can vary in certain contexts,
such as aerial imagery, where atmospheric Rayleigh
scattering causes shadows to exhibit higher saturation
values (Polidorio et al., 2003).

The HSI channels, however, still struggle to distin-
guish shadows from some other ambiguous contexts,
such as vegetation, which also show high hue and low
intensity values, as seen in figure 1b and 1d. To fur-
ther distinguish from these confounding factors and
enhance the difference between the hue and intensity
channels, Chung et al. (2008) introduced the HI chan-
nel to replace the H channel as input to the model,
which is calculated from dividing the hue channel
by the intensity channel. HI values are greatest in
shadow regions, but are low in situations with similar
H and I values, such as vegetation, as seen in Figure
1e.

Input channels are normalized prior to being fed
to the model, to ensure consistency and a smoother
learning. The I and S channels are normalized with a
min-max function.

Given that the HI channel can assume extremely
large values when I is very low, leading to right-
skewed distributions, its values are transformed fol-
lowing Equation 5:

HI =

{
x if x < 1
1+ log(x) if x ≥ 1

(5)

where x represents the normalized pixel value of
the HI channel.

To further mitigate the impact of a skewed distri-
bution, the maximum value in the min-max normal-
ization function is replaced with the 95th percentile
and values clipped to 1.

3.2 Unsupervised Model for Threshold
Optimization

The ShadowScout model is based on an unsuper-
vised Convolutional Neural Network (CNN) designed
to detect shadows by deriving image-specific thresh-
olds across the HI, I, and S channels. ShadowS-
cout processes each channel through a series of con-
volutional layers, followed by fully connected layers
that output channel-specific thresholds. An objective
function, based on the cluster separation Calinski-
Harabasz metric (Caliński and Harabasz, 1974), is
used as loss to the model, guiding it to define thresh-
olds which will lead to the best separation of the pix-
els, across the different input channels, into shadow
and non-shadowed regions.

The flexibility of ShadowScout’s architecture, in-
cluding its ability to handle various image shapes and

H-I, I and S

C
on

v
2D

B
at

ch
N

or
m

2D

R
eL

U

D
ro

po
ut

2D

M
ax

Po
ol

2D

x3

L
in

ea
rl

ay
er

B
at

ch
N

or
m

1D

R
eL

U

D
ro

po
ut

1D

L
in

ea
rl

ay
er

Si
gm

oi
d

LCHI

Cha
nn

el
weig

hts

T
hr

es
ho

ld
s

Figure 2: Model architecture with HI, I and S channels as
inputs

adapt its thresholds dynamically, makes it a robust
tool for shadow detection in diverse imaging contexts.
The learnable thresholds and channel weights further
enhance its adaptability, allowing the model to gener-
alize well across different datasets and lighting condi-
tions.

3.2.1 Model Overview

ShadowScout employs a Convolutional Neural Net-
work (CNN) for shadow detection, leveraging the
proven effectiveness of CNNs in image process-
ing. CNNs excel at recognizing patterns and extract-
ing hierarchical features from images, making them
ideal for pixel-level classification tasks (LeCun et al.,
2015). In this framework, ShadowScout is designed
to analyze three channels derived from RGB images,
using the CNN to extract relevant features that distin-
guish between shadowed and non-shadowed regions.

The architecture of ShadowScout is configured to
maximize the model’s ability to detect shadows across
various scales and conditions. It begins with three
convolutional layers, each followed by ReLU activa-
tion to introduce non-linearity, batch normalization to
stabilize learning, dropout to prevent overfitting, and
max-pooling to reduce spatial dimensions while in-
creasing feature map depth. This combination allows
the network to focus on essential features while main-
taining computational efficiency.

The kernel sizes for the convolutional layers are
chosen dynamically, to ensure they cover ±3 stan-
dard deviations around the given sigma, allowing the
model to adapt to different shadow scales and image
resolutions. After feature extraction, the output is flat-
tened and passed through fully connected layers that
continue to refine the feature representation. These
layers also include batch normalization, ReLU activa-
tion, and dropout, ensuring that the network remains
robust and generalizes well to unseen data.

