
PurGE: Towards Responsible Artificial Intelligence Through Sustainable
Hyperparameter Optimization

Gauri Vaidya1,2 a, Meghana Kshirsagar1,2 b and Conor Ryan1,2 c

1Department of Computer Science and Information Systems, University of Limerick, Ireland
2Lero the Research Ireland Centre for Software, Ireland
{gauri.vaidya, meghana.kshirsagar, conor.ryan}@ul.ie

Keywords: Grammatical Evolution, Hyperparameter Optimization, Machine Learning, Deep Learning, Search Space
Pruning, Energy Efficient Computing.

Abstract: Hyperparameter optimization (HPO) plays a crucial role in enhancing the performance of machine learning
and deep learning models, as the choice of hyperparameters significantly impacts their accuracy, efficiency,
and generalization. Despite its importance, HPO remains a computationally intensive process, particularly for
large-scale models and high-dimensional search spaces. This leads to prolonged training times and increased
energy consumption, posing challenges in scalability and sustainability. Consequently, there is a pressing de-
mand for efficient HPO methods that deliver high performance while minimizing resource consumption. This
article introduces PurGE, an explainable search-space pruning algorithm that leverages Grammatical Evolu-
tion to efficiently explore hyperparameter configurations and dynamically prune suboptimal regions of the
search space. By identifying and eliminating low-performing areas early in the optimization process, PurGE
significantly reduces the number of required trials, thereby accelerating the hyperparameter optimization pro-
cess. Comprehensive experiments conducted on five benchmark datasets demonstrate that PurGE achieves
test accuracies that are competitive with or superior to state-of-the-art methods, including random search, grid
search, and Bayesian optimization. Notably, PurGE delivers an average computational speed-up of 47x, reduc-
ing the number of trials by 28% to 35%, and achieving significant energy savings, equivalent to approximately
2,384 lbs of CO2e per optimization task. This work highlights the potential of PurGE as a step toward sustain-
able and responsible artificial intelligence, enabling efficient resource utilization without compromising model
performance or accuracy.

1 INTRODUCTION

Optimizing hyperparameters is essential to maxi-
mize the performance of Machine Learning (ML)
and Deep Learning (DL) models in numerous high-
impact applications, including healthcare, object de-
tection, and image classification (Simonyan and Zis-
serman, 2015). Effective tuning can improve model
accuracy, efficiency, and robustness, allowing ML
models to better generalize across complex datasets
and real-world environments. Despite this potential,
determining the best hyperparameter configurations
is often challenging, with manual tuning requiring
considerable expertise, time, and computational re-
sources (Diaz et al., 2017; Yu and Zhu, 2020).

a https://orcid.org/0000-0002-9699-522X
b https://orcid.org/0000-0002-8182-2465
c https://orcid.org/0000-0002-7002-5815

The energy consumption and environmental im-
pact of HPO are becoming increasingly significant
concerns. As ML and deep DL models grow in size
and complexity, their training and optimization re-
quire substantial computational resources, leading to
considerable carbon emissions. For example, opti-
mizing a natural language processing pipeline can
produce approximately 78,468 lbs of CO2e (carbon
dioxide equivalent), while neural architecture search
techniques can generate up to 626,155 lbs of emis-
sions (Strubell et al., 2019). These figures underscore
the urgency of developing more resource-efficient
HPO methods that balance computational demands
with environmental sustainability.

Traditional HPO methods aim to automate hy-
perparameter selection, reducing manual effort and
improving model performance. For example, Ran-
dom Search (RS) (Bergstra and Bengio, 2012) and
Grid Search (GS) are two widely used model-free

622
Vaidya, G., Kshirsagar, M. and Ryan, C.
PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization.
DOI: 10.5220/0013262100003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 2, pages 622-633
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

ML or NN
model

Dataset

Hyperparameters

Optimal
hyperparameter
configurations

Number of trials
(Budget)

Trial #1 Trial #2 Trial #n…
Hyperparameter

Optimizer

Figure 1: Traditional Hyperparameter Optimization pro-
cess.

methods that blindly sample configurations from the
search space. While straightforward to implement,
these methods are computationally expensive and of-
ten waste resources by evaluating many suboptimal
configurations. Such inefficiencies make them im-
practical for large, high-dimensional search spaces.

To address these limitations, more advanced
model-based methods, such as Bayesian Optimization
(BO) and Evolutionary Algorithms (EA), employ it-
erative, feedback-driven strategies to guide the search
for promising configurations (Yang and Shami, 2020).
These techniques balance exploration and exploita-
tion, reducing the number of trials required to identify
near-optimal hyperparameters. Although more effi-
cient than their model-free counterparts, they still in-
cur significant computational costs, particularly when
applied to complex models with vast hyperparame-
ter spaces. The intensity of resource in these methods
highlights the need for optimization strategies that are
not only effective but also computationally sustain-
able.

Recent advancements have focused on multifi-
delity optimization strategies, such as Bayesian Op-
timization and Hyperband (BOHB)(Falkner et al.,
2018) and Differential Evolution and Hyperband
(DEHB)(Awad et al., 2021). These hybrid meth-
ods integrate model-based HPO with techniques like
Hyperband, which allocate computational resources
more efficiently by prioritizing promising candidates
and terminating evaluations of underperforming con-
figurations early. Although these approaches improve
efficiency, they still require a significant number of
evaluations due to the inherent vastness of the hyper-
parameter search space.

