The Impact of AI Tools on Software Development: A Case Study with

Keywords:

Abstract:

GitHub Copilot and Other AI Assistants

Sergio Cavalcante', Erick Ribeiro! and Ana Carolina Oran?
lF undagdo Paulo Feitoza — FPFtech, Brazil
2 Institute of Computing, Universidade Federal do Amazonas - UFAM, Brazil

ChatGPT, GitHub Copilot, Code Generation, Empirical Study, Software Engineering, Software Development,
Artificial Intelligence.

Background - With the increasing complexity of software projects and the demand for rapid and high-quality
deliveries, Generative Artificial Intelligence (GenAl) tools have emerged as powerful allies in software devel-
opment. Objective - This study aims to evaluate the impact of using Code Generation Assistants—such as
GitHub Copilot, ChatGPT, and Gemini—in software development environments. Method - We conducted a
satisfaction survey with 57 volunteers in an R&D organization, including developers, test analysts, and prod-
uct owners, collecting quantitative and qualitative data on the use of these tools. Results - The results indicate
that the use of these tools significantly increased productivity, improved code quality, and accelerated profes-
sional learning. Additionally, it facilitated the automation of repetitive tasks, allowing focus on more complex
challenges. However, challenges such as the need for constant review of generated code and the risk of exces-
sive dependency were identified. Conclusion - We conclude that, despite the challenges, GenAl tools have a
significant positive impact on software development, and organizational support is crucial to maximize their

benefits.

1 INTRODUCTION

With the increasing complexity of software projects
and the demand for rapid and high-quality deliver-
ies, Generative Artificial Intelligence (GenAl) tools
have emerged as powerful allies in the field of soft-
ware development (Ziegler et al., 2022). Developers
and software engineers are always seeking best prac-
tices, tools, and ways to improve work processes (Ra-
jlich, 2014). Recently, a notable trend has been the
adoption of Code Generation Assistants. Among the
code assistants available in the market, GitHub Copi-
lot!, ChatGPT?, and Gemini® stand out, all based on
GenAl, with the potential to transform the way devel-
opment professionals code software.

Currently, the use of systems based on GenAl is
already being explored in other areas outside the cor-
porate environment and in the context of software de-
velopment. For example, in the field of education
through the automated generation of teaching materi-
als (Lim et al., 2023), in the creation of personalized

Uhttps://github.com/features/copilot/
Zhttps://chat.openai.com/
3https://gemini.google.com/

Cavalcante, S., Ribeiro, E. and Oran, A. C.

tutorials (Moon et al., 2023), and in assisting code
generation for computer science students (Lira et al.,
2024). The growing adoption and massive use of this
generative technology are due to its ability to gener-
ate high-quality content, similar to what a human be-
ing would generate. As a result, the potential applica-
tions of GenAl are expanding rapidly, and its impact
on various industries could be transformative, paving
the way for more efficient workflows and innovative
solutions across multiple domains.

In the corporate context, studies on the collabo-
rative partnership between software engineers and in-
telligent code generation assistants and Al tools are
still incipient. There is a need for works that ex-
plore the possible advantages and disadvantages ob-
tained with the use of this technology, as well as the
main changes for the software development industry.
In this scenario of rapid changes provided by GenAl,
this work aims to answer the following central ques-
tion: How are software engineers being impacted
by the use of intelligent code generation assistants
and Al tools?

The research presented in this article aims to eval-
uate the impact of using Code Generation Assistants

245

The Impact of Al Tools on Software Development: A Case Study with GitHub Copilot and Other Al Assistants.

DOI: 10.5220/0013294700003929
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 245-252

ISBN: 978-989-758-749-8; ISSN: 2184-4992

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.



ICEIS 2025 - 27th International Conference on Enterprise Information Systems

and Al tools in software development environments,
through the application of a satisfaction survey with
57 volunteers. The relevance of this study lies in
the growing adoption of these tools, which promise to
streamline the coding process, reduce errors, and in-
crease productivity. By investigating developers’ per-
ceptions regarding the benefits, limitations, and chal-
lenges of using these assistants, we can offer valu-
able insights into the evolution of these technologies.
This work seeks not only to measure the direct impact
on professionals’ efficiency but also to contribute to a
deeper understanding of the acceptance and expecta-
tions around these tools in the daily life of software
engineering.

This article is organized as follows: Section 2
presents works that explore the use of the main cur-
rent code generation tools. In Section 3, the method-
ology applied in this study is presented. Sections 4
and 5 present the results obtained, including insights
and observations. Finally, in Section 6, the final con-
siderations and future works are described.