In the final stage, the network outputs threshold
values for each input channel, designed to separate
shadowed pixels from non-shadowed ones. A sig-
moid function is applied to ensure these thresholds
remain within a valid range. Additionally, Shad-
owScout learns channel-specific weights, which are

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

660



constrained within a specified range, adding further
adaptability to different types of input data.

The model is trained in an unsupervised manner,
utilizing a loss function tailored to maximize the sepa-
ration between shadow and non-shadow regions. This
approach not only enhances the model’s flexibility but
also allows it to perform effectively across a variety of
datasets and conditions, making ShadowScout a ro-
bust tool for shadow detection in diverse image pro-
cessing tasks. The overview of the model architecture
is presented in Figure 2.

3.2.2 Shadow and Non-Shadow Pixel Separation

Shadow Mask Definition. The custom loss function
is designed to facilitate the separation of pixels into
shadow and non-shadow regions while addressing
the non-differentiability introduced by binary shadow
masks. To enable gradient-based optimization, the
masks are converted into continuous values, dynami-
cally adjusted for each channel depending on whether
higher (as in the HI channel) or lower values (as in
the I channel) are indicative of shadows, as follows
(Equation 6):

m(x,θ) = σ(ρ(x−θ)), (6)
where m(x,θ) is the shadow mask for input x given

threshold θ, σ is a sigmoid function, which normal-
izes thresholds between 0 and 1 and ρ is either set to
1 or -1 according to the channel input - channels with
higher values associated to shadows have ρ = 1, oth-
erwise ρ =−1.

As mentioned previously, the relationship be-
tween the S channel and shadows is ambiguous,
depending on certain factors such as atmospheric
Rayleigh scattering. To determine, for a given dataset,
how image saturation relates to shadows, the Pearson
correlation between the HI and the S channel is cal-
culated. This follows the assumption that shadows
exhibit higher HI values (from a sample of 1600 im-
ages across the six datasets with ground truth consid-
ered here, 98.3% exhibit a positive Pearson correla-
tion between the HI value and shadow pixels). Con-
sequently, ρ is set to 1 if the correlation to the HI
channel is positive and to -1 otherwise. This step is
reproduced for all remaining input channels for con-
sistency purposes and to facilitate the inclusion of ex-
tra data sources as inputs.

The final mask is derived by initially setting a
combined mask to that of the HI channel and sub-
sequently iteratively combining the individual masks
from each channel with it. In order to maximize gra-
dient updates from the loss, how masks are combined
depends on the ρ parameter of each channel. The final
mask M is computed as follows:

Mcombined =

{
max(Mcombined,Mc), if ρc > 0
min(Mcombined,Mc), if ρc ≤ 0

(7)

where Mcombined is continuously updated while iterat-
ing over the different channel masks Mc.
Weighted Channels Computation. Certain chan-
nels exhibit greater discriminative power for shadow
detection, particularly the HI channel, as illustrated
in Figure 1 and demonstrated by He et al. (2022).
To enhance the model’s robustness, channel-specific
weights are introduced as learnable parameters within
the model (see section 3.2.1). Each channel input is
subsequently multiplied by its corresponding weight,
allowing the model to adaptively emphasize the most
relevant channels for shadow detection during train-
ing. The learning of these weights follows a delayed
and transient schedule, with no learning occurring
during the initial 20 epochs, followed by 15 epochs
of active learning. This strategy permits the fine-
tuning of other network parameters before the channel
weights, which have significant influence on the loss
function, are adjusted. The transient nature of this
learning phase is intended to prevent overfitting and to
ensure that the network prioritizes the accurate learn-
ing of channel thresholds. This approach mitigates
the risk of premature weight adjustment, thereby fos-
tering more effective and balanced learning across the
network.
Adapted Calinski-Harabasz Index. The final mask
and the weighted channels are combined as follows:

Flattened Mask: M ∈ Rp×1,

Flattened Channels: C ∈ Rp×c,
(8)

where p and c represent the number of pixels and
channels respectively.