One promising avenue for addressing the com-
putational demands of HPO is search space prun-
ing. This technique aims to reduce resource con-
sumption by focusing computational efforts on the
most promising regions of the search space, thereby
minimizing evaluations of suboptimal configurations.
For example, PriorBand(Mallik et al., 2023) inte-
grates expert knowledge to prioritize high-potential
regions, adaptively eliminating less promising areas.
Similarly, techniques such as Successive Halving(Li
et al., 2016) dynamically allocate resources to con-

figurations with better intermediate performance, ef-
fectively pruning the search space. Other approaches,
such as Learning Search Spaces for Bayesian Opti-
mization(Perrone et al., 2019) and Hyperparameter
Transfer Learning(Horváth et al., 2021), leverage his-
torical HPO data to refine search spaces across related
tasks, thus reducing computational overhead for sim-
ilar models or datasets.

However, these pruning techniques often face
practical limitations. Many rely on extensive prior
data, which may not always be available, or make
task-specific assumptions that limit their generaliz-
ability. Furthermore, heuristic-based methods or pre-
trained models used to predict promising regions may
struggle to adapt to novel or highly complex archi-
tectures. These challenges emphasize the need for
a robust, adaptive approach to search space pruning
that is domain-agnostic and dynamically responsive
to evolving observations during the optimization pro-
cess.

This paper addresses these challenges by intro-
ducing PurGE, an innovative two-staged framework
driven by Grammatical Evolution (GE). PurGE dy-
namically prunes the hyperparameter search space to
optimize both efficiency and performance. In Stage
1, PurGE systematically narrows the search space by
eliminating low-potential regions based on learned
patterns. In Stage 2, it focuses on fine-tuning within
the refined space to identify the optimal hyperparame-
ter configuration. By leveraging GE, PurGE achieves
a balance between exploration and exploitation, re-
ducing computational costs without sacrificing model
accuracy.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of HPO, GE,
and search space pruning techniques. Section 3 de-
tails the PurGE framework, while Section 4 outlines
the experimental setup. Section 5 presents compara-
tive results, and Section 6 discusses implications and
directions for future research.

2 BACKGROUND

This section provides an overview of GE and its ap-
plication in tuning the hyperparameters. It discusses
recent advancements in HPO for reducing computa-
tional cost, including model pruning, dataset sam-
pling, and search space pruning.

2.1 Grammatical Evolution

GE (Ryan et al., 1998) is a grammar-based variant of
Genetic Programming that employs binary strings to

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

623

represent candidate solutions. GE can evolve com-
puter programs in any arbitrary language, provided
that the language is defined using Backus-Naur Form
(BNF) grammar. The process begins by mapping the
genotype (binary strings) to the phenotype (computer
program). The genetic operators of crossover and mu-
tation are applied to the population of binary strings,
with evolution progressing across successive genera-
tions.

A key strength of GE lies in its mapping mech-
anism, which offers flexibility to incorporate various
grammatical structures according to specific require-
ments easily. GE seeks the optimal solution to a
problem by maximizing or minimizing an objective
function, with the grammar determining the set of le-
gal structures that can evolve. Furthermore, domain
knowledge can be integrated through grammar. For
example, the optimization of hyperparameters in Con-
volutional Neural Networks (CNNs) can be expressed
within the same BNF grammar used to evolve CNN
architectures.

2.2 Hyperparameter Optimization

HPO problem involves selecting the optimal set of
hyperparameters to maximize the performance of
a model, given a learning algorithm (inducer) and
dataset. Let A represent the learning algorithm, which
induces a model M based on a set of hyperparameters
h from a search space H . Given a dataset D, we aim
to find the hyperparameters h∗ that maximize the per-
formance f of the model M = A(D;h) induced by A
on D:

h∗ = argmax
h∈H

f (M = A(D;h)), (1)

subject to constraint functions that define the feasible
region of H :

ai(h)≤ 0, i = 1,2, . . . ,m,

b j(h) = 0, j = 1,2, . . . ,n.

In this formulation, the learning algorithm A acts
as the inducer that generates the model M from D and
h, with ai(h) and b j(h) representing inequality and
equality constraints, respectively, to define the bound-
aries of the hyperparameter search space H .

2.3 Related Works

Various approaches have been proposed to mitigate
the overall computational cost of HPO (Vaidya et al.,
2022; Li et al., 2016; Jamieson and Talwalkar, 2015).
These strategies can broadly be categorized into three
main types: model pruning, dataset sampling, and hy-
perparameter search space pruning.

2.3.1 Model Pruning

Neural Network Model pruning has been extensively
explored since it was introduced as a solution to
over-parameterized networks by Lecun et al. (Le-
Cun et al., 1989). One widely studied technique is
the Connection Sensitivity Score (SNIP) (Lee et al.,
2019), which employs an initialization-based pruning
method. SNIP has demonstrated the ability to prune
networks effectively without significantly degrading
model performance.

In addition to SNIP, Lee and Yim (Lee and Yim,
2022) proposed an alternative pruning method known
as Synflow. They demonstrated that pruning can be
seamlessly integrated into the HPO process, show-
ing that the depth of neural networks does not signif-
icantly affect hyperparameter configurations. More-
over, their work highlighted that hyperparameters op-
timized for smaller or pruned models can be suc-
cessfully transferred to larger models within the same
family, such as from ResNet8 to ResNet50.

2.3.2 Dataset Sampling

Another approach to reducing the computational
overhead in HPO is using subsets of datasets, rather
than the full dataset, during the optimization process.
DeCastro-Garcı́a et al. (DeCastro-Garcı́a et al., 2019)
conducted a study comparing various data sampling
techniques on image classification benchmarks. Their
results showed that this strategy enhanced computa-
tional efficiency and maintained comparable perfor-
mance to full dataset training.

Similarly, the HyperEstimator Vaidya et al. (2022)
and HyperGE framework (Vaidya et al., 2023)
demonstrated that fine-tuning CNNs using dataset
subsets could yield results that are competitive with
state-of-the-art methods, further validating the effec-
tiveness of this approach.

