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Abstract: In this paper, I investigate price formation in prediction markets via an agent-based model (ABM). Prediction
market prices can be interpreted as the probability of an event occurring, based on the aggregated beliefs of
market participants. By utilizing a simple market exchange populated with opinionated agents and calibrating
the model parameters, I aim to identify the effect on market price introduced by the three main drivers of the
opinion formation process within two competing groups of agents: self-reinforcement; herding; and additive
responses to inputs. Using a real-world dataset of Bitcoin prices, I show that both groups tend to follow
the overall market sentiment. However, when the market mood aligns with a particular group’s opinion, that
group becomes more self-reinforcing; conversely, when the mood does not favour their opinion, they become
less self-reinforcing. Furthermore, I propose to use the temporally generated parameter values—produced by
the calibrated model—as well as the temporal prices and market moods shifted by seven days as the training
set for a supervised machine learning and solve the multi-target learning problem to forecast both short-term
price trends and the expected trajectory of the two groups’ opinion dynamics. The code from this research is
available for other researchers to use, build upon, and extend.

1 INTRODUCTION

In academic literature, terms such as information
markets, decision markets, and forecasting markets
are often used interchangeably to refer to predic-
tion markets. (Berg and Rietz, 2003) define predic-
tion markets as markets that primarily aim to aggre-
gate information in order to forecast future events.
These markets can also serve as decision support sys-
tems, providing insights into current situations or be-
ing used to evaluate decision-making processes. Al-
though stock markets and prediction markets share
similarities, they differ in their primary purposes.
Stock markets focus on resource allocation, risk trad-
ing, and capital raising, with information aggrega-
tion being a secondary feature. Prediction markets,
however, are specifically designed to aggregate infor-
mation. Additionally, contracts in stock markets are
based on the value of real assets, whereas prediction
market contracts are linked to event outcomes and
have no intrinsic value. Digital currency markets, in
this context, are relatively similar to prediction mar-
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kets, as both are based on non-intrinsic values.
Prediction markets are often used as a means of

leveraging collective intelligence, or the “wisdom of
the crowd”. Over the past decade, these markets
have shown a remarkable degree of accuracy, demon-
strating through various statistical tests that they out-
perform professional forecasters and polls (Luckner
et al., 2011). Nevertheless, they are subject to bi-
ases and manipulation, which can negatively impact
the corresponding financial markets (Restocchi et al.,
2023). In order to overcome these challenges, there
is a need for models that can accurately reproduce
the dynamics of price and opinion formations. These
models are required to be simple enough to be un-
derstandable and tractable while complex enough to
allow for creating the realism of market dynamics.

In prediction markets, traders exchange contracts
with prices that depend on the outcome of a future
event. A rational buyer will purchase a contract if they
believe it is undervalued and sell it if they believe it
is overvalued. Until the actual outcome of the future
event is revealed, traded prices reflect the collective
opinions and beliefs of market participants regarding
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the likelihood of the event’s occurrence.
More generally, in an efficient prediction mar-

ket, the market price reflects all available information
(Luckner et al., 2011). Thus, the evolution of opinions
can be likened to the process of price formation. By
employing opinion dynamics within the framework of
a prediction market, we can simulate opinion evolu-
tion and how that is reflected in price movements.

With the expansion of the popularity of social net-
works and the rapid increase in information dissem-
ination in this digital era, it is evident that commu-
nicated narratives do significantly influence people’s
opinions. This impact is especially crucial in predic-
tion markets, where participants make forecasts on
events–—ranging from elections to economic trends–
—based on their formed opinions. Prediction markets
rely on the collective wisdom of participants, who
analyze data and apply their insights to predict out-
comes. Therefore, it is essential to understand the
nature of narratives circulating in digital media and
how they shape the interpretation of available infor-
mation. In many cases, two or more competing narra-
tives about the same event coexist, and each can vary
in their dominance and strength during the event un-
der prediction. For example, during national general
elections, one narrative might emphasize one candi-
date’s strengths and their positive track record, while
another competing narrative embraces other candi-
dates’ eligibility to win. These narratives often create
polarized opinion-formed groups, each aligning with
the story that echoes their beliefs, values, or expecta-
tions. Each group can be stronger at some periods and
weaker in others, this illustrates how, in reality, differ-
ent groups can interpret the same event or piece of in-
formation through entirely distinct lenses and that the
collective opinions they are forming are rich, complex
and nonlinear. Modeling these groups’ dynamics and
understanding how they interact and influence each
other is crucial for identifying the underlying drivers
of the opinion formation process.