The Calinski-Harabasz index is then computed us-
ing these flattened tensors. This index, introduced by
Caliński and Harabasz (1974), evaluates how well a
clustering algorithm segregates data points into dis-
tinct clusters. The index is calculated as follows:

b =
K

∑
k=1

nk∥ck − c∥2 (9)

w =
K

∑
k=1

nk

∑
i=1

∥di − ck∥2 (10)

h =

[
b

K −1

/
w

N −K

]
, (11)

where h is the Calinski-Harabasz index, b represents
the between-cluster sum of squares, w the within-
cluster sum of squares, K the number of clusters (set
to 2 for shadow and non-shadow separation), N the
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total number of data points, c the global centroid, nk
the number of points in cluster k, ck the centroid of
cluster k, and di the ith data point.

The shadow mask allows for the separation of pix-
els into two groups. The Calinski-Harabasz index
measures clustering quality by comparing the vari-
ance between groups to the variance within groups.
The optimization aims to maximize this index, ensur-
ing a clear and compact separation between shadow
and non-shadow regions.The resulting negated index
LCHI is used as the model loss after adding L1 and L2
regularization, which is minimized during the training
process:

LCHI =−median(log(h(X f ,M f ))), (12)
where X f represents the flattened channel inputs,

and M f represents the flattened combined mask men-
tioned in 7. The median is considered because it is
robust to outliers and represents well the central ten-
dency of skewed data.

3.3 Mask Generation and Evaluation
Metrics

In order for the predicted shadow masks to be com-
pared to their ground truth counterparts, channel-
specific continuous masks are converted to binary
via channel-specific thresholding, following a simi-
lar convention for the threshold direction as laid out
in section 3.2.2.

As mentioned in section 3.2.1, other than finding
the right threshold for pixel separation for each in-
put channels, the model also learns to find the optimal
channel weight to maximize the learning. Therefore,
the masks of the different channels is combined fol-
lowing:

M′ = ∑
i

(
µi ·

ωi

∑i ωi

)
, (13)

where M′ represents the combined mask, µ represents
the thresholded channel mask and ω represents its re-
spective learned channel weight for the ith channel.
M′ is converted into a binary mask by setting all the
continuous pixel values greater than 0.5 to 1 and the
values smaller than 0.5 to 0.

To assess the model’s fit, we use three metrics: the
Fβ score, balanced error rate (BER) (Vicente et al.,
2016), and Fβω score (Margolin et al., 2014), a vari-
ation of F1 that addresses its main shortcomings.

BER =
1
2
· ( FP

T N +FP
+

FN
FN +T P

), (14)

Fβ
ω = (1+β

2)
Pω ·Rω

(β ·Pω)+Rω
, (15)

where FP, T N, FN, T P, P and R represent the
false positives, true negatives, false negatives, true
positives, precision and recall respectively.

The weighted Fβω measure is ideal for comparing
shadow detection results against ground truth because
it accounts for the varying importance of detection er-
rors, unlike traditional Fβ measures that treat all er-
rors equally. By incorporating weights that consider
the spatial relationship and significance of errors, es-
pecially near important regions like boundaries, the
weighted Fβω measure provides a more accurate and
meaningful evaluation of shadow detection perfor-
mance, better reflecting the practical needs of the task.
β2 is chosen to be equal to 1, therefore for simplicity,
throughout the paper, the Fβ and Fβω scores will be
to renamed F1 and F1ω scores respectively.

4 DATASETS

4.1 AISD

In order to showcase the model’s results, the widely
used public dataset for aerial remote sensing imagery,
AISD (Luo et al., 2020) is used as benchmark. This
dataset is composed of images from 5 different cities
in the world with different characteristics, varying in
terms of their urban and others are rural content. This
ensures a fair representation of different scenarios,
such as presence of large infrastructures, like roads
and buildings, but also natural elements, such as veg-
etation. The dataset has 412 training images, 51 val-
idation images and 51 testing images with a spatial
resolutions of 0.3 m.