2.3.3 Pruning the Hyperparameter Search
Space

Reducing the hyperparameter search space has been
a key focus in HPO research. Hyperband (Li et al.,
2016), a well-known HPO framework, prunes the
search space by employing early stopping of trials.
In this approach, a predefined threshold is set for the
number of trials, and if a trial’s performance does not
improve within this threshold, it is halted. Resources
are then reallocated to more promising trials, allowing
the system to focus its computational budget on the
more fruitful configurations. This technique is partic-
ularly effective in reducing unnecessary computations
and improving the overall efficiency of the search pro-
cess.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

624

Another popular technique for pruning the search
space is the successive-halving (Jamieson and Tal-
walkar, 2015) algorithm. This method runs a set num-
ber of trials within a specified budget and over sev-
eral iterations, evaluating their performance and dis-
carding the worst-performing half. This process is re-
peated until only one trial remains.Successive halving
efficiently narrows the search space by incrementally
focusing on the most promising configurations, thus
ensuring that computational resources are allocated
effectively.

PriorBand (Mallik et al., 2023), a recent exten-
sion of Hyperband, improves upon the early stop-
ping mechanism by using prior knowledge about the
search space. This approach dynamically adjusts the
budget allocation for each trial based on historical
data or expert knowledge, allowing for more intelli-
gent pruning. This enables the system to allocate re-
sources more effectively based on prior performance,
further enhancing the efficiency of the HPO process.

BOHB (Falkner et al., 2018) combines the
strengths of Bayesian optimization and Hyperband to
achieve more efficient search space pruning. BOHB
leverages Bayesian optimization to model the per-
formance of hyperparameter configurations and iter-
atively narrows the search space. In contrast, Hyper-
band allocates resources to the most promising con-
figurations. This hybrid approach improves the explo-
ration and exploitation of the search space, making it
more suitable for complex models and large datasets.

Similarly, DEHB (Awad et al., 2021) integrates
differential evolution with Hyperband, providing an
efficient way to handle large-scale HPO problems.
DEHB optimizes hyperparameters using differential
evolution, while utilizing Hyperband for resource al-
location. This combination enables more efficient
search space exploration, especially for challenging
optimization tasks.

Wistuba et al. (Wistuba et al., 2015) proposed an-
other search space pruning strategy that analyzes the
performance of HPO based on related datasets. By
identifying non-promising areas through this analy-
sis, the irrelevant regions of the search space can be
pruned. This approach was tested on machine learn-
ing models with 19 different classifiers and showed
promising results in reducing computational costs by
narrowing the search to more relevant areas.

Despite the numerous advancements in reducing
computational costs in HPO, the research area re-
mains highly significant due to the complexity of ma-
chine learning models and datasets. As DL mod-
els become more sophisticated and large-scale, the
search for optimal hyperparameters grows exponen-
tially, making efficient HPO essential for practical

applications. Existing methods such as pruning,
early stopping, and dynamic resource allocation have
shown promising results but often suffer from lim-
itations, such as lack of dynamic adaptation to di-
verse model types or dataset variations. Therefore,
the continued development of more adaptive and effi-
cient search space pruning methods remains a crucial
challenge in HPO.

3 PurGE

This article presents PurGE, a two-stage approach to
automatically tuning hyperparameters using GE. The
primary objective of PurGE is to reduce the compu-
tational burden associated with large hyperparameter
search spaces by focusing on high-potential regions.
An overview of the proposed framework is illustrated
in Figure 2.

3.1 Stage 1: Pruning the Search Space

The primary objective of Stage 1 is to systemati-
cally narrow the hyperparameter search space, fo-
cusing computational resources on the most promis-
ing regions. This stage utilizes a grammar-guided
approach, leveraging 60% of the total trial budget
to identify and eliminate low-performing configura-
tions. A trial is defined as a single evaluation of a hy-
perparameter configuration for a specific model and
dataset.

The pruning process is driven by two comple-
mentary statistical techniques: the Pearson Correla-
tion Coefficient (r) and Individual Conditional Ex-
pectation (ICE) functions. These techniques ana-
lyze the relationships between hyperparameters and
model performance, enabling the identification of
high-potential regions within the search space.

The Pearson Correlation Coefficient, defined in
Equation 2, quantifies the linear relationship between
individual hyperparameters and validation accuracy.
Specifically, for each hyperparameter configuration hi
and its corresponding objective function value oi (e.g.,
validation accuracy), the correlation provides insights
into the influence of that hyperparameter on model
performance:

r =
∑

n
i=1(hi−h)(oi−o)√

∑
n
i=1(hi−h)2 ∑

n
i=1(oi−o)2

(2)

where n represents the total number of trials, h is the
mean of the hyperparameter values, and o is the mean
of the objective values. Hyperparameters with high

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

625

ML or NN
model

Dataset

Hyperparameters Better performing individuals

Worse performing individuals

Grammatical
Evolution
Optimizer

Stage I: Data-
driven search

space reduction

Stage II: Refining
hyperparameters

with reduced
search space

Optimal
hyperparameter
configurations

Number of trials
(Budget)

Figure 2: Architecture of PurGE, a two-staged Grammatical Evolution driven approach for automatically evolving hyperpa-
rameters with search space pruning.

correlation to validation accuracy are selected for fur-
ther analysis.

In parallel, ICE functions are employed to extract
high-performance regions for each hyperparameter.
These functions identify the specific ranges within the
hyperparameter space that yield superior validation
accuracy, refining the focus of the search. Together,
the Pearson correlation and ICE functions guide the
evolutionary process by defining optimal ranges for
each hyperparameter.

For instance, with a total budget of 80 trials, Stage
1 allocates 48 trials (60% of the budget) to explore the
hyperparameter space, represented as a Backus-Naur
Form (BNF) grammar (see Figure 6). From an ini-
tial space of 103,680 potential configurations, Stage
1 evolves 72 configurations, reducing the solution set
by approximately 90%.

