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Abstract: Due to national and international laws and regulations, the number of energy storage systems has risen sharply 
in recent years. While battery systems in operation can often be monitored by installed battery management 
systems to ensure safe operation, there are still no standardized monitoring methods for batteries during 
transport or storage. Consequently, this article proposes a solution for monitoring such batteries in the typical 
logistic processes of storage and transport. Particular attention is paid to a resource-efficient implementation 
of a data-driven algorithm that is adopted from existing literature and enables the early detection of internal 
short circuits, which are the main cause of thermal runaways of battery storage systems. As the transmission 
frequency of an external monitoring device is a particularly resource-critical variable, the extent to which 
different data frequencies influence the detection performance is also investigated.

1 INTRODUCTION 

Energy storage systems (ESS) play a crucial role in 
energy transition initiatives worldwide. The main 
goal of this transition is to reduce energy 
consumption as well as greenhouse gas emissions but 
also to increase the utilization of renewable energy 
sources. In this regard, ESS enable the storage of 
renewable energy, which is often generated 
irregularly, therefore making electricity supply more 
sustainable and flexible. Two main application areas 
of ESS are in battery electric vehicles (BEVs) as well 
as battery energy storage systems (BESS) for 
residential and commercial applications. Their 
importance in the energy transition is clearly reflected 
in increasing sales figures over the last years. 
However, the use of ESS is always associated with 
logistical tasks such as transportation to the 
application or production site, the return at the end of 
life (EoL) for reuse or recycling as well as their 
storage at different stages of their lifecycle. During 
these periods, continuous monitoring of ESS is 
necessary due to the sensitivity of the integrated 
batteries, the resulting safety risks and for ongoing 

quality assurance. In this context, internal short 
circuits (ISCs) of battery cells in particular are a 
major source of danger. Research to date already 
offers promising artificial intelligence (AI)-based 
approaches that can recognize these short circuits. 
However, these require the constant availability of the 
battery management system (BMS), which is not 
reliably possible when transporting or storing ESS. In 
addition, the effect of reducing the monitoring 
frequency on the performance of these approaches 
has not been investigated. Against this background, 
we propose an approach, which can overcome this 
challenge thus enabling remote early battery short 
circuit detection for ESS in logistics scenarios. 

The remainder of this paper is structured as 
follows: Section 2 outlines the research motivation, 
background, and challenges. Section 3 reviews 
related work. Section 4 describes the proposed 
solution. Section 5 presents experiments on inference 
frequencies for early short circuit detection, with 
results discussed in Section 6. Finally, Section 7 
summarizes findings and suggests future research 
directions. 
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2 BACKGROUND 

ESS in BEVs as well as BESS in residential and 
commercial buildings are almost exclusively utilizing 
a lithium-based battery chemistry (IEA, 2022; Marsh, 
2023). Under certain conditions, such as 
overcharging, overheating or mechanical damage, 
lithium-ion based batteries can catch fire or explode. 
This is due to the uncontrolled release of their energy 
in a short amount of time. This phenomenon is called 
thermal runaway and describes an uncontrolled and 
exponential increase in the temperature inside the 
battery, which may result in serious accidents. 
Following Shahid and Agelin-Chaab (2022), the three 
major reasons for thermal runaway to start are 
mechanical (R1), electrical (R2) and temperature 
abuse (R3), all of which typically lead to an ISC. 
However, the speed at which an ISC can occur varies 
depending on the type of abuse and its severity (P. 
Sun et al., 2020). For this reason, early detection of 
an ISC is a particularly important aspect of battery 
safety and a vivid research topic. 

Past research has already yielded a number of 
promising AI-based approaches that can detect ISCs 
at an early stage. However, these approaches expect 
the constant availability of the BMS. However, steady 
access to the BMS cannot be guaranteed away from 
their place of operation. This significantly increases 
the difficulty for safely handling ESS in logistics 
scenarios since the potential risk status of individual 
batteries cannot be reasonably monitored during pre- 
and after-sales processes by stakeholders such as 
logistics service providers or freight forwarders.  

One possible approach to solve this problem is the 
use of an external device that can access the data from 
the BMS, while the underlying ESS is not in 
operation. Past research has already looked into the 
design and application of such a device, but focused 
solely on its utilization during the first life of an ESS 
at its place of operation. This work aims to bridge this 
gap, which has been acknowledged by current 
research projects (Plotnikov et al., 2023), and provide 
an approach that enables monitoring ESS in BEVs as 
well as BESS in residential and commercial buildings 
aside from their place of operation, especially during 
transportation and storage. 