4.2 CUHK-Shadow

To further test the model’s robustness, we used
five additional non-aerial datasets from the CUHK-
Shadow dataset (Hu et al., 2021): CUHK-
KITTI, CUHK-MAP, CUHK-ADE, CUHK-USR,
and CUHK-WEB. CUHK-KITTI contains 1941 train-
ing, 277 validation, and 555 testing images from road-
side scenes (Geiger et al., 2012). CUHK-MAP has
1116 training, 159 validation, and 319 testing images
from remote-sensing and street-view images. CUHK-
ADE consists of 793 training, 113 validation, and 226
testing images of shadows from buildings (Zhou et al.,
2017). CUHK-USR includes 1711 training, 245 vali-
dation, and 489 testing images of people and objects
(Hu et al., 2019). CUHK-WEB, sourced from Flickr,
has 1789 training, 255 validation, and 511 testing im-
ages.
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The different datasets tested contain images with
different properties, taken in different scenarios. No-
tably, the proportion of shadows in an image also
varies considerably: the AISD and the CUHK-USR
datasets have a median shadow pixel proportion of
0.2, while the other datasets have a median shadow
pixel proportion between 0.37 and 0.51. Addition-
ally, the maximum shadow pixel proportion for the
AISD dataset is 0.49 while the others have a maxi-
mum above 0.9. These aspects demonstrate the ro-
bustness of the ShadowScout model and its capability
to, without the need for labelled data, detect shadows
with great accuracy.

4.3 Near-Infrared Band

To further demonstrate the model’s versatility in
utilizing additional image bands for shadow detec-
tion, we employed orthorectified satellite images with
0.25m resolution from the Belgian Walloon region1,
provided by the Service Public de Wallonie2. These
images cover an area of 2000m by 2000m which were
divided into 200m by 200m tiles with a resolution of
402x420 pixels. This dataset includes 4-band images,
namely the RGB channels plus a near-infrared band
(NIR), which is particularly effective in distinguish-
ing shadow regions (Rüfenacht et al., 2013).

All images across all datasets were rescaled to
512×512 pixels.

5 RESULTS

Although the model is unsupervised, our experiments
followed a traditional supervised methodology, divid-
ing the dataset into training, validation, and testing
splits, ensuring that our results are directly compara-
ble to those of previous methods. However, in practi-
cal applications, the unsupervised nature of the model
allows for training on the entire dataset without the
risk of overfitting, making it highly adaptable and ef-
ficient for real-world scenarios.

For post processing the shadow masks, small low-
brightness objects in non-shadow areas, e.g., dark col-
ored car on the street, are removed by applying a spa-
tial lower limit, and bright small objects in shadow
areas, e.g., light colored water tank on the roof, are
removed by applying mathematical morphology (He
et al., 2022).

1https://geoportail.wallonie.be
2https://spw.wallonie.be

5.1 Implementation

The ShadowScout model was implemented using Py-
Torch on a partitioned Nvidia A100 GPU with 80
GB of memory, configured in a Multi-Instance GPU
(MIG) mode, allocating 40 GB to each instance. The
model was trained for up to 200 epochs or until no im-
provement was observed over 40 epochs, with batch
sizes of 15 and 10 for training and validation, respec-
tively. The learning rate for the threshold was set to
1e−4 and for the channel weights to 1e−3. Training
duration ranged between 45 minutes for the AISD
and 2.5 hours for the CUHK-ADE datasets. Cus-
tom weight initialization strategies, set to 0.5 by de-
fault, were employed to ensure stable training from
the start.