2 RELATED WORKS

This section addresses works that have analyzed the
use of automatic code generation tools in the field of
software development from different perspectives.

In (Imai, 2022), a pair programming experi-
ment was conducted involving 21 participants, using
GitHub Copilot versus a human partner. The study
measured productivity based on lines of code pro-
duced and code quality by the lines removed. The
researchers concluded that Copilot helps generate a
higher number of lines of code but, in return, results
in a higher number of lines deleted. Although it is a
study focused on the amount of code, it is important
to note that the number of lines of code is not nec-
essarily indicative of code quality; our work did not
follow this line of evaluation.

In (Peng et al., 2023), an experiment was con-
ducted by Microsoft researchers involving 95 pro-
grammers. The participants were tasked with creating
an HTTP server in the JavaScript language, with the
option to seek help online for the challenges faced.
The programmers were divided into two groups: one
with access to GitHub Copilot (the treatment group)
and one without (the control group). The results
showed that the treatment group completed their tasks
faster, even with less experienced developers. Our ex-
periment also includes developers but is not limited to
the perspective of technical people working to solve a
problem.

In (Yetigtiren et al., 2023), GitHub Copilot was

246

compared with AWS CodeWhisperer and ChatGPT
in various code quality perspectives, such as validity,
correctness, security, reliability, and maintainability.
They found that the latest versions of these tools in-
fluence the ability to generate correct code. Among
the findings, ChatGPT was the most successful tool,
while Amazon CodeWhisperer was the worst. In the
comparison between GitHub Copilot and CodeWhis-
perer, Copilot performed better. In light of this work,
in our study, we also chose to evaluate multiple tools,
discarding CodeWhisperer.

3 METHODOLOGY

This study aimed to explore the impact of Al tools
on software development within an R&D organiza-
tion focused on delivering tailored software solutions
to clients across various industries. The methodology
included defining research objectives, selecting par-
ticipants based on their use of Al tools, and creating
a survey focused on areas such as usage frequency,
perceived benefits, and challenges.

3.1 Study Planning

The research was designed to capture both quantita-
tive and qualitative data, aiming to provide a com-
prehensive view of the impacts perceived by users of
these tools. The methodology was divided into three
main phases:

1. Definition of Research Objectives. The goal
was to explore how code generation tools, such as
GitHub Copilot, ChatGPT, and Gemini, are being
used in the organization and what is the perceived
impact by developers, test analysts, product own-
ers (POs), and other roles.

2. Sample Selection. The survey was sent to profes-
sionals from different areas, including developers
(junior, mid-level, and senior), test analysts, and
product owners. Participants were selected based
on their use of the mentioned tools, either through
organizational licenses or personal use. A total of
57 valid responses were collected.

3. Questionnaire Design. The questionnaire was
developed based on questions raised in the refer-
ence study* and adapted to the reality of the orga-
nization. The ChatGPT tool was used to assist in
creating the questions, ensuring they were com-
prehensive and focused on specific points such as

“https://www.tabnine.com/blog/github-copilot-for-
business/



The Impact of Al Tools on Software Development: A Case Study with GitHub Copilot and Other Al Assistants

productivity, code quality, job satisfaction, learn-
ing, and challenges in using the tools. The ques-
tionnaire was divided into five main sections:

(a) Frequency and Type of Use. Questions to
measure the frequency of use and whether pro-
fessionals were using licenses provided by the
company, free versions, or purchased with per-
sonal resources.

(b) Tools Used Identify which other Al tools were
being used besides GitHub Copilot.

(c) Perceived Benefits. Questions about the main
perceived benefits in using the tools, such as
increased productivity, code quality, and learn-
ing.

(d) Overall Impact on Work. Assessment of how
the tools influenced meeting deadlines, focus
on problem-solving, and impact on overall sat-
isfaction.

(e) Challenges and Disadvantages. Open-ended
questions to identify the main challenges and
disadvantages perceived in using Al tools.

3.2 Conducting the Study

The study was conducted over three months by three
researchers—two from the organization and one from
academia—and involved the application of a ques-
tionnaire distributed through Microsoft Forms, a tool
commonly used by the organization for feedback
collection. The questionnaire targeted development
teams, QA, and product management, with empha-
sis on developers and roles such as product own-
ers (POs), who frequently use tools like ChatGPT.
The sample consisted of 57 valid responses, with
participants reporting their frequency of Al tool us-
age, licensing types, perceived benefits, and chal-
lenges. Quantitative data were collected using struc-
tured questions, including Likert scales, while qual-
itative data were obtained through open-ended ques-
tions, later categorized into themes such as “’tool de-
pendence” and “quality of code suggestions.”

