
Effort Estimation of Large-Scale Enterprise Application
Mainframe Migration Projects: A Case Study

Sascha Roth
Lucerne University of Applied Sciences and Arts, School of Computer Science and Information Technology, Switzerland

Keywords: Enterprise Applications, Mainframe, Migration, Legacy Systems, Cost Estimation, Cloud Computing.

Abstract: How do you migrate an enterprise application which has decades old legacy code running on an IBM Z-series
mainframe? What options do you have and how do you estimate the efforts best? In this paper, we present a
model developed during a real-world case study of a migration endeavour of the worldwide warranty system
at a major premium automotive. We present a pragmatic approach taken to ballpark migration efforts which
allows for similar endeavours to estimate migration efforts in a similar fashion.

1 INTRODUCTION

The mainframe did indeed not go anywhere in the last
decade as forecasted by (Barnett, 2005). Yet, it is one
of those systems that you better do not touch:
Changes are delivered (too) late, developers are either
hard to find or hard to onboard, and business never is
happy with what they get for the buck.

Enterprise applications running on mainframes
usually carry decades of history with them (Bhatnagar
et al., 2016). So, it does not surprise that they come
with heavy luggage: technical debts. Even the best
designs eventually become outdated and become
hard(er) to maintain. Due to financial pressure,
technical debt often is not addressed adequately with
refactoring or rearchitecting measures. Despite
software does not age, technical debts hit
organizations regularly (Tom et al., 2013). In short:
mainframe applications are often legacy than an
organization needs to get rid of. A first step toward it
is to plan for a migration to another system. In our
case, the target was set to the AWS cloud. Effort
estimation of software development is a non-trivial
issue (Carbonera et al., 2020).

The remainder of the article is structured as
follows: we briefly give an outline on mainframes and
depict common strategies how to modernize
mainframe applications. We then proceed by
detailing our case study, set the frame conditions for
the case and then outline the solution taken to
estimate the efforts and derive a roadmap. In the
discussion section, we reflect on the approach and

also outline the limitations and risks we see. The
paper concludes with an outlook of the migration and
further initiatives we can think off to help
organizations that are in a similar situation.

2 A (VERY) BRIEF HISTORY OF
MAINFRAME
MODERNIZATION

Mainframe application modernization has been
around for decades. Albeit unwanted, mainframe
applications are not that easy to modernize. While
(Sun & Li, 2013) proposed an approach to estimate
efforts for cloud migrations, they do not account for
the mainframe specific challenges, which mostly is
outdated design, an inadequate data models and other
technical debt accumulated over the decades.
However, several methods and approaches are known
how to modernize the mainframe, with or without its
full replacement.

2.1 Transpilation

Transpilation is one possibility to move from A to B
(Schnappinger & Streit, 2021), or let us say: to
convert the code base from A to B. That is, this
technique takes the sources of one tech stack and
transpiles it into the language of the target tech stack.
In the authors` example, they performed a conversion
at source level from Natural to Java. Our case has a

Roth, S.
Effort Estimation of Large-Scale Enterprise Application Mainframe Migration Projects: A Case Study.
DOI: 10.5220/0013289500003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 845-850
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

845

different source technology and a 1:1 conversion
would not address all issues and challenges the
development teams and users of this application face.
While this case study is a good example for an
application which might not be changed anymore and
its roadmap planned for a sundown scenario in the
near future, our application is heavily used and, after
migration, should strive again like on the first day.

2.2 Screen Scraping

A common technique also discussed during
mainframe application modernizations is so-called
screen scraping (Dörsam et al., 2009). The main idea
is to literally scrape the screen of typically terminal-
based mainframe applications and make them
accessible via newer technologies, e.g. REST APIs.
This technique can be a low-cost alternative if you
want to stay on a mainframe. As we will state in the
next section, this is not the case in our case study.
Further, as the application already has gone through a
partial modernization, its logic is no longer
implemented in COBOL and the likes. Hence, screen
scraping is neither applicable, nor would it help to
retire the mainframe.

2.3 The 7-Rs

The 7Rs were initially 5Rs introduced by Gartner
(Migrating Applications to the Cloud, 2009) and have
been extended by Amazon and now include all
possibilities the authors can think of (About the
Migration Strategies - AWS Prescriptive Guidance,
2024). We briefly summarize the 7Rs as they were
considered and evaluated in our case study as well.