A key challenge when using an external device to 
record the BMS and environmental data of an ESS is 
its power supply. Especially in logistics scenarios, 
there are no fixed power sources. Moreover, 
additional framework conditions have to be observed 
when designing the external device and must be 
considered when solving the overall problem: 

● High energy usage for data transmission 
(FC1) (Jayakumar et al., 2014) 

● High energy usage for complex 
computations (FC2) (Tekin et al., 2023). 

● Continuous operational readiness (FC3) 
(Callebaut et al., 2021) 

● Compact design and limited battery 
capacity (FC4) (Callebaut et al., 2021; 
Jayakumar et al., 2014)  

● Longevity and low maintenance (FC5) 
(Callebaut et al., 2021; Jayakumar et al., 
2014). 

In view of these conditions, it is necessary to 
develop an approach that balances the need for close 
monitoring with the limitations of the necessary 
battery operation. 

Against this background, this work presents an 
approach that enables the collection of BMS data, 
namely voltage readings of all battery cells, and 
environmental data for ISC early detection using an 
external device to supplement an ESS during 
logistical processes such as transport and storage. 
Moreover, the main research question of this paper is: 
Is early ISC detection possible using a low 
monitoring data frequency? In order to answer this, a 
promising approach for early ISC detection from the 
literature (Schmid & Endisch, 2022; Schmid et al., 
2022; Schmid, Kneidinger, & Endisch, 2021; 
Schmid, Liebhart, et al., 2021) is adopted and the 
results from respective research articles concerning 
the detection time for ISCs are validated in several 
experiments. In addition, the approach is compared to 
similar ones. Finally, the effect of the monitoring data 
frequency on the detection performance of the chosen 
approach is investigated. 

3 STATE OF THE ART 

Battery fault detection methods can be divided into 
three different classes: threshold based, model-based 
and data-driven methods (Schmid, Kneidinger, & 
Endisch, 2021; Shang et al., 2024). There are also 
different types of features that are used; some of them 
directly measurable, e.g. voltage and current, others 
not, e.g. state of charge (SoC) and capacity or state of 
health (SoH).  

Threshold based methods follow the approach of 
defining a critical threshold for directly measurable 
features, which, when exceeded or undercut, indicate 
a fault. Model-based approaches attempt to estimate 
features that cannot be measured directly and then use 
them for error detection. The idea behind data-driven 
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methods is to use techniques from mathematical 
statistics to derive regularities and patterns from 
battery data recorded during operation. 

In the early stages of an ISC with relatively high 
short circuit resistance the effect on the 
aforementioned battery features is rather small ("soft" 
ISC) which makes it very difficult to detect the fault 
at this early stage by directly introducing critical 
threshold values (Lai et al., 2020; Schmid & Endisch, 
2022). Thus, threshold-based approaches are hardly 
the correct tool for early ISC detection.  

The review Shang et al. (2024) gives a thorough 
treatment of the most recent research literature 
concerning model-based and data-driven approaches.  
As noted in Schmid et al. (2022), model-based 
approaches mostly suffer from the drawback that the 
reliability of feature estimations cannot really be 
secured. Therefore, the present work focuses on data 
driven methods. 

In the literature many different data driven and 
machine learning approaches are described: Isolation 
Forest (Jiang et al., 2022), Support Vector Machines 
(Yao et al., 2021) various neural network 
architectures, for example LSTM and Radial Basis 
Function neural networks (Ojo et al., 2021; Wang et 
al., 2021) and Local Outlier Factors (Z. Sun et al., 
2022) can all be found as employed detection 
methods.  

A major challenge in the early detection of ISC is 
the robustness against noise in the sensor data 
(Schmid & Endisch, 2022; Schmid, Kneidinger, & 
Endisch, 2021; Shang et al., 2024). This makes 
Principal Component Analysis (PCA) a good 
detection approach. 

One disadvantage of PCA is that the projection 
used for dimension reduction is purely linear, which 
means that non-linear structures in the data may be 
lost in the process. This makes PCA an unsuitable 
tool for non-linear variations data such as cell level 
voltage data of a battery in low SoC range (Schmid & 
Endisch, 2022; Schmid et al., 2022; Schmid, 
Liebhart, et al., 2021). 