The pruning process operates in two phases:

1. Correlation Analysis. Compute the correlation
between each hyperparameter and validation ac-
curacy, producing a set H1, which defines pre-
liminary bounds for promising hyperparameter
ranges.

2. Interdependence Refinement. Identify pairs of
hyperparameters with significant mutual correla-
tion, forming set H2. These interdependencies
further refine the bounds in H1, ensuring that
promising configurations account for interactions
between hyperparameters.

The combination of H1 and H2 results in a fo-
cused and compact search space. Figures 4 and 5 il-
lustrate this process, while Figure 3 depicts a heatmap

of hyperparameter correlations for the EfficientNet
model on the CIFAR10 dataset.

3.2 Stage 2: Optimization Within the
Pruned Space

Following the search space pruning in Stage 1, Stage
2 focuses on refining the search for the optimal hy-
perparameter configuration. By narrowing the scope
to high-potential regions, computational resources are
concentrated on configurations with the greatest like-
lihood of yielding superior performance.

This stage employs an iterative process, utilizing
Grammatical Evolution to explore and evolve config-
urations within the pruned space. The compact search
space allows for more intensive evaluation of individ-
ual configurations, enabling finer-grained optimiza-
tion without incurring the computational overhead of
the original space.

The algorithm dynamically balances exploration
and exploitation within the reduced space, ensuring
that both promising configurations and less-explored
regions are considered. By iteratively evolving con-
figurations, Stage 2 converges on the optimal hyper-
parameter set that maximizes validation accuracy.

The complete algorithm, summarized below, com-
bines the pruning strategy of Stage 1 with the focused
optimization of Stage 2, offering a robust framework
for hyperparameter tuning that reduces computational
overhead while maintaining performance.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

626

Algorithm 1: PurGE: Automated Hyperparameter Search
Space Pruning.

Input: Hyperparameter set
H = {h1,h2, . . . ,hn}, Objective
function f (VA), Dataset D

Output: Optimal configuration h∗ that
maximizes validation accuracy (VA)

1 Step 1: Initialize Search Space: Define full
search space H0 from H;

2 Step 2: Stage 1 - Statistical Pruning:;
3 Filter Low-Performing Configurations
4 H1←{h ∈H0 | f (h)≥ 0.5};
5 Hyperparameter-Objective Correlations
6 For each hi ∈ H, calculate Pearson

correlation r(hi,VA);
7 Define H1←{hi ∈ H | |r(hi,VA)| ≥ δ};
8 Inter-Hyperparameter Dependencies
9 For each (hi,h j) ∈ H×H, compute

r(hi,h j);
10 Define H2←{(hi,h j) | |r(hi,h j)| ≥ γ};
11 Extract High-Performance Ranges
12 For each hi ∈ H1, set Rhi to

top-performing values;
13 For each pair (hi,h j) ∈ H2, set optimal

ranges for both hi and h j;

14 Step 3: Obtain Pruned Search Space:
H2←∏hi∈H1 Rhi ∪∏(hi,h j)∈H2 Rhi ×Rh j ;

15 Step 4: Stage 2 - Iterative Optimization:;
16 Evolve Pruned Configurations
17 Conduct trials over H2;

18 Convergence Check
19 Stop when VA stabilizes or budget B is

reached;

20 Step 5: Output: Return
h∗ = argmaxh∈H2

f (h);

3.3 Example of PurGE for EfficientNet
on CIFAR-10

The procedure for pruning the search space when tun-
ing the EfficientNet model on the CIFAR-10 dataset
across 48 trials is outlined. The hyperparameters
under consideration include: {batch size, optimizer,
learning rate (lr), momentum, dropout, layers}, with
the objective function being validation accuracy (VA).
The BNF grammar used to generate the hyperpa-
rameter configurations automatically is shown in Fig-
ure 6a. The possible combinations of each hyperpa-
rameter in Figure 6a lead to a search space of 103,680
configurations (the product of all combinations), out
of which Stage 1 yields 72 configurations which are
fed into Stage 2.

batch_size opt learning_rate momentum dropout layers val_accuracy

ba
tc

h_
si

ze
op

t
le

ar
ni

ng
_r

at
e

m
om

en
tu

m
dr

op
ou

t
la

ye
rs

va
l_

ac
cu

ra
cy

1 0.0027 -0.042 -0.25 0.099 -0.14 0.017

0.0027 1 -0.29 0.3 0.049 -0.2 0.36

-0.042 -0.29 1 -0.14 0.32 -0.028 -0.76

-0.25 0.3 -0.14 1 -0.18 0.27 0.068

0.099 0.049 0.32 -0.18 1 -0.043 -0.14

-0.14 -0.2 -0.028 0.27 -0.043 1 -0.097

0.017 0.36 -0.76 0.068 -0.14 -0.097 1 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Heatmap depicting the correlation between hyper-
parameters and validation accuracy for EfficientNet model
on CIFAR10 dataset.

Initially, hyperparameter configurations with VA
below 50% are discarded. PurGE then computes
the correlation between the remaining configura-
tions. Figure 3 illustrates the correlation heatmap
between the hyperparameters and VA, revealing
a negative correlation between {lr,dropout, layers}
and VA. Based on these correlations, three hy-
perparameters are selected for further exploration:
{batch size,optimizer,momentum} (H1). Addition-
ally, hyperparameter pairs with significant mu-
tual correlation are identified, including {optimizer-
momentum, lr-dropout, momentum-layers} (H2),
which are also considered for further refinement.