Rehost: Also known as “lift and shift,” this
strategy involves moving applications to the cloud
without making any changes. It’s quick but may not
take full advantage of cloud benefits.

Replatform: This involves making a few cloud
optimizations to achieve some tangible benefits
without changing the core architecture of the
applications.

Repurchase: This strategy involves moving to a
different product, typically a SaaS platform, which
means abandoning the existing application.

Refactor/Re-architect: This involves re-
imagining how the application is architected and
developed, typically using cloud-native features. It’s

the most resource-intensive but can offer the most
benefits.

Retire: Identify assets that are no longer useful
and can be turned off. This can help reduce costs and
complexity.

Retain: Keep applications that are critical to the
business but are not ready to be migrated. This might
be due to complexity, cost, or other factors.

Relocate: Move applications to the cloud without
purchasing new hardware, often using virtualization
technologies.

3 CASE STUDY

We begin our case study with providing an overview
of the context of the application. Our client is in the
automotive industry and a major player of luxury
cars. The system is one of the aftersales systems to
handle warranty and goodwill cases. It features many
interfaces and as it is historically grown, many
stakeholder consume data from the system, either
directly (via interfaces or DB access) or indirectly via
reports and file-based exports. [Permission to
disclose further information about the system and its
context requested, permission may be provided after
review process. Potential artefacts to be shared
include: a capability map, process coverage,
interfaces to other systems and integrations into the
system landscape and datawarehouse and datalake
environment]

3.1 Guardrails

Business applications run in organizations and serve
a certain purpose. They are also embedded in IT
strategies. This builds guardrails for our decision on
why and how to migrate. We briefly outline some key
guardrails.

The organization implemented the scaled-agile
framework (SAFe) and accordingly the teams work in
product increments and sprints.

The mainframe will be retired on December 2026
and prolongation is not possible – we have a fixed
deadline.

A predecessor project already investigated that the
business capabilities and tech stack are future prove,
so entirely replacing the system is out of scope.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

846

3.2 The Tech Stack

The tech stack of our mainframe application is a
mixture of mainframe tech and modern frameworks
that one would still choose nowadays to design new
enterprise applications.

As programming framework, Java Spring is used
in combination with a DB2 database. What sounds
almost plain vanilla turns out to be a leftover of
refactoring measures that took place almost a decade
ago. The mainframe parts, namely COBOL were
largely removed during that initiative and a state-of-
the-art framework was introduced. As for the UI,
Angular is used.

An earlier analysis revealed that the application as
such is highly customized and fit to the business
needs. Given a) the used tech stack is state-of-the-art
and b) the coverage of the business use cases is quite
specific, our client followed our recommendation to
keep the system and did not evaluate if it can be
replaced by other solutions (software as a service in
particular).

During analysis, one spark that was of our interest
has been the DB2. Why would anyone combine a
Spring application with DB2? It turns out there are a
couple of reasons for that:

High Throughput and Performance: DB2 is
designed to handle large volumes of
transactions efficiently, making it ideal for
high-demand environments. It leverages the
robust processing power of mainframes to
deliver exceptional performance and
throughput.

Scalability: DB2 can scale to meet the needs of
growing businesses. It supports large
databases and can handle significant increases
in data volume without compromising
performance.

Reliability and Availability: Mainframes are known
for their reliability, and DB2 benefits from
this. It offers high availability and disaster
recovery capabilities, ensuring that critical
applications remain operational even in the
event of hardware failures.

Security: DB2 provides advanced security features to
protect sensitive data. This includes
encryption, access controls, and auditing
capabilities, which are essential for industries
that handle confidential information.

Integration and Flexibility: DB2 integrates
seamlessly with various data sources and
applications, providing a flexible environment
for data management. It supports both
traditional and modern workloads, including
cloud and mobile applications.

Advanced Data Management: DB2 includes tools
for database management and optimization,
helping administrators manage and monitor
workloads effectively. This improves
productivity and reduces administrative
efforts.

3.3 Key Indicators to Consider

For the expert estimation, we used several indicators
that ground their number and helped experts to derive
their estimate from known facts.
• Code Lines: the total lines of code of all modules
• JPA Queries: total number of queries that

conform to the JPA specification and hence can
be reused with almost any database out of the
box, provided that database is supported by
spring boot data

• Native Queries: Number of SQL queries that use
native SQL and may include proprietary DB2
functions

• Modules: The number of modules that make up
the application, in our case the spring boot
applications.