In Schmid and Endisch (2022),  Schmid, Liebhart, 
et al. (2021) and Schmid et al. (2022) the non-
linearity problem is tackled by using a non-linear 
extension of PCA, the kernel PCA (KPCA) originally 
introduced in Schölkopf et al. (1997). Solving both 
the non-linearity and the sensor noise issue makes the 
KPCA model from Schmid and Endisch (2022),  
Schmid, Liebhart, et al. (2021) and Schmid et al. 
(2022) a very promising approach for early ISC 
detection in our use case scenario. 

None of the aforementioned methods have been 
applied for lower data frequencies. Moreover, the 

review we conducted suggests that there is no 
research that addresses the issue of whether data 
frequency during the monitoring phase has any 
impact on ISC detection performance.  

The scientific approaches to tracking systems 
developed to detect ISCs were also investigated. In 
this regard the authors of González et al. (2022) 
conducted a comprehensive literature review which 
did not find any previous works concerning tracking 
systems using IoT technology. In Haldar et al. (2024) 
a real time tracking system for the SoC and SoH of  
three-wheeled battery-operated vehicles is 
introduced. The external device used for data 
collection uses the batteries to be monitored as its 
power source. The collected data is sent to a cloud-
based backend for processing. In Gupta et al. (2020) 
a similar approach is presented for monitoring 
batteries in BEVs  with an external device that uses a 
battery power supply and transmits data regarding the 
SoC and SoH to a cloud backend. 

However, all the reviewed approaches are 
developed for operation during the first-life use of the 
monitored batteries and at their place of operation. 
More importantly, early detection of short circuits is 
not carried out in any of the reviewed works. 

4 SOLUTION PROPOSAL 

In the following, we present our approach to monitor 
ESS in logistics scenarios such as transport and 
storage. The approach aims to address the challenges 
and framework conditions described in section 2. The 
central assumption when designing a solution for the 
given context is that BMS and environmental data can 
only be collected by an external device that has its 
own power supply in the form of a battery. The main 
goal of the approach is to enable continuous ISC early 
detection in ESS, especially in logistics scenarios. In 
this context, the FCs mentioned in section 2 lead to 
several requirements (REs): 

● RE1 (derived from FC1, 4 and 5): The 
approach should be able to early-detect ISCs 
using only low frequency BMS data. 

● RE2 (FC2): Computations should be 
offloaded from the external device as much 
as possible. 

● RE3 (FC3): The approach should allow 
continuous monitoring. 

Looking at the root causes for thermal runaway, it 
is assumed that any form of abuse of a battery leads 
to an increased risk of an ISC. The approach should 
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reflect this, hence additional requirements can be 
derived: 

● RE4: The approach should be able to detect 
mechanical (R1), electrical (R2) and thermal 
(R3) abuse. 

● RE5: The approach should be able to change 
data collection frequency according to 
predefined conditions. 

Looking at the requirements, RE 1 is most 
important for the feasibility of the proposed approach. 
Since the transmission of BMS data from the external 
device to a receiver has a high energy demand, the 
frequency at which the device sends its data to a 
receiver is a critical variable. This must be set as low 
as possible without impairing the monitoring of the 
ESS. This requirement also corresponds with the 
main research question of the present article, if early 
ISC detection is possible with low monitoring data 
frequency. In this context, the literature review 
suggests using a data driven AI detection approach.  
Against this background, a series of experiments are 
conducted in Section 5 to examine which approaches 
are suitable and what effects different data 
frequencies have on the performance of the selected 
approaches. 

RE 2 is addressed in the presented approach by 
introducing 2 different layers for data processing: 

● The edge layer that comprises the external 
device and enables the collection of BMS 
and environmental data. 

● The cloud layer, which receives and 
processes the collected data from the edge 
layer.  

In this context, we propose a variable data 
collection frequency in the edge layer, addressing RE3 
and RE5. Under normal conditions, a baseline 
frequency minimizes power consumption from 
processor load and data transmission. However, 
external factors like movement, vibration, or 
temperature changes trigger an adaptive increase in 
detection frequency. This requires sensors to monitor 
environmental variables such as speed, rotational 
movement, and temperature. Rule-based logic enables 
the detection of potential abuse, addressing RE4. 