5.1.1 Benchmark Models

The ShadowScout model was benchmarked against
a range of well-established unsupervised and super-
vised learning methods commonly used for shadow
removal. The unsupervised methods included a
thresholding approach based on converting the image
from RGB to the C1C2C3 color space (Gevers and
Smeulders, 1999), the spectral ratio of hue to intensity
(SRHI) (Tsai, 2006), the histogram threshold detec-
tion (HTD) method (Zhao and Bao, 1994), a method
utilizing the normalized-blue index (NB) (Zerbe and
Liew, 2004), and the DLA-PSO algorithm (He et al.,
2022). All unsupervised methods were applied with
Otsu’s thresholding (Otsu et al., 1975), by minimizing
intra-class variance and maximizing inter-class vari-
ance between the foreground and background pixel
intensities, and Gaussian filtering was used on inputs
to maintain consistency with our approach. The su-
pervised models evaluated were BDRAR (Zhu et al.,
2018) and U-Net (Ronneberger et al., 2015).

5.2 AISD Dataset

Our ShadowScout model achieved a high perfor-
mance on the AISD dataset, with an overall median
F1 score and F1ω scores of 0.837 and 0.901 re-
spectively which are comparable to the best results
achieved by supervised and unsupervised state of the
art techniques as seen in Table 1. Notably, the F1ω

scores, which account for the spatial distribution of
the errors, show an improvement with respect to the
DLA-PSO. Given the way this metric is constructed,
which penalizes errors according to their spatial dis-
tribution, this suggests that the ShadowScout method
is less likely to make false positive errors in regions
of the image far away from shadow regions.

ShadowScout: Robust Unsupervised Shadow Detection for RGB Imagery

663



(a) (b) (c)

(d) (e) (f)

Figure 3: AISD shadow detection examples.

Figure 3 shows some examples of shadow detec-
tion from the test dataset. The first row, represents
the original images while the second row shows the
detected shadows using a red contour. Note the well
defined shadow contours irrespective of their size and
context.

Table 1: Comparative evaluation of different methods on
AISD. Models with † are supervised methods.

Methods F1 score F1ω score BER

mean median mean median mean median

C1C2C3 0.642 0.681 0.688 0.719 20.259 18.917
SRHI 0.422 0.516 0.592 0.564 28.599 15.669
HTD 0.560 0.566 0.566 0.570 22.031 21.660
NB 0.738 0.808 0.808 0.894 15.680 13.494
DLA-PSO 0.819 0.845 0.866 0.892 10.985 10.462
ShadowScout 0.815 0.837 0.875 0.901 11.025 10.876

BDRAR† 0.853 0.858 0.861 0.867 5.449 5.346
U-Net† 0.901 0.904 0.939 0.945 6.152 6.137

5.3 CUHK-Shadow Dataset

One of the key strengths of the ShadowScout ap-
proach is its robustness and capability to accurately
identify shadows across a wide variety of images,
regardless of their quality or the context in which
they were captured. This versatility was demonstrated
through an evaluation on the CUHK-Shadow dataset,
which comprises five distinct datasets with varying
characteristics. ShadowScout consistently outper-
formed the DLA-PSO (Table 2), except for CUHK-
USR, and, in some instances, even surpassed the per-
formance of the supervised deep learning methods
mentioned earlier. Additionally, ShadowScout out-
performs the other statistical methods by a a large
margin except the HTD which outperforms our model
in all datasets except CUHK-KITTI.

(a) KITTI (b) MAP (c) ADE (d) USR (e) WEB

(f) KITTI (g) MAP (h) ADE (i) USR (j) WEB

Figure 4: CUHK-Shadow shadow detection examples.

For instance, in datasets characterized by signifi-
cant variability, such as CUHK-MAP, CUHK-USR,
and CUHK-WEB (see Section 4.2 and Hu et al.
(2021)), ShadowScout achieved median F1ω scores
of 0.7, 0.71, and 0.74, respectively. These results
highlight the model’s ability to generalize effectively
across diverse image types and conditions.