3.3 Data Analysis

The data were analyzed through a combination of
quantitative and qualitative analysis. The analysis
process followed these steps:

1. Quantitative Analysis. For the quantitative data,
Microsoft Excel was used to calculate frequencies
and distributions of responses. The analysis fo-
cused on identifying usage patterns, such as the
frequency with which the tools were used and the
most common type of license among participants.

Graphs were generated to illustrate the distribu-
tions of responses, such as the perceived impact
on productivity and code quality.

2. Qualitative Analysis. Open-ended responses
were analyzed using thematic categorization tech-
niques. Responses were grouped into categories

9 <

such as “productivity benefits”, “increase in code
quality”, “technical challenges”, and “perceived
disadvantages”. This process allowed us to iden-
tify patterns in users’ perceptions and brought im-

portant insights for discussing the results.

3. Data Integration. Finally, qualitative and quanti-
tative data were integrated to provide a complete
view of the impact of Al tools in the work environ-
ment. Emphasis was given to cases where qualita-
tive responses corroborated quantitative findings,
such as reports on increased productivity and tool
dependence.

4 RESULTS

In this section, we present the findings of our study,
which aimed to evaluate the impact of using Code
Generation Assistants in software development envi-
ronments, through a satisfaction survey with 57 vol-
unteers. We analyzed both quantitative and qualitative
data to offer a comprehensive view of developers’ per-
ceptions regarding the benefits, limitations, and chal-
lenges in using these tools.

4.1 Quantitative Analysis

The volunteers reported significant improvements in
efficiency and productivity when using Al tools used
in the study.

4.1.1 Frequency of Use of the Tools

Among the 57 respondents, the majority reported fre-
quent use of Al tools (such as GitHub Copilot, Copi-
lot 365, ChatGPT, etc.), with emphasis on daily use.
The distribution of use was as in Figure 1.

The pie chart shows the frequency of Al tool us-
age among the 57 respondents, reflecting a high in-
tegration of these tools into their workflows. This
data highlights the frequent adoption of Al tools, em-
phasizing their role in improving productivity and
streamlining tasks in daily work routines.

4.1.2 Perceived Benefits

When asked about the benefits of using Al, most re-
sponses were positive, as shown in Figure 2, with

247



ICEIS 2025 - 27th International Conference on Enterprise Information Systems

. Daily

Several times a week

Rarely
Never

Once a week

Figure 1: Frequency of Use of the Tools.

sol- 49 i
43

40 |- 36 il

301 29 B
25

20 .

Number of Respondents

10 :

0

A B C D E
Increased productivity

Reduction of time on repetitive tasks
Faster learning and knowledge acquisition
Increased creativity and problem-solving
Improvement in code quality

moQwx

Figure 2: Perceived Benefits Reported by Respondents.

participants citing improved efficiency and decision-
making.

The bar chart presents the perceived benefits of
using Al tools in software development, highlight-
ing that the most significant impact is on faster learn-
ing and knowledge acquisition (C), with 49 respon-
dents reporting this benefit. This represents a large
portion of the respondents, indicating that Al tools
are strongly facilitating skill development. Increased
productivity (A) was the second most cited benefit,
with 43 respondents, reflecting the tools’ contribu-
tion to efficiency in the workplace. Other notable
impacts include the reduction of time on repetitive
tasks (B) with 36 respondents and increased creativ-
ity and problem-solving (D) reported by 29 respon-
dents, which suggests that the tools not only save time
but also help developers focus on more complex and

248

innovative tasks. Improvement in code quality (E)
was mentioned by 25 respondents, indicating a pos-
itive, although slightly lesser, influence on the qual-
ity of work. These findings underline that Al tools
are highly valued across multiple dimensions, partic-
ularly for enhancing learning, productivity, and cre-
ativity.

4.1.3 Impact on Overall Work Experience

When asked about the overall impact of Al tools on
work.

The pie chart, shown in Figure 3, illustrates the
respondents’ perception of the overall impact of Al
tools on their work experience. This data suggests
that a vast majority of the respondents—48 out of 57
(84%) in total—have experienced some level of im-
provement in their daily work routines due to these
tools, reinforcing the idea that Al is contributing
meaningfully to enhancing productivity and job sat-
isfaction in software development environments.

40%

. Improved significantly
Improved slightly
Had no impact

Figure 3: Impact Reported by Respondents.

4.1.4 Ability to Meet Deadlines

In terms of meeting deadlines, the distribution was as
in Figure 4.