The cloud layer is horizontally scalable for data 
ingestion, processing, and distribution, leveraging 
established IoT and big data technologies. 
Communication between the edge and cloud layer 
uses mobile standards (GSM, LTE, 5G) and 
lightweight protocols (e.g., MQTT, CoAP, AMQP). 

 
1 https://kafka.apache.org/ 
2 https://hadoop.apache.org/ 

Data processing involves two components: model 
training and inference. To monitor batteries 
throughout their lifecycle, training data must capture 
normal behavior across the cycle. As lab data for new 
battery types may be limited, models require 
continuous retraining to improve predictions. 

Inference occurs in real time to identify critical 
batteries promptly and notify stakeholders. Therefore, 
the approach employs a lambda architecture, with 
periodic training in the batch layer and real-time 
inference in the streaming layer.  Example 
technologies to implement this are Apache Kafka1, 
Hadoop2, Apache Spark3 or Apache Storm4. 

5 EXPERIMENTS 

In order to evaluate the feasibility of our approach, a 
series of experiments were conducted to examine the 
performance of early detection approaches with 
reduced data frequencies. In this context, a real 
battery with 6 cells connected in series was artificially 
short-circuited in a laboratory environment. This was 
carried out with three different resistors as the short 
circuit resistor (10Ω, 1kΩ, 10kΩ). Moreover, several 
different data frequencies were implemented for the 
inference phase, i.e., the phase after the induction of 
the short circuit (c. f. section 5.2). Each experiment 
was started with an initial phase in which the properly 
functioning cells were cycled over a period of time to 
generate data for training the model. After this, an 
external short circuit (ESC) was induced for one of 
the cells by implementing a load resistor and the time 
required by the detection algorithm to detect the short 
circuit was measured. In this regard, an ESC was 
triggered instead of an ISC for reasons of 
practicability. Although the behavior of an ESC is not 
identical to that of an ISC, Zhang et al. (2017) 
nevertheless states that an ESC can mimic the early 
phase of an ISC. 

In Schmid and Endisch (2022), Schmid et al. 
(2022), Schmid, Kneidinger, and Endisch (2021) and 
Schmid, Liebhart, et al. (2021) the principal idea for 
ISC detection is to look at relations between the single 
cell voltages of a system. As discussed in section 3, 
the mathematical method that forms the basis of 
Schmid and Endisch (2022), Schmid et al. (2022), 
Schmid, Kneidinger, and Endisch (2021) and Schmid, 
Liebhart, et al. (2021) is principal component 
analysis (PCA), which is optimized and exploited in 
many different ways to perfectly suit the problem. In 

3 https://spark.apache.org/ 
4 https://storm.apache.org/ 
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particular in Schmid and Endisch (2022),  Schmid, 
Liebhart, et al. (2021) and Schmid et al. (2022) the 
authors utilize the non-linear extension kernel 
principal component analysis (KPCA) which makes 
it possible to address non-linear relationships in the 
data. The line of attack for fault detection is to check 
how close a given cell’s voltages vector lies, after a 
transformation, to the principal component space that 
was computed using training data. More precisely the 
so called T2- and Q-test statistics values of the vector 
of cell voltages are computed while monitoring. The 
general principle is that low T2- and Q-values 
correspond to data which is similar to the training data 
while high values display anomalous behavior. 

We compared the detection performance of the 
KPCA (A1) approach with respect to short circuit 
detection time with all other approaches found in the 
scientific literature, which also only require the 
voltage values of individual battery cells for the 
detection. More precisely, plain PCA (Schmid, 
Kneidinger, & Endisch, 2021) (A2) and a very simple 
method that just tracks the voltage difference between 
the cells (Lai et al., 2020) (A3) were evaluated as well. 

5.1 Experimental Setup 

The batteries utilized in this study are Samsung 
INR18650-32E cells, each with a nominal capacity of 
3.2Ah. These cells feature a lithium-nickel- cobalt-
aluminum oxide cathode paired with a graphite 
anode. The cells have been arranged in a series 
configuration using 3D-printed cell holders. 
Individual monitoring of the cell voltage has been 
implemented using a Gantner Q.bloxx XL A1075. 
The cycling of the cells is managed using an EA-PSB 
10080-120 power supply in conjunction with custom 
software tailored to administer the dynamic cycling 
protocol. To minimize the impact of external 
temperature fluctuations on short circuit detection, 
the entire experimental setup was housed within a 
thermal chamber maintained at 35°C. 