Figure 4 illustrates examples of shadow detection
in CUHK-shadow datasets. The first row displays the
original images, while the second row shows the de-
tected shadows marked with a red contour. Notably,
even in challenging scenarios where shadows occupy
a large portion of the image, such as in CUHK-
KITTI and CUHK-MAP, ShadowScout successfully
captures most shadow regions with minimal errors,
e.g. windows, signs are considered as shadow. This
demonstrates the model’s precision and reliability,
even in complex imaging conditions.

5.4 Extension with Near-Infrared
Channel

ShadowScout is designed to incorporate additional in-
puts beyond the HI, I and S channels derived from
standard RGB images. To demonstrate this flexibil-
ity, we trained the model on a 4-band orthorectified
satellite dataset, which includes a near-infrared (NIR)
channel. The NIR channel is known to highlight dif-
ferences between shadowed and non-shadowed re-
gions, especially in the presence of vegetation, which
has high reflectance in the NIR spectrum (Zhou et al.,
2021). This ability to incorporate additional spectral
information enhances the model’s shadow detection
performance in complex environments. The model
seamlessly integrates the NIR band without requir-
ing additional parameterization, producing an extra
shadow threshold. This additional shadow mask is
combined with the RGB-based masks to create the fi-
nal output. In the absence of ground truth data, we
provide a qualitative assessment.

Figure 5 compares shadow detection using the de-
fault input channels alone (middle row) versus inputs
+ NIR (bottom row). The inclusion of the NIR band
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Table 2: Median comparative evaluation on all CUHK-Shadow datasets. Models with † are supervised methods.

Methods CUHK-KITTI CUHK-MAP CUHK-ADE CUHK-USR CUHK-WEB

F1 F1ω BER F1 F1ω BER F1 F1ω BER F1 F1ω BER F1 F1ω BER

C1C2C3 0.551 0.613 51.989 0.517 0.569 49.148 0.417 0.470 55.723 0.500 0.553 36.296 0.459 0.555 50.321
SRHI 0.439 0.596 35.928 0.521 0.668 33.280 0.150 0.273 50.000 0.602 0.704 26.337 0.175 0.358 50.000
HTD 0.856 0.859 17.772 0.790 0.807 16.471 0.803 0.819 15.327 0.867 0.889 6.706 0.837 0.866 13.040
NB 0.593 0.666 41.163 0.480 0.552 49.081 0.403 0.476 53.804 0.523 0.556 35.761 0.457 0.553 47.234
DLA-PSO 0.381 0.607 37.498 0.458 0.653 35.203 0.356 0.546 41.471 0.653 0.750 23.051 0.387 0.535 46.309
ShadowScout 0.836 0.902 14.024 0.609 0.698 28.003 0.768 0.820 17.074 0.604 0.712 27.407 0.610 0.745 27.680

BDRAR† 0.852 0.877 15.010 0.656 0.727 25.847 0.644 0.713 24.895 0.689 0.731 19.700 0.720 0.769 21.045
U-Net† 0.877 0.903 11.004 0.581 0.699 29.700 0.648 0.760 25.193 0.593 0.688 27.846 0.687 0.777 23.163

enhances shadow detection precision, yielding tighter
boundary detection and reducing false positives, es-
pecially around vegetation and dark objects like roofs.
These results underscore the versatility of ShadowS-
cout, which can integrate additional datasets to further
refine its performance.

6 DISCUSSION

The HSI color space separates the chromatic content
(hue and saturation) from the intensity of the color,
making it ideal for tasks where the distinction be-
tween color and light intensity is important, such as in
shadow detection. ShadowScout is designed to flex-
ibly leverage this information, enabling it to adapt to
different image types. This adaptability is demon-
strated by its high performance on the seven different
datasets reported in this paper. A key aspect of this
success is the CNN’s ability to identify patterns and
features from images: training on a group of images
enables it to derive image type and quality-specific
information, while learning to define image-specific
shadow thresholds.