Figure 4 is a visual representation of the pruning
algorithm, PurGE. The Y-axis in the plots represents
the dependence of VA on the hyperparameter config-
urations, with higher values indicating better perfor-
mance. The shaded regions in the plots correspond
to areas with high VA for each hyperparameter within
H1. For example, the interpretation of the ICE plot
for optimizer in Figure 4 suggests that higher partial
dependence values for RMSProp indicate a potential
for higher VA, while lower values for Adam and SGD
correspond to lower VA.

PurGE yields the following restricted ranges for
the hyperparameters:

• Optimizer: {Adam, RMSProp}
• Momentum: {0.5, 0.6, 0.7, 0.8}
• Batch Size: 128

PurGE refines the set H1 based on mutual cor-
relation amongst hyperparameter pairs momentum-
optimizer, dropout-lr, layers-momentum, as shown
in Figure 5 to yield H2. The heatmap for the
pair layers-momentum reveals that momentum values
{0.5,0.6,0.7} and layer sizes {96,128} exhibit high
correlation. As a result, the search space for momen-
tum is narrowed to {0.5,0.6,0.7}.

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

627

Optimal
Dependence

Optimal
Hyperparameter

Range

Batch Size

Optimal
Dependence

Optimal
Hyperparameter Range

Momentum

Individual Conditional Expectation Average Partial Dependence
Optimizers

OptimizersAdam RMSProp SGD

Pa
rti

al
 D

ep
en

de
nc

e

Figure 4: Explainable PurGE for search space pruning, visualized with Individual Conditional Expectation (ICE) plots. The
plot illustrates the effect of hyperparameters of the EfficientNet model on the CIFAR-10 dataset, with validation accuracy on
the Y-axis. Higher values on the Y-axis indicate better performance. The shaded region represents the Region of Interaction
(ROI), highlighting the area where optimal performance is achieved.

O
pt

im
iz

er
s

SGD

Adam

RMSProp

Momentum
Dropout

M
om

en
tu

m

Layers

Le
ar

ni
ng

 R
at

e

Figure 5: Heatmaps for hyperparameter pairs {optimizer-momentum, lr-dropout, momentum-layers} for the Efficient-
Net model on the CIFAR-10 dataset.

The final pruned search space for each hyperpa-
rameter is as follows:

• Batch size: 128

• Momentum: {0.5, 0.6, 0.7}
• Optimizer: RMSProp

• Learning rate: {1e-05, 5e-05, 0.0001}
• Layers: {96, 128}
• Dropout rate: {0.1, 0.3, 0.4, 0.8}

This results in only 72 unique hyperparameter
combinations (the product of all possible values for
each hyperparameter), representing a significant re-
duction of the solution set by approximately 90%.

In Stage 2, the remaining budget of 32 trials is al-
located in order to determine the final hyperparameter
configuration from the 72 configurations identified in
Stage 1. This configuration is then used to train the
model.

In this way, given a model and dataset, PurGE
automatically yields optimal configurations, while its
two-stage approach ensures explainability, effectively
eliminating the black-box nature of the process.

4 EXPERIMENTAL SETUP

The goal of the experimental setup is to address the
following research questions:
RQ1: How does pruning the search space and mod-
els impact the performance of hyperparameter opti-
mization?
RQ2: How does pruning the search space and mod-
els affect resource utilization during hyperparame-
ter optimization?

4.1 Datasets Details

We conducted experiments using two standard bench-
marks in image classification: CIFAR10 and CI-
FAR100. These datasets are widely used in the
deep learning community for evaluating model per-
formance. CIFAR10 consists of 60,000 RGB images
categorized into ten classes, while CIFAR100 con-
tains the same number of images divided into 100
classes. Each dataset was partitioned into training,
validation, and testing subsets in a 60:20:20 ratio.

In addition to image datasets, we included tabu-
lar datasets to evaluate PurGE on non-image tasks.
These datasets were selected to have no missing val-
ues, ensuring the HPO process was not influenced by

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

628

<model> ::= <hyperparameters>

<hyperparameters> ::= <batch_size> <dropout_rate> <num_layers> <optimizer>
<learning_rate> <momentum>

<batch_size> ::= 32 | 64 | 128 | 256

<dropout_rate> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9

<num_layers> ::= 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256 |
288 | 320 | 352 | 384 | 416 | 448 | 480 | 512

<optimizer> ::= adam | sgd | rmsprop

<learning_rate> ::= 0.00001 | 0.0001 | 0.001 | 0.01 | 0.1 |
0.00005 | 0.0005 | 0.005 | 0.05 | 0.5

<momentum> ::= 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99

(a)
<model> ::= <hyperparameters>

<hyperparameters> ::= <learning_rate> <gamma> <max_depth>
<colsample_bylevel> <subsample>

<learning_rate> ::= 0.025 | 0.05 | 0.1 | 0.2 | 0.3

<gamma> ::= 0 | 0.1 | 0.2 | 0.3 | 0.4 | 1.0 | 1.5 | 2.0

<max_depth> ::= 2 | 3 | 5 | 7 | 10 | 100

<colsample_bylevel> ::= 0.25 | 0.5 | 0.75 | 1.0

<subsample> ::= 0.15 | 0.5 | 0.75 | 1.0

(b)
Figure 6: Search space represented as BNF grammar for (a)
EfficientNet and ResNet; (b) XGBoost.

Table 2: Experimental Settings.

Parameter Value
Runs 5
Search Algorithm GA
Initialisation PI grow
Selection Tournament
Tournament Size 2
Crossover Type Variable one point
Crossover Probability 0.95
Mutation Type Integer flip per codon
Mutation Probability 0.01
Population Size 10
Total Generations Stage 1: 5, Stage 2: 3

imputation techniques. The tabular datasets were also
split into training, validation, and testing subsets in
a 60:20:20 ratio. Table 1 summarizes the details of
the datasets, including the number of instances and
classes.