In this study, I analyze three drivers of group dy-
namics, influenced by (Leonard et al., 2021): (1)
Self-reinforcing dynamics, which refers to the group
behaviour when it supports its own opinions and
communicates mostly among itself; (2) Herding be-
haviour, where one group follows the others, often
leading to convergence to one particular opinion; and
(3) Additive response to inputs represents the situa-
tion when a group receives repetitive external inputs,
assuming that each input contributes to the overall for-
mation of opinions.

This study aims to enhance our understanding of
how each of the aforementioned dynamics contributes
to the process of opinion formation within each group,

the interaction dynamics between the two groups, and
which dynamic most accurately influences the market
price fluctuations over time as observed in real finan-
cial markets. By comparing the influence of each dy-
namic on opinion formation, I aim to identify the op-
timal parameter setting that best replicates observed
patterns in real-world market data.

Parameter calibration is an essential process for
the validation of ABMs because it allows the sim-
ulated model to be fitted to real-world phenomena.
Without proper calibration, it is difficult to trust the
simulated behavior. By tuning the model’s parame-
ters based on empirical data or observed system be-
havior, we can improve the alignment between the
model and the actual system it is intended to represent
(Song et al., 2021). Reinforcement learning has been
used in ABM calibration (see (Glielmo et al., 2023)),
where it is applied to calibrate the model’s parame-
ters based on feedback from the system’s performance
compared to the real-world counterpart. The entire
model iteratively refines its parameters to better align
with real-world data, optimizing the simulation’s ac-
curacy over time.

The novelty of this paper is my introduction of a
new ABM for prediction markets for which I demon-
strate parameter calibration, after which the model
accurately fits real-world cryptocurrency price and
sentiment data. Thus, allows for the following con-
tributions (1) identify the key drivers of the opin-
ion dynamics evolution within two groups of com-
peting opinions, (2) build a machine-learning dataset
and train a machine-learning model to predict the
short-term price movement and the corresponding
group dynamics between two groups of agents each
of which holds an opposing opinion.

2 MODEL

In this section, I describe the models governing the
temporal dynamics of opinion evolution and the cor-
responding price formation. I adopt the opinion
dynamics model from (Bizyaeva et al., 2020) and
the simple prediction market model from (Restocchi
et al., 2023). In this context, the predicted event rep-
resents whether the market price is expected to rise or
fall.

2.1 BFL Opinion Dynamics Model

Let N be the number of agents in the market. The
agents are connected in an undirected uniformly
weighted network. Agents in the network belong to
one of two groups, one with a positive opinion Np
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and the other Nn with a negative opinion such that
Np +Nn = N. Each agent is characterized by a scalar
opinion x ∈ [−1,1] ∈ R. An agent i ∈ Np updates
her opinion according to the following dynamics from
(Bizyaeva et al., 2022).

τxẋi =−xi + Ŝ(αpx̂p +σx̂n)+bp (1)

Similarly, an agent j ∈ Nn updates her opinion
according to the following dynamics from (Leonard
et al., 2021):

τxẋ j =−x j + Ŝ(αnx̂n +σx̂p)+bn (2)

where τx is a time scale, x̂ = 1
N ∑i∈Ip xi is the

group’s average opinion, and Ŝ is a saturation func-
tion defined as

Ŝ(x) =
1
2
(
S(x)−S(−x)

)
(3)

Here, S is an odd sigmoid function. Following
(Leonard et al., 2021), I use the hyperbolic tangent
function, “tanh”, where tanh(−x) =− tanh(x), giving
Sz(x) = tanh(x). The parameters αp and αn are the
self-reinforcing parameters, while bp > 0 and bn < 0
are the additive input parameters. These parameters
are considered positive feedback parameters, as large
positive values of αp and αn lead to strongly positive
opinions (αpxi > 0) and strongly negative opinions
(αnx j < 0), respectively. Additionally, a significant
magnitude of bp and bn further drives xi more posi-
tively and x j more negatively, respectively. Finally,
σ ∈ {−1,1} represents the herding parameter: when
σ =−1, the two groups are driven into a state of dis-
agreement (anti-herding), whereas when σ = 1, the
groups are driven into agreement (herding).