In addition, the model’s flexibility is enhanced by
statistically determining each channel’s association

(a) Example 1 (b) 3 bands (c) 4 bands

(d) Example 2 (e) 3 bands (f) 4 bands

Figure 5: Shadow detection examples with 4 bands.

with shadows and setting channel weights as param-
eters. This allows the influence of each channel on
shadow detection to be learned automatically for each
dataset.

The design of the loss function allows the model to
find optimal thresholds per channel. He et al. (2022)
used the interclass variance of the shadow mask on
the grayscale images to evaluate the degree of sep-
aration. However grayscaling reduces the image to
intensity variations and loses critical color informa-
tion. As a result, this measure fails to properly assess
the degree of separation in shadow content of the two
groups of pixels. ShadowScout, on the other hand,
uses the Calinski-Harabasz index, which is an effi-
cient metric to measure the degree of separation of
two groups, widely used in clustering algorithms. We
adapted this index to weigh all channels used by the
CNN to predict the shadow thresholds, which ensures
that the separation is optimized based on the highly
informative channels fed to the model.

The DLA-PSO method described in He et al.
(2022), along with the other traditional methods dis-
cussed in Section 5, operates on individual images
by attempting to classify pixels into two categories:
shadow and non-shadow. However, this approach can
be ineffective when an image inherently lacks one of
these categories. In contrast, ShadowScout is trained
on the entire dataset, enabling it to generate more ro-
bust thresholds. As a result, ShadowScout can ef-
fectively handle cases where an image contains only
a single category, such as fully shadowed images or
those entirely without shadows, by clustering all pix-
els into a single cohesive group.

In benchmark testing, ShadowScout was outper-
formed by supervised models by a very small margin,
with a median F1ω score difference of no more than
0.03. While the HTD method achieved slightly better
results on four of the five CUHK-Shadow datasets,
this performance can be partly attributed to its per-
image processing approach, which makes it less af-
fected by the diversity within individual datasets.
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Nevertheless, ShadowScout’s consistent performance
across diverse datasets highlights its robustness as an
unsupervised shadow detection method.

Finally, ShadowScout demonstrates exceptional
speed: generating a shadow mask for an image us-
ing a pre-trained model takes a median time of only 5
milliseconds. This performance is significantly faster
than alternative unsupervised methods, which typi-
cally rely on computationally expensive arithmetic or
optimization operations (He et al., 2022). ShadowS-
cout’s efficiency makes it highly suitable for large-
scale or real-time applications, providing a substantial
advantage over existing unsupervised shadow detec-
tion techniques.

However, a limitation of ShadowScout is that it
requires both training and inference on datasets with
similar image types and properties. The relationships
between channel values and shadows, as well as chan-
nel weights, are learned parameters specific to the
dataset rather than individual images. This limitation
likely contributed to the lower performance on the
CUHK-MAP dataset (median F1ω of 0.698), which
contains a mix of satellite and mobile camera images.
Notably, even the supervised models struggled with
this dataset, highlighting the challenges posed by high
variability in image types. Additionally, ShadowS-
cout encounters challenges with diverse datasets con-
taining randomly selected images, such as CUHK-
USR and CUHK-WEB, which include both indoor
and outdoor scenes. In such datasets, the relationship
between the saturation channel and shadow regions
varies significantly, making ShadowScout less effec-
tive.

7 CONCLUSION

This paper introduces ShadowScout, a novel unsu-
pervised deep learning method for shadow detec-
tion. ShadowScout learns model-specific parameters
based on the dataset properties and predicts image-
specific thresholds to classify pixels as shadow or
non-shadow. Through extensive testing on seven di-
verse datasets, including images of different quality
and nature, and on the use of extra data sources, we
demonstrate the model’s versatility, flexibility, and ac-
curacy. Its low parameterization and fast computa-
tional performance make it an accessible, out-of-the-
box solution for shadow detection across various sce-
narios, positioning it as a valuable tool in addressing
shadow correction challenges.
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