4.2 Models and Hyperparameters

The experiments involved three models: ResNet, Effi-
cientNet, and XGBoost. The first two are CNNs, rep-
resenting different trade-offs between performance
and computational efficiency, while XGBoost is a
gradient-boosting algorithm widely used in tabular
data classification.

The hyperparameter search space for the models,
including XGBoost and CNNs, is represented in the
BNF grammar, as illustrated in Figure 6. These hy-
perparameters are treated as a discrete search space,
which PurGE explores and compares with traditional
hyperparameter optimization methods.

4.3 GE Parameters

For the PurGE framework, we utilize GE with key pa-
rameters as presented in Table 2: Genetic Algorithm
(GA) for the search process, Tournament selection
with a size of 2, and a variable one-point crossover
with a 95% probability. Mutation occurs with a 1%
probability per codon, and the population size is set
to 10, spanning five generations in Stage 1 and 3 gen-
erations in Stage 2 for efficient optimization.

4.4 Baseline Methods

To benchmark the performance of PurGE, we used
three popular hyperparameter optimization tech-
niques as baselines using the Optuna (Akiba et al.,
2019) framework:

1. Random Search (RS). A basic search method
where configurations are randomly sampled from
the defined search space.

2. Grid Search (GS). A more exhaustive approach
that evaluates all possible combinations of hyper-
parameter values within a predefined grid.

3. Tree-structured Parzen Estimator (TPE). A
BO method (Bergstra et al., 2011) that builds a
probabilistic model to estimate the performance
of hyperparameter configurations, guiding the
search for optimal configurations more efficiently.

These baselines were used to compare PurGE’s accu-
racy, computational efficiency, and resource utiliza-
tion performance.

4.5 Training Budget

In image classification tasks, a trial is defined as a sin-
gle hyperparameter configuration trained on the entire
dataset using a pruned model as a surrogate for five

Table 1: Dataset Details

Modality Dataset Abbrv. #classes #instances Models Employed Abbrv.

Image CIFAR0 C10 10 60000 EfficientNet7
ResNet50

EN
RNCIFAR100 C100 100 60000

Tabular

Segment SG 7 2310

XGBoost XBWaveform WV 3 5000
Bank BK 2 11163

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

629

epochs. A trial corresponds to training an XGBoost
model using one hyperparameter configuration over
the entire dataset for tabular data classification. The
fitness score for each trial is based on the model’s per-
formance on the val split.

The budget for each experiment was fixed at 80
trials as suggested in literature (Bergstra et al., 2011).
After completing the 80 trials, the best hyperparam-
eter configuration was selected and used to train the
model for an additional 50 epochs. This configuration
was applied to both PurGE and the baseline models.

For PurGE, the experiments were performed in
two distinct stages:

• Stage 1. A population size of 10 with a generation
count of 5, leading to 50 trials.

• Stage 2. A population size of 10 with a generation
count of 3, resulting in 30 trials.

The number of trials in each stage is calculated as:

Total trials = Pop size×Gen count (3)

5 RESULTS AND DISCUSSIONS

This section presents the results of the experiments
designed to address the research questions (RQ1 and
RQ2). Specifically, the impact of search space prun-
ing on hyperparameter optimization is evaluated in
terms of performance (accuracy) for RQ1. The effect
of pruning on resource utilization, such as computa-
tional time, is examined for RQ2. The results are an-
alyzed through comparisons with baseline methods,
including RS, GS, and TPE.

Table 3: P-values and Significance Interpretation (S = Sig-
nificant, NS = Not Significant) against PurGE.

Model Dataset p-values against PurGE
GS RS TPE

XB

SG S S NS
WV S S S
BK S S S

EN C10 S S NS
RN C100 S S S

PonyGE2 (Fenton et al., 2017), a GE implemen-
tation in Python, was adapted to run all the experi-
ments with the Pytorch framework. All experiments
were conducted simultaneously on Intel Xeon Silver
4215R CPU @ 3.20 GHz with Quadro RTX 8000
GPU.

Dataset

#t
ria

ls

0

20

40

60

80

SG WV BK C10 C100

RS/GS/TPE PurGE

Figure 7: Benchmarking the performance of PurGE across
all datasets with respect to the allocated budget, compared
against baseline methods.

5.1 Impact on Performance

On the tabular datasets, PurGE demonstrated com-
petitive performance compared to baseline methods.
For the SG dataset, PurGE achieved an accuracy of
97.92%, while RS, GS, and TPE reported slightly
higher accuracies of 98.26%, 98.44%, and 98.61%,
respectively. On the WV dataset, PurGE obtained
an accuracy of 87.04%, performing comparably to
RS (87.6%) and GS (88.04%), while outperform-
ing TPE, which reported an accuracy of 84.96%.
For the BK dataset, PurGE achieved an accuracy of
85.34%, which was slightly lower than RS (85.77%),
GS (85.45%), and TPE (85.99%).

For the image datasets, PurGE showed varying
performance across tasks. On the C10 dataset, PurGE
achieved an accuracy of 75.57%, which was com-
parable to TPE (75.57%) but slightly lower than RS
(79.01%). GS, however, reported a significantly lower
accuracy of 60.88%, highlighting the inefficiency of
grid-based methods in this context. On the C100
dataset, PurGE outperformed the baseline methods,
achieving an accuracy of 17%, while RS, GS, and
TPE reported substantially lower accuracies in the
range of 4-6%.

The relatively weak performance of all methods
on the C100 dataset can be attributed to the limited
number of samples available per class, which presents
a significant challenge for hyperparameter optimiza-
tion. Despite this, PurGE’s ability to achieve higher
accuracy on C100 underscores its potential for tack-
ling complex, high-dimensional search spaces more
effectively than traditional methods.