2.2 Prediction Market Model

In prediction markets, traders exchange contracts at
prices based on the probability of the outcome of
an event. If the event occurs, the contract’s pay-
off is 1; otherwise, it is zero. Borrowing the justifi-
cation and definitions from (Restocchi et al., 2023),
the price in a completely efficient prediction market
is defined as π = P(event occurs), representing the
true probability of that event occurring. Hence, since
x ∈ [−1,1] we need normalization to constrain opin-
ions between zero and one. Assuming traders are ra-
tional, a trader will buy if she believes the asset is un-
dervalued, meaning her opinion is less than the mar-
ket price, i.e., x < π. Conversely, she will sell if she
believes the asset is overvalued, i.e., x > π, and will
neither buy nor sell when she believes the price re-
flects true value, i.e., x = π.

Following (Restocchi et al., 2023), market price is
driven by excess demand, where trader i’s demand at

time t is defined as the difference between her opinion
at time t and the current market price:

Di(t) = xi(t)−π(t) (4)
Thus, the more agents believe the asset is underval-
ued, the higher the demand. Formally, the excess de-
mand at time t is given by

ED(t) = |∨ |∑
i

Di(t) (5)

where ∨∼ N(0,0.05) (see (Restocchi et al., 2023) for
more details). In each trading time-step, the market
price is updated according to the excess demand, with
trimming to keep it between zero and one.

2.3 Price Drivers

Recall the dynamics from (1) and (2), and if we
can observe the market and determine the mar-
ket mood, then following the methodology from
(Leonard et al., 2021), we can systematically iden-
tify the price drivers, assuming the prices are directly
linked to opinions as I discussed previously. Starting
by identifying a market mood indicator for each of the
trading groups, as outlined in (Leonard et al., 2021),

Ip(t) = f(MM(t)+ I0), (6)
In(t) = f(−MM(t)− I0), (7)

where f is a function such that f (0) = 0 and I0 > 0 is
the basal opinion drive.

In general, traders tend to focus more on signif-
icant shifts in market sentiment rather than minor
fluctuations1. This is evidenced by dramatic mar-
ket movements following events such as elections2.
To accurately account for this noticeable human be-
haviour, the model includes a “dead zone”. We can
apply a threshold region where insignificant mar-
ket mood fluctuations remain ineffective in persuad-
ing agents’ opinions. By introducing the conceptual
“dead zone”. The function f is defined as a nonlinear
function proposed by (Leonard et al., 2021) given by:

f (x;U,L) =


x−U, if x ≥U
0, if −L < x <U
x+L, if x ≤−L

(8)

Where U and L are the upper and lower sensitivity
thresholds, both of which are non-negative. To ac-
count for the different drivers, we can set Uα and Lα

as sensitivity thresholds for self-reinforcement, and
Ub and Lb for additive input. Then, these two indica-
tors can be used to control the dynamics of the three
drivers as follows:

1See Reuters, Traders chase post-election stock gains in
US options market, November 15, 2024.

2See News.com.au, Bitcoin price hits record high as
Donald Trump moves closer to victory.
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2.3.1 Self-Reinforcement

The rates of change for the reinforcement parameters
αp and αn are directly proportional to market mood
inputs, with a common proportionality constant kα,
as described in (Leonard et al., 2021). This propor-
tional relationship implies that shifts in market senti-
ment drive the dynamics of αp and αn, scaling their
strength according to kα. Specifically, the differen-
tial equations governing these rates of change are:
α̇p = kαIp(t) and α̇n = kαIn(t).

In these equations, Ip(t) and In(t) represent the
mood inputs associated with positive and negative
market mood, respectively. The parameter kα acts as
a sensitivity factor, determining how strongly αp and
αn respond to changes in Ip(t) and In(t). As market
sentiment fluctuates, these dynamics enable αp and
αn to adjust proportionally, reflecting the groups’ re-
sponse to the current mood of the market.