5.2 Training 

The detection algorithm was tested on ESC experiment 
datasets using 10Ω (R1), 1kΩ (R2), and 10kΩ (R3) 
resistors to induce short circuits. The 10kΩ resistor 
caused such a slow short circuit that the experiment 
was halted after several hours without detections, 
leading to the 10kΩ setting being discarded. 

While the authors in Schmid and Endisch (2022) 
and Schmid et al. (2022) evaluated their approach 

 
5 https://www.gantner-instruments.com/de/produkte/bloxx/ 

with a fixed inference data frequency of 10Hz 
(Schmid & Endisch, 2022) resp. 0.1Hz (Schmid et al., 
2022), in this work the detection time for all resistor 
values was evaluated for different inference data 
frequencies of 1Hz (F1), 

ଵ଺଴ Hz (F2), 
ଵଷ଴଴Hz (F3), 

ଵ଺଴଴Hz 
(F4) and ଵଽ଴଴Hz (F5). 

Since all approaches (A1-A3) were evaluated 
using the data sets from two different resistor settings 
(R1 and R2) while applying five different monitoring 
frequencies (F1-F5) 30 different experimental settings 
were studied. 

To ensure the training dataset adequately 
represented the entire initial cycling phase without 
being overly large, 1000 evenly distributed points 
were selected. The data was first downsampled from 
10Hz to 1Hz by averaging. Data points used for 
inference were excluded from the training set. For R1 
and R2, the starting inference data point (T0) was 
chosen about 30 minutes before inducing the short 
circuit. 

The critical threshold for T²- and Q-values in the 
KPCA approach was set at the 0.999-quantile of 
training data values. To address fluctuations in testing 
data, especially at higher monitoring frequencies, the 
detection logic required unusually high T²- and Q-
values to persist for 10 minutes. For the highest 
frequencies (1 Hz and ଵ଺଴ Hz), the approach was 
further refined by requiring at least 20% of values in 
the last 10 minutes to be critical to detect a short 
circuit. For lower frequencies, this adjustment was 
unnecessary, as only one data point is transmitted 
every 5, 10, or 15 minutes. 

5.3 Results 

With the aforementioned detection logic 
implemented, the following detection times shown in 
Table 1 were achieved using the KPCA approach.  

Table 1: Detection times of the KPCA approach using 
experimental settings A1R1,2F1-5. 

 1Hz 𝟏𝟔𝟎Hz 𝟏𝟑𝟎𝟎Hz 𝟏𝟔𝟎𝟎Hz 𝟏𝟗𝟎𝟎Hz 

10Ω 2min
7sec

1min 6min 1min 1min 

1kΩ 151 
min

97 
min

133 
min 

103 
min 

253 
min
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The experiments were carried out again with the 
same detection logic for short circuit detection, but 
this time with PCA as the basis of the algorithm. In 
this context, identical detection times were observed 
for the 10Ω resistor (c. f. Table 2). However, the PCA 
approach did not work for the 1kΩ resistor. A short 
circuit could not be detected using any of the 
monitoring frequencies.  

Table 2: Detection times of the PCA approach using 
experimental settings A2R1F1-5. 

 1Hz 𝟏𝟔𝟎Hz 𝟏𝟑𝟎𝟎Hz 𝟏𝟔𝟎𝟎Hz 𝟏𝟗𝟎𝟎Hz 

10Ω 2min
7sec 

1min 6min 1min 1min 

Finally, another approach was utilized in which a 
short circuit was considered to have been detected if 
the maximum difference between the individual cell 
voltages was greater than 0.5 volts (Lai et al., 2020). 
In this regard, the detection times for the 10Ω 
experiment were around 20 minutes for all 
frequencies. The approach did not detect anything for 
higher short circuit resistances. 