5.1.1 Statistical Significance

Mann-Whitney U tests with Beck and Hollern’s cor-
rection were conducted to evaluate the statistical sig-
nificance of the observed performance differences, as
shown in Table 3. The results indicate that PurGE sig-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

630

RS GS TPE PurGE(Stage1) PurGE(Stage2)
Hyperparameter Optimizers

93

94

95

96

97

98

99

Va
lid

at
io

n
A

cc
ur

ac
y

(O
bj

ec
tiv

e
Fu

nc
tio

n)

XGBoost-Segment

(a) XGBoost-Segment

RS GS TPE PurGE(Stage1) PurGE(Stage2)
Hyperparameter Optimizers

83

84

85

86

87

88

89

Va
lid

at
io

n
A

cc
ur

ac
y

(O
bj

ec
tiv

e
Fu

nc
tio

n)

XGBoost-Waveform

(b) XGBoost-Waveform

RS GS TPE PurGE(Stage1) PurGE(Stage2)
Hyperparameter Optimizers

0

20

40

60

80

Va
lid

at
io

n
A

cc
ur

ac
y

(O
bj

ec
tiv

e
Fu

nc
tio

n)

XGBoost-Bank

(c) XGBoost-Bank

RS GS TPE PurGE(Stage1) PurGE(Stage2)
Hyperparameter Optimizers

0

20

40

60

80

Va
lid

at
io

n
A

cc
ur

ac
y

(O
bj

ec
tiv

e
Fu

nc
tio

n)

EfficientNet-CIFAR10

(d) EfficientNet-CIFAR10

RS GS TPE PurGE(Stage1) PurGE(Stage2)
Hyperparameter Optimizers

10

0

10

20

30

40

50

Va
lid

at
io

n
A

cc
ur

ac
y

(O
bj

ec
tiv

e
Fu

nc
tio

n)

ResNet-CIFAR100

(e) ResNet-CIFAR100
Figure 8: Violin plots depicting the performance of various optimizers during the exploratory search phase.

nificantly outperforms baseline methods (GS, RS, and
TPE) in many cases. Specifically, PurGE consistently
achieves statistically significant improvements over
GS and RS across most datasets. While the differ-
ences between PurGE and TPE vary across datasets,
significant improvements are observed for SG, WV,
and BK, whereas the differences for C100 are less
pronounced.

Figure 8 shows violin plots of validation accuracy
across multiple runs for each method. An interest-
ing observation is the low standard deviation of vali-
dation accuracy during Stage 2 of PurGE. This indi-
cates that PurGE focuses on a high-yielding region of
the hyperparameter space, where multiple configura-
tions yield near-optimal or optimal performance. The
narrow distribution suggests that PurGE consistently
converges on effective configurations, enhancing the
reliability of the optimization process. This observa-
tion highlights the potential for further research into
decision-making frameworks that can select among
multiple optimal configurations based on factors such
as hardware efficiency or energy consumption.

5.2 Impact on Resource Utilization

PurGE demonstrates substantial improvements in re-
source utilization by reducing the number of trials
required for hyperparameter optimization compared
to baseline methods. As shown in Figure 7, PurGE
achieves a consistent reduction in the number of trials
across all datasets. For example, on tabular datasets
such as SG and WV, PurGE reduces the required
trials by approximately 20-25%, while maintaining
competitive performance. On image datasets, such

as C10, PurGE achieves a similar reduction in tri-
als, with a more significant improvement observed on
C100, where baseline methods require substantially
more trials to achieve lower accuracy.

The reduction in trials directly impacts computa-
tional efficiency. For instance, on datasets like SG and
WV, the savings in trials translate to a reduction of
computational effort by approximately 20-30%. On
more complex datasets like C100, where training and
evaluation are resource-intensive, PurGE completes
the optimization process with fewer trials, reducing
energy consumption while still achieving competitive
accuracy.

Figure 9 highlights the speed-ups achieved by
PurGE. On tabular datasets, PurGE achieves notable
speed-ups, such as 319.91x on SG and 47.39x on
WV, which are attributed to the early pruning of low-
performing configurations. For image datasets, while
the speed-ups are more modest (2.06x on ResNet-
C100 and 2.23x on EfficientNet-C10), they are sig-
nificant given the computational complexity of these
tasks.

PurGE’s approach of dynamically pruning the hy-
perparameter space allows it to concentrate resources
on promising regions, reducing unnecessary evalu-
ations. This reduction in computational overhead,
combined with the consistent performance across
datasets, highlights the utility of PurGE for resource-
conscious hyperparameter optimization tasks.

5.3 Energy Savings with PurGE

The energy savings provided by PurGE compared to
traditional methods regarding reduced carbon emis-

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

631

sions are estimated by considering the average speed-
up and reduction in the number of trials. It has been
reported that optimizing an NLP pipeline generates
approximately 78,468 lbs of CO2e (Strubell et al.,
2019).
An average speed-up of 47x is assumed for PurGE,
meaning that the optimization task can be completed
in 1/47th of the time required by traditional methods,
assuming energy consumption is proportional to time
spent. Additionally, PurGE is reported to reduce the
number of trials by approximately 28% to 35% on av-
erage. Since energy consumption per trial is assumed
to be constant, this trial reduction further lowers the
computational load and energy consumption. If a 47x
speed-up and a 30% reduction in trials are achieved,
the total Energy Reduction Factor (ERF) is approxi-
mated as:

ERF = 47× (1−0.30) = 47×0.70 = 32.9 (4)

Thus, the Energy Savings (ES) in terms of CO2e
emissions can be calculated as:

Savings=
78,468lbs of CO e

32.9
≈ 2,384.3lbs of CO2e

(5)
Based on the NLP example, PurGE could save ap-

proximately 2,384 lbs of CO2e per optimization task
compared to traditional methods.