2.3.2 Herding

The herding parameter, σ(t), switches based on the
market mood at time t and is defined as follows:

σ(t) =

{
1 if MM(t) ∈ {−1,+1}
−1 otherwise

This definition means that when the market mood
is extreme (either +1 for strongly positive or −1 for
strongly negative), the groups will be herding, con-
trolled by σ(t) = 1. Conversely, when the market
mood does not reach these extreme values, σ(t) is set
to −1 allowing the groups to act independently or in
opposition.

2.3.3 Additive Inputs

The dynamics of the additive input parameters bp and
bn are governed by the following differential equa-
tions, exactly analogous to α̇p and α̇n, discussed pre-
viously. ḃp = KbIp(t) and ḃp = KbIn(t).

3 RESULTS

The dataset used in this study is sourced from a pub-
lic repository3. It includes daily records of market
sentiment derived from Yahoo Finance and Alterna-
tive.me, alongside the closing prices of Bitcoin, cov-
ering the period from February 1, 2018, to March 31,

3https://www.kaggle.com/datasets/adilbhatti/
bitcoin-and-fear-and-greed

2023. This dataset can be used in the context of pre-
diction markets as it captures both price fluctuations
and market mood, providing insights into how sen-
timent influences cryptocurrency trading decisions.
Since Bitcoin trading is highly sentiment-driven and
the market operates without a central authority, the
dataset’s sentiment scores and price data reflect the
underlying psychological factors that are often cen-
tral in prediction market dynamics. 4

3.1 Parameter Calibration

The parameter combinations to be calibrated are de-
fined as follows: Uα, Lα, Kα, and P0α each have a
lower bound of 0.1, an upper bound of 1.0, and a pre-
cision of 0.1. The parameter σ ranges from -1 to 1.0
with a precision of 2. Similarly, Ub, Lb, Kb, and P0b
have lower and upper bounds of 0.1 and 1.0, respec-
tively, with a precision of 0.1. These ranges and preci-
sions result in a total of two hundred million possible
parameter combinations for calibration.

Formulating the calibration process as an opti-
mization problem, it is evident that an exhaustive
search for the optimal parameter setting with the low-
est loss is infeasible. Therefore, I apply a search
method that uses reinforcement learning proposed by
(Glielmo et al., 2023), which utilizes a simple ε-
greedy algorithm to balance exploration and exploita-
tion in parameter selection, with a fixed learning rate.
The reinforcement learning algorithm uses an ensem-
ble of three samplers—Random Forest, XGBoost,
and Best Batch— to explore the parameter space.
Each sampler selects a sample, runs the agent-based
model (ABM) simulation with the chosen parameters,
and applies a loss function to evaluate the fitness of
the simulated results compared to the real-world time
series. This iterative process continues until either the
maximum number of search rounds 10000 is reached
or convergence is achieved. The output of the calibra-
tion process is the parameter vector associated with
the lowest loss. In this experiment, I applied the Eu-
clidean distance loss function. The optimal param-
eters, associated with the minimum loss, resulted in
a loss of 0.15 and the following calibrated values:
Uα = 0.2, Lα = 0.8, Kα = 0.3, P0α = 0.7, σ = 1.0,
Ub = 0.3, Lb = 0.1, Kb = 0.8, and P0b = 0.1.

4Note, here I use the ready-to-use software from
(Benedetti et al., 2022) for calibration, and I use the pre-
diction market exchange simulation from (Restocchi et al.,
2023).
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3.2 Model Evaluation

As a baseline, I am using the market mood as a di-
rect representation of traders’ opinions, assuming that
the aggregated sentiment—scaled from −1 (negative)
to +1 (positive)—reflects the collective expectations
and beliefs of traders regarding Bitcoin’s future price
movements. By treating market mood as a proxy for
individual trader opinions, we can model opinion dy-
namics in a simplified manner, where shifts in market
sentiment directly influence trading behaviour. This
baseline provides a straightforward foundation to as-
sess the impact of sentiment on price, against which I
will compare the calibrated model.

Figure 1: Uniform group opinion dynamics using Market
Mood as the opinion.

Figure 2: The corresponding price dynamics from the opin-
ion dynamics in Figure 1.