• Interfaces (Consuming, Pull, Polling, or
Subscribe): All inbound interfaces that consume
data from an endpoint. Most of the time this is an
endpoint within the corporate network; but also
outside the corporate network.

• Interfaces (Providing, Push, Publish): Interfaces
that provide data to other systems.

• Interfaces that definitely need significant
refactoring due doe technical debt, e.g. specific
flags for use cases have been baked into the
interface.

• Tivoli job nets: number of job networks in Tivoli
• Average steps of a job network in Tivoli
• Developers: FTE of developer resources

currently dedicated to the application
• Business Analysts: FTE of subject matter experts

wrt. the application’s scope
• Number of Tables of all modules
• Average size of a table in million rows
• Largest table in million rows
• Developers with SQL experience in FTE
• Blended rate per team member per day

Effort Estimation of Large-Scale Enterprise Application Mainframe Migration Projects: A Case Study

847

• Number of database triggers
• Number of views in the database
• Number of history tables in the database
• Number of materialized queries in the database
• Total size of database size in (without LOBs)
• Total history size in GB
• Total size of LOBs
• Outgoing traffic from database per week in GB
• Incoming traffic to database per week in GB
• Total rows in database
• Total send rows per week
• Average row size (without LOBs)
• Number of data objects on application layer

4 EFFORT ESTIMATION MODEL
FOR (MAINFRAME)
APPLICATION MIGRATIONS

Figure 1: High-Level overview of an effort Estimation
Model for Cloud Mainframe Migrations.

In Figure 1 we illustrate the applied estimation model
as UML diagram. The total effort is modelled as an
aggregation of different efforts. What is depicted as
“Total Effort” is our bottom-up effort estimate that is
derived from expert estimates. Thereby, each
estimate is sufficiently broken down into bits that
experts feel comfortable to provide an estimate for.

Figure 2 illustrates how this has been done for the
class of “Migration Effort” whereas Figure 3 depicts
the break-down for “Refactoring Effort”.

In addition to the break-down into smaller bits
and pieces and to account for learnings and scale

effects during the migration project, an additional
factor for synergies was provided.

The key indicators provided above served to
calculate the effort of each group. Various expert
interviews helped to sharpen the understanding,

whereas the key indicators helped to challenge and
ground the experts’ opinions.

Our goal was to estimate necessary and sheer
unavoidable tasks that need to be performed during
the migration.

Figure 2. Breakdown of migration efforts.

Figure 3: Breakdown of refactoring efforts.

4.1 Agile vs non-Agile Migration

During the project, we also challenged the application
of agile methods for this migration project. Although
our client already implemented SAFe and performs
product increment (PI) plannings, for the migration of
a mainframe, this setup seemed inadequate: Agile
methods are particularly well suited if outcomes are
unclear and/or customer requirements frequently
change. This is not the case in migration projects.

4.2 The Target Architecture

Mainly guided by the guardrails and the current
architecture of the application, the potential target
tech stack reduces itself to not too many options.
However, these need to be evaluated during PoCs and
one needs to see if timeouts of application logic etc.
will still hold in the cloud with potentially higher
latencies.

Direct database access will no longer be possible
as this (always) was a concerning issue to give
business direct access to a database with even the
query power to perform an unconditional and largely
unrestricted “select *” of many GB- or TB-sized
tables.

4.3 Organizational Overhead

Most startups are faster in developing applications.
This is mainly due to two reasons: 1) They build
green-field 2) They have less stakeholders which
results in less communication overhead.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

848

While experts can estimate their own work very
well, we argue that they did not consider for
organizational overhead, such as alignment meetings
or conflicts that arise when discussing data ownership
or alternative designs and redesign of the modules (cf.
also (Henry & Ridene, 2020)). We chose a three-step
approach bringing together the bottom-up perspective
and challenging it with a top-down estimate.

Step 1: We validated the bottom-up number with
experts as previously outlined.

Step 2: We added 5 dimensions of organizational
overhead and estimated percentages of the initial
estimate.