The pie chart displays respondents’ perceptions
of how Al tools impacted their ability to meet dead-
lines. These results suggest that a majority of respon-
dents—43 out of 57 (75%)—recognized some level of
improvement in managing deadlines, likely due to the
efficiency and time-saving features of Al tools. The
significant portion that acknowledged improvement
reflects the general sentiment that such tools help pro-
fessionals avoid delays by automating routine tasks
and providing quicker access to solutions, allowing
more focus on meeting deadlines.



The Impact of Al Tools on Software Development: A Case Study with GitHub Copilot and Other Al Assistants

. Improved significantly
Improved slightly
Had no impact

Figure 4: Ability to meet Deadlines.
4.1.5 Focus on Problem Solving

Asked if the tools helped focus on more complex
tasks, the distribution was as in Figure 5.f

™

Disagree

. Strongly disagree
]

Neutral Agree

Strongly agree

Figure 5: Focus on Problem Solving.

The pie chart illustrates how respondents felt Al
tools helped them focus on problem-solving tasks.
The overall trend suggests that the majority—43 out
of 57 respondents (77%)—felt that the tools helped
them focus on the core of their work, reducing time
spent on tedious tasks. By allowing engineers to
bypass less engaging or repetitive aspects of devel-
opment, these tools contributed to a more satisfy-
ing work experience, as developers could concentrate
more on problem-solving and innovation, potentially
improving overall job satisfaction.

4.2 Qualitative Analysis

To deepen the understanding of professionals’ experi-
ences with Al tools, we conducted a qualitative anal-
ysis of open-ended responses. The feedback was cat-
egorized into positive aspects and challenges faced,
highlighting key themes, which we discuss below.
Please note that only a subset of responses will be pre-
sented here. To access the complete set of responses,
please refer to the following link on GitHub?.

4.2.1 Positive Points

Code Generation and Code Search. Many respon-
dents cited increased productivity and development
speed as one of the main benefits:

“Specific searches for the use of methods and
classes, almost automatic code documentation.
Sometimes it suggests more than I would like, but
those were exceptions.” — P18 (Data Scientist)

“It greatly accelerated my process when writing
repetitive codes and solving them more efficiently
instead of creating a function; it suggested a native
function that I did not know.” — P42 (Developer)

These comments highlight how Al tools help de-
velopers quickly find code snippets and solve simple
doubts, saving valuable time.

Code Quality. Improvement in code quality was
also highlighted, citing better understanding, suc-
cinct, readable, and more efficient code:

“Improved code quality because I can visualize other
possibilities. Improved documentation develop-
ment speed and also enabled testing new libraries
more agilely.” — P31 (Developer)

“Improvement in code quality following best prac-
tices. Creating, commenting, and compacting lad-
der programming.” — P32 (Automation Engi-
neer)

These responses suggest that Al tools not only
help code faster but also write better and more effi-
cient code.

Learning. Al was perceived as a vector for learning:

“It mainly helped in solving problems involving
stacks that are generally not used in the lab; cur-
rently, I work on a project involving WPF and C#,
and I had never had contact with these technolo-
gies; the role of Al in increasing my learning pro-
cess in these stacks has been fundamental for my
delivery deadlines and conventional quality of the
codes I produce.” — P46 (Developer)

Shttps://github.com/erickrribeiroficeis-
2025/blob/main/answers.csv

249



ICEIS 2025 - 27th International Conference on Enterprise Information Systems

These responses indicate that Al tools contribute
to faster learning and understanding of new technolo-
gies.

Repetitive Tasks. Faster and more focus on the main
problem:

“When working with backend and frontend, you of-
ten need to insert repetitive code. An Al tool iden-
tifies such recurrence and already inserts the code,
increasing productivity.” — P26 (Developer).

Infra/DevOps. Al tools assist in creating scripts
and complex commands, streamlining infrastructure
tasks:

“Many things like scripts to create something in Ter-
raform, GitLab CI, infra tools in general context,
to make a sed command to change text inside an
Nginx configuration file; it makes the regular ex-
pression, without me having to keep searching
how to get the value of a text to make the change
via regular expression; it already gives me how to
do it, and most of the time it’s correct” — P3 (De-
vOps)

QA. AI contributes to efficiency in creating test
scripts, speeding up the quality assurance process:

“Using Copilot in the development of my Scripts
greatly improves the speed of typing giant scripts,
as the functionality cites an example taking from
the context to speed up the process. Thus, greatly
helping in rapid development in the software test-
ing part” — P5 (QA Analyst)

Data Engineering. Al contributes to productivity in
creating Database scripts:

“In laborious tasks that would be done manually,
such as creating a schema in Spark with 300
columns” — P6 (Data Engineer)

Documentation/Proposals. Productivity and speed
in delivering proposals and documentation:

“For