Figure 1 illustrates the uniform group opinion dy-
namics when market mood is used as the opinion.
The figure shows how opinion levels fluctuate over
time based only on market mood 5. Figure 2 de-
picts the corresponding price dynamics resulting from
the opinion dynamics shown in Figure 1. This fig-
ure demonstrates how variations in opinions, driven
by market mood, impact simulated prices over time.
As market mood fluctuates, these shifts in collective

5Hence, no opinion dynamics model is used here, as the
market mood is treated as a uniform opinion, with all agents
sharing the same opinion at each time step.

Figure 3: Alpha dynamics applying Uα = 0.2, Lα = 0.8,
Kα = 0.3, P0α = 0.7. This figure illustrates the dynamics
of two self-reinforcing parameters, αp (in red) and αn (in
blue), over time. These parameters represent the sensitivity
or reinforcement levels for the Positive Group and Negative
Group, respectively, as they respond to market mood.

Figure 4: Input dynamics applying Ub = 0.3, Lb = 0.1,
Kb = 0.8, and P0b = 0.1. This figure shows the dynam-
ics of the input parameters bp (in red) and bn (in blue) over
time, representing external input factors that influence the
positive group and negative group, respectively.

sentiment are reflected in price movements.
Figure 3 illustrates the dynamics of the self-

reinforcing parameters αp and αn over time, cor-
responding to the self-reinforcement of the positive
and negative groups, respectively. When the market
mood is positive, αp tends to increase, which means
the positive group is more self-reinforcing. Con-
versely, when the market mood is negative, αn tends
to rise, meaning that the negative group is more self-
reinforcing. This pattern shows that the values of
α adapt to prevailing market sentiment, altering the
reinforcement of each group’s opinion based on the
overall market mood. However, recall the dynamics
(1) and (2) and since, σ = 1, then the group’s self-
reinforcing parameter α needs to exceed the critical
value, i.e. α > 1 for the group to allow for the posi-
tive feedback αx̂ to dominate. As shown in Figure 3
α values never reach 1, both groups will be more in-
fluenced by each other’s opinions. Hence, σ controls
the tendency to herding.

Figure 4, shows that when the market mood is pos-
itive, the magnitude of input parameter bp for the pos-
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Figure 5: Opinion evolution for two distinct groups in the
market: a “positive group” (represented in red) and a “neg-
ative group” (in blue). Group opinion dynamics when ap-
plying the optimal parameters setting.

itive group tends to be higher, adding to the group’s
positive opinion. This positive external input aligns
with the market sentiment, strengthening the positive
group’s opinion. Conversely, when the market mood
is negative, the magnitude of input parameter bn for
the negative group increases, adding to the group’s
negative opinion. It can be noted that the positive
group’s input is higher than the negative group’s in-
put.

Figure 5 presents the group opinion dynamics af-
ter applying the optimal parameter settings obtained
from the calibration process and updating agents’
opinions as per equations (1) and (2) accordingly.
This figure shows how the model, fine-tuned with
these parameters, captures shifts in group opinions
over time, reflecting a more realistic and potentially
accurate representation of trader’s group opinions
compared to the baseline. The dynamics here con-
sider interactions and feedback mechanisms that the
optimal parameters enable. Since the negative group
has the lower self-reinforcement and the lower inputs,
I found that the best instances of the model’s evolution
happen when the positive group update their opinion
at a higher rate, which means as the initial opinions
are −1 and +1, for the negative group and the positive
group respectfully, the negative group get to keep its
negative average opinion close to the initial opinion,
and the dynamics in (1) will results in negative opin-
ion. The jump in opinions happens around days 500
or 900 when the positive group becomes more self-
reinforcing (αp > αn) and (αp > 0.9); and receives
more inputs (bp > bn). Thus, xp becomes greater and
updating (2) will give a positive opinion. It is note-
worthy to mention that since the prediction market
expects opinions to be in [−1,+1], opinions need to
be scaled. I use this simple linear transformation that
maps the values of xi+1

2 .
Figure 6 shows that the market prices resulting

from using the calibrated model capture the general

Figure 6: This figure shows the simulated average price
from 150 model simulations (blue line) with the actual, nor-
malized Bitcoin price (orange line) over the same time pe-
riod.

upward and downward trends in Bitcoin’s price but
lack some of the high-frequency volatility present in
the actual Bitcoin market. The model provides a good
approximation of the overall trend but may not fully
capture the rapid fluctuations or extreme volatility
seen in real-world cryptocurrency markets. These re-
sults demonstrate the model’s capacity to follow long-
term price movements while highlighting potential ar-
eas for improving its responsiveness to sudden market
shifts.