6 DISCUSSION 

Looking at the results of the conducted experiments, 
we conclude that the employed data driven methods 
can be utilized to enable early ISC detection with low 
monitoring frequencies. Specifically, the KPCA 
approach (A1) yielded promising detection times 
compared to the other two approaches. Additionally, 
the results of detection times for the experimental 
settings A1R1,2F1-5 are of the same order of magnitude 
as those in Schmid and Endisch (2022) and Schmid et 
al. (2022), which supports the validity of our results 
regarding the detection times. The unsuitability of the 
PCA approach (A2) for high short circuit resistances 
(R2)  has already been discussed in Schmid et al. 
(2022). The voltage-difference approach (A3) does 
not yield successful results for (R2) either.  

The results also show that there is no clear linear 
trend in the relationship between monitoring 
frequency and detection time in any of the 
experimental settings. This suggests that the detection 
times strongly depend on the distribution of selected 
data points, meaning they could vary with different 
data selections. In order to reinforce this assumption, 
the experimental settings A1R1,2F1-5 were used again 
for detection with an initial time offset of T0+7 

minutes. The results show that detection times for 
lower frequencies (<= ଵଷ଴଴Hz) increase up to 13 times, 
which further highlights that detection latency for low 
frequencies is highly influenced by the reception time 
of the data points.  

Table 3: Detection times of the KPCA approach using 
experimental settings A1R1,2F1-5 with T0+7. 

 1Hz 𝟏𝟔𝟎Hz 𝟏𝟑𝟎𝟎Hz 𝟏𝟔𝟎𝟎Hz 𝟏𝟗𝟎𝟎Hz 

10Ω 2min
7sec

1min 8min 8min 13 
min

1kΩ 151 
min

97 
min

199 
min 

79 
min 

144 
min

Concerning the results of experimental settings 
A1-2R1,2F1-5, we recognize that higher monitoring 
frequencies were not always faster in detecting ISCs 
compared to lower frequencies. This is in contrast to 
the naive expectation that a higher frequency enables 
faster detection. However, the detection logic seems 
to be a factor here - at higher frequencies, statistical 
value (T²- and Q-values) fluctuations are more 
pronounced, whereas these fluctuations are less 
pronounced at lower frequencies. Therefore, the 
choice of a suitable detection logic is strongly 
frequency-dependent. In this study, a similar 
detection logic was used across all frequencies F1-5 to 
enhance the comparability of the results. For practical 
applications, however, this means that different, 
frequency-optimized detection logics should be 
implemented. 

In conclusion, our experiments show that using a 
data-driven approach such as KPCA is important to 
enable our solution proposal for low-frequency 
monitoring, energy-efficient, scalable battery 
monitoring. However, the precise settings of 
monitoring frequencies for different conditions must 
be determined for each battery type individually as 
the time from damage or abuse to thermal runaway 
depends on various factors, e.g. capacity (Zhao et al., 
2016) or environmental influences (Ji et al., 2021). 
Therefore, the generalization from the conducted 
experiments to other battery configurations or real-
world scenarios is not given and needs to be 
investigated in future research. Finally, the ISC early 
detection model must be trained anew for each 
different battery type. 
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7 CONCLUSION & OUTLOOK 

This paper proposes a method for remote early 
detection of battery short circuits in ESS for logistics. 
It outlines the research background, motivation, and 
related work. While current ISC detection using BMS 
data works in controlled settings, it lacks support 
during transport and storage. Key requirements 
include low-frequency data collection to save battery 
life, cloud-based computation, and adaptive 
monitoring based on factors like temperature or 
movement. 

The proposed solution involves a battery-powered 
external device for remote monitoring, collecting 
battery and environmental data, and a two-layer 
architecture: an edge layer for IoT-based data 
collection and a cloud layer for scalable analysis and 
real-time ISC alerts. The approach presented extends 
the state of the art by demonstrating a way of 
recognizing ISCs of ESS at an early stage in situations 
that were not previously considered in scientific 
literature. 

In order to evaluate the approach, experiments 
with a 6-cell battery setup and artificially induced 
short circuits (10Ω, 1kΩ, 10kΩ resistors) to simulate 
early ISC phases were carried out. Voltage data was 
analyzed using KPCA for anomaly detection, which 
proved effective across different frequencies and 
outperformed both standard PCA and simpler voltage 
tracking methods.  

Future research needs to investigate how 
analyzing data across the entire lifecycle of a battery 
could refine detection logic and improve accuracy. 
Moreover, the experiments should be carried out in 
more realistic environments and with different battery 
types so that the transferability of the approach can be 
evaluated. Finally, the computational costs of 
different detection approaches should be compared 
with each other. 
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