In summary, the findings show that PurGE suc-
cessfully addresses both research questions by im-
proving the efficiency and performance of hyperpa-
rameter optimization through systematic pruning of
the search space. The results confirm that pruning
boosts model performance and significantly reduces
resource use, making PurGE a practical solution for
resource-efficient hyperparameter optimization.

6 CONCLUSIONS

This article introduces PurGE, a two-stage approach
for automatically tuning hyperparameters of ML and
DL models through search space pruning driven by
GE. PurGE achieves test accuracies that are compet-
itive with or superior to state-of-the-art methods, in-
cluding RS, GS, and BO, across all tested datasets.
Notably, PurGE delivers an average computational
speed-up of 47x and reduces the number of trials by
28% to 35%. Furthermore, it results in significant en-
ergy savings, equivalent to approximately 2,384 lbs
of CO2e per optimization task. These findings high-
light PurGE’s ability to enhance both model perfor-
mance and resource utilization, positioning it as an

efficient and environmentally responsible approach to
hyperparameter optimization. Future work will in-
volve benchmarking PurGE across a broader set of
domains to further assess its scalability and applica-
bility.

0 100 200 300 400 500
Execution Time (Minutes)

XB -BK

XB-WV

XB-SG

RN-C100

EN-C10

M
od

el
-D

at
as

et

Avg Speed-up: 7.96x

Avg Speed-up: 47.39x

Avg Speed-up: 319.91x

Avg Speed-up: 2.06x

Avg Speed-up: 2.23x

RS GS TPE PurGE

Figure 9: Speedup with PurGE against RS, BS and TPE.

ACKNOWLEDGEMENTS

This publication has emanated from research con-
ducted with the financial support of Taighde Éireann
– Research Ireland under Grant No. 18/CRT/6223.

REFERENCES

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
(2019). Optuna: A next-generation hyperparameter
optimization framework.

Awad, N., Mallik, N., and Hutter, F. (2021). Dehb: Evo-
lutionary hyperband for scalable, robust and efficient
hyperparameter optimization.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. In Pro-
ceedings of the 24th International Conference on Neu-
ral Information Processing Systems, NIPS’11, page
2546–2554, Red Hook, NY, USA. Curran Associates
Inc.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. J. Mach. Learn. Res.,
13(null):281–305.

DeCastro-Garcı́a, N., Castañeda, Á. L. M., Garcı́a, D. E.,
and Carriegos, M. V. (2019). Effect of the sampling
of a dataset in the hyperparameter optimization phase
over the efficiency of a machine learning algorithm.
Complex., 2019:6278908:1–6278908:16.

Diaz, G., Fokoue, A., Nannicini, G., and Samulowitz, H.
(2017). An effective algorithm for hyperparameter op-
timization of neural networks.

Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust
and efficient hyperparameter optimization at scale.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

632

Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S.,
Hemberg, E., and O’Neill, M. (2017). Ponyge2:
grammatical evolution in python. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’17. ACM.

Horváth, S., Klein, A., Richtárik, P., and Archambeau, C.
(2021). Hyperparameter transfer learning with adap-
tive complexity.

Jamieson, K. G. and Talwalkar, A. (2015). Non-stochastic
best arm identification and hyperparameter optimiza-
tion. CoRR, abs/1502.07943.

LeCun, Y., Denker, J., and Solla, S. (1989). Optimal brain
damage. In Touretzky, D., editor, Advances in Neural
Information Processing Systems, volume 2. Morgan-
Kaufmann.

Lee, K. and Yim, J. (2022). Hyperparameter optimization
with neural network pruning.

Lee, N., Ajanthan, T., and Torr, P. (2019). SNIP: Single-
shot pruning based on connecion sensitivity. In Inter-
national Conference on Learning Representations.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. (2016). Efficient hyperparameter opti-
mization and infinitely many armed bandits. CoRR,
abs/1603.06560.

Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski,
M., Lindauer, M., Nardi, L., and Hutter, F. (2023).
Priorband: Practical hyperparameter optimization in
the age of deep learning.

Perrone, V., Shen, H., Seeger, M., Archambeau, C., and Je-
natton, R. (2019). Learning search spaces for bayesian
optimization: Another view of hyperparameter trans-
fer learning.

Ryan, C., Collins, J., and Neill, M. O. (1998). Grammati-
cal evolution: Evolving programs for an arbitrary lan-
guage. In Banzhaf, W., Poli, R., Schoenauer, M., and
Fogarty, T. C., editors, Genetic Programming, pages
83–96, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy
and policy considerations for deep learning in NLP.

Vaidya, G., Ilg, L., Kshirsagar, M., Naredo, E., and Ryan,
C. (2022). Hyperestimator: Evolving computationally
efficient cnn models with grammatical evolution. In
Proceedings of the 19th International Conference on
Smart Business Technologies. SCITEPRESS - Science
and Technology Publications.

Vaidya, G., Kshirsagar, M., and Ryan, C. (2023). Gram-
matical evolution-driven algorithm for efficient and
automatic hyperparameter optimisation of neural net-
works. Algorithms, 16(7).

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015).
Hyperparameter search space pruning – a new compo-
nent for sequential model-based hyperparameter op-
timization. In Appice, A., Rodrigues, P. P., San-
tos Costa, V., Gama, J., Jorge, A., and Soares, C., ed-
itors, Machine Learning and Knowledge Discovery in

Databases, pages 104–119, Cham. Springer Interna-
tional Publishing.

Yang, L. and Shami, A. (2020). On hyperparameter opti-
mization of machine learning algorithms: Theory and
practice. Neurocomputing, 415:295–316.

Yu, T. and Zhu, H. (2020). Hyper-parameter optimization:
A review of algorithms and applications.

PurGE: Towards Responsible Artificial Intelligence Through Sustainable Hyperparameter Optimization

633