The distribution of residuals represents the differ-
ences between Bitcoin prices and the simulated prices
generated by the calibrated model. These residuals
are centered around zero, indicating that the model is
not biased. However, the residuals are not perfectly
normally distributed, with a mean of µ = 0.00 and a
standard deviation of σ = 0.16. The skewed spread
and shape of the residuals suggest that the model may
not fully capture the underlying distribution of the
data.

To evaluate the relationship between simulated
prices and Bitcoin prices, Exponential Moving Aver-
ages (EMAs) and residual analysis are applied. First,
EMAs are calculated for both simulated prices and
Bitcoin prices to smooth fluctuations caused by the
high frequency of trading in the simulation. EMAs
are optimized through a minimization process aimed
at reducing the variance of the residuals. After cal-
culating the residuals, zero-crossings—points where
the residuals change sign—are identified. These zero-
crossings segment the time series into distinct phases,
each representing periods of consistent residual be-
havior. The mean residual for each phase is calcu-
lated to summarize the overall behavior during that
phase. Linear regression is applied to the residuals
within each phase to examine trends. Figure 7 (top)
shows the EMAs for both series, and Figure 7 (bot-
tom) displays the phase means during specific time
phases alongside the EMA of residuals time series.
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Figure 7: Comparison of Exponential Moving Averages
(EMAs) of simulated prices and Bitcoin (BTC) prices. The
top plot shows the EMAs of simulated prices (blue) and Bit-
coin prices (orange) over time, with optimal span values of
50 days for simulated prices and 200 days for Bitcoin prices.
The bottom plot displays the residuals, smoothed using an
EMA with a span of 200 days, calculated as the difference
between the EMAs of simulated prices and Bitcoin prices.
The red dashed lines represent the linear regression of the
residuals, with corresponding means annotated.

In Phase 1 (t0 to t116), the mean of residuals is
positive (0.094), indicating that simulated prices are
higher than Bitcoin prices. During Phase 2 (t116 to
t408), the mean of residuals turns negative (-0.049),
showing that Bitcoin prices are higher. In Phase 3
(t408 to t563), the mean of residuals is slightly posi-
tive (0.023), with simulated prices being higher again.
Phase 4 (t563 to t1142) is characterized by a negative
mean of residuals (-0.097), indicating a pronounced
divergence where Bitcoin prices are much higher. Fi-
nally, in Phase 5 (t1142 to t1884), the mean of resid-
uals becomes positive once more (0.082), showing a
return to simulated prices being higher. On average,
the residuals are close to zero relative to the normal-
ized price scale (0 to 1), suggesting that the model
performs reasonably well. However, during certain
periods, such as Phase 4, the residuals are relatively
larger, indicating that the model’s predictions are less
accurate.

Table 1: Comparison of Performance Metrics for the cali-
brated model and the baseline model.

Metric Calibrated Model Baseline
MSE 0.03 0.12
MAE 0.13 0.29
RMSE 0.16 0.35
R² 0.77 -0.85
Pearson
Correlation 0.88 0.23

Table 1 provides a comparison of the calibrated
model and the baseline model across several perfor-
mance metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), Root Mean Squared Error
(RMSE), R-squared (R²), and Pearson Correlation.

The calibrated model shows a significant improve-
ment over the baseline in all metrics. With an MSE
of 0.026 compared to 0.124 for the baseline, the cali-
brated model demonstrates more accurate predictions
with smaller average squared deviations from the true
values. Similarly, the MAE is much lower (0.133 for
the calibrated model vs. 0.288 for the baseline), indi-
cating that the predictions are generally closer to ac-
tual values. The RMSE, which gives more weight to
larger errors, is also considerably lower for the cali-
brated model (0.161 versus 0.352), highlighting fewer
large deviations from the actual data.