Step 3: We reflected the resulting number with
top-down estimates of a migration, i.e. is it between a
factor 2 to 3 of the annual operations cost.

As a rule of thumb, a top-down estimate for
migration efforts can be derived from the annual
operations cost. A factor 2 can be assumed as
migration cost if the migration is more or less
straightforward. On the other hand, a factor 3 can be
assumed for more complicated setups like a
mainframe migration to the cloud.

In our case study, the bottom-up estimates where
indeed in the range of 2-3 times the annual operations
cost for the mainframe system.

4 CONCLUSIONS & FURTHER
RESEARCH

Mainframe migrations are a true challenge in
practice. Grown over decades, organizations need to
take them into account in enterprise application
landscape planning. Little guidance is given to
organizations how to plan and execute their
mainframe migrations.

In this paper, we presented a practice proven
model for mainframe effort estimation, offering a
structured approach to ballpark the resources required
for mainframe migration initiatives. While the model
is still in its evaluation phase and has not yet
sufficiently been empirically evaluated, it lays a solid
foundation for future research and practical
application.

The proposed model integrates historical system
data and project-specific variables estimated by
experts, aiming to provide a comprehensive
framework for effort estimation. By addressing the
complexities and unique characteristics of mainframe

projects, this model has the potential to enhance
project planning and resource allocation significantly.

Future work will focus on validating the model
through additional empirical studies and real-world
applications. This will involve collecting and
analyzing data from various mainframe projects to
assess the model’s accuracy and reliability.
Additionally, exploring the integration of advanced
statistical techniques and machine learning
algorithms could further refine the model and
improve its predictive capabilities.

As the model undergoes further development and
validation, it holds the potential to become a valuable
tool for project managers and stakeholders, enabling
them to make informed decisions and optimize
resource utilization during mainframe migration
projects.

Further research could focus on implementing a
system that provides various model configurations
and shares best practices with the community.
Maturity of organizations as well as their industry
could play crucial factors in estimating efforts for
mainframe migrations. In some cases, one might
choose to rebuild a new system after all. Models and
systems could help preventing sunk costs and
frustrating journeys for organizations.

REFERENCES

About the migration strategies—AWS Prescriptive
Guidance. (2024). https://docs.aws.amazon.com/pres
criptive-guidance/latest/large-migration-guide/migrati
on-strategies.html

Barnett, G. (2005). The future of the mainframe.
Bhatnagar, M., Shekhar, J., & Kumar, S. (2016). One

Architecture Fits All – IBM Mainframe. GRD
Journals-Global Research and Development Journal
for Engineering, ISSN: 2455-5703, 1, 85–91.

Carbonera, C. E., Farias, K., & Bischoff, V. (2020).
Software development effort estimation: A systematic
mapping study. In IET Software (Vol. 14, Issue 4, pp.
328–344).

Dörsam, M., Gründling, S., Langholz, T., Roth, S., &
Steinbrecht, A. (2009). Integrating a Legacy Terminal
Application into an SOA. Informatiktage 2009 -
Gesellschaft Für Informatik (GI), 95.

Henry, A., & Ridene, Y. (2020). Migrating to
Microservices. In A. Bucchiarone, N. Dragoni, S.
Dustdar, P. Lago, M. Mazzara, V. Rivera, & A.
Sadovykh (Eds.), Microservices: Science and
Engineering (pp. 45–72). Springer International
Publishing. https://doi.org/10.1007/978-3-030-31646-
4_3

Effort Estimation of Large-Scale Enterprise Application Mainframe Migration Projects: A Case Study

849

Migrating Applications to the Cloud: Rehost, Refactor,
Revise, Rebuild, or Replace? (2009). Gartner.
https://www.gartner.com/en/documents/1485116

Schnappinger, M., & Streit, J. (2021). Efficient Platform
Migration of a Mainframe Legacy System Using
Custom Transpilation. 2021 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), 545–554. https://doi.org/10.1109/ICSME52
107.2021.00055

Sun, K., & Li, Y. (2013). Effort Estimation in Cloud
Migration Process. 2013 IEEE Seventh International
Symposium on Service-Oriented System Engineering,
84–91. https://doi.org/10.1109/SOSE.2013.29

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration
of technical debt. Journal of Systems and Software,
86(6), 1498–1516. https://doi.org/10.1016/j.jss.201
2.12.052

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

850