Additionally, the calibrated model achieves an R-
squared value of 0.772, meaning it explains approx-
imately 77.2% of the variance in the data, while the
baseline model has a negative R-squared, indicating a
poor fit. Lastly, the Pearson Correlation for the cali-
brated model is 0.883, showing a strong positive lin-
ear relationship between the predicted and actual val-
ues, compared to a weaker correlation of 0.230 for
the baseline. Overall, these metrics underscore the
superior accuracy and predictive capability of the cal-
ibrated model over the baseline.

3.3 Financial Market Forecasting

We can use the calibrated parameters from the model
of the prediction market to forecast the financial mar-
ket. We can formulate the problem of short-term fore-
casting of asset prices and group opinion dynamics
as multi-target regression (MTR) problem. Formally,
given an input vector X∈Rn representing the features
—parameter values, market mood and price history—
, the goal is to predict an output vector Y ∈Rm where
each element yi represents the predicted value for a
specific target variable (e.g., future prices at differ-
ent time horizons), and the expected group dynamics.
This formulation allows us to leverage supervised ma-
chine learning techniques to learn a mapping function
f : Rn → Rm such that:

Y = f (X)+ ε

where ε denotes a vector of error terms, captur-
ing the model’s prediction error. MTR problems
can be solved by a variety of machine-learning al-
gorithms. Given that the generated dataset contains
targets that are both continuous and categorical, inter-
dependent, and the dataset size is small. It is impor-
tant to use multi-target supervised machine learning
methods that are capable of effectively handling tar-
get interdependencies while at the same time avoiding
overfitting due to limited data.

Table 2 presents the performance metrics for sev-
eral multi-target learning algorithms, Multi-Output
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Random Forest (MORF), a variant of Random For-
est, models interdependencies within tree splits and
is particularly robust for small datasets, making it an
effective choice for multi-target tasks. Extreme Gra-
dient Boosting Trees (XGBoost) support multi-target
prediction and perform exceptionally well on smaller
datasets. Finally, Multi-Task Learning Neural Net-
works (MTNN) leverage shared hidden layers to cap-
ture features common across all targets while utiliz-
ing separate output layers tailored to handle contin-
uous and categorical variables. MTXGBoost gener-
ally achieves the best performance across most tar-
gets, followed closely by MORF, while MTNN shows
slightly higher errors but remains competitive in cer-
tain cases.

Table 2: Performance Metrics for Multi-target Models.

Model Target MAE RMSE R²

MTXGBoost

Price 0.16 0.24 0.86
αp 0.02 0.04 0.82
αn 0.03 0.05 0.77
bp 0.11 0.16 0.84
bn 0.11 0.16 0.83

MORF

Price 0.17 0.25 0.85
αp 0.02 0.04 0.80
αn 0.03 0.05 0.76
bp 0.12 0.16 0.83
bn 0.12 0.17 0.82

MTNN

Price 0.16 0.24 0.86
αp 0.03 0.04 0.76
αn 0.04 0.05 0.70
bp 0.12 0.16 0.83
bn 0.13 0.17 0.82

4 CONCLUSION

In this paper, I explored price formation in prediction
markets, by populating a simple model of a prediction
market exchange with opinionated agents and cali-
brating model parameters. I investigated the influence
of key drivers in the opinion formation process within
two competing groups: self-reinforcement, herding,
and additive responses to inputs. Using a real-world
dataset, the results indicate that both groups generally
follow overall market sentiment. However, when mar-
ket mood aligns with a particular group’s opinion, that
group becomes more self-reinforcing, while a lack of
alignment reduces self-reinforcement.

Despite these insights, there are limitations to this
simple ABM. The model’s simplified structure does
not fully capture the complexity of real-world trad-
ing behavior, particularly the high-frequency volatil-

ity and external shocks often observed in cryptocur-
rency markets. Additionally, while the model accu-
rately reflects long-term sentiment trends, it may fail
to capture the rapid sentiment shifts that occur in ac-
tual trading environments. Future work could ad-
dress these limitations by incorporating more com-
plex agent interactions or external factors influenc-
ing market sentiment. Nevertheless, the model in-
troduced here does capture real-world price dynamics
with sufficient accuracy to be of significant and endur-
ing interest. To enable other researchers to replicate
and extend this work I have made the source code and
sample data sets available on GitHub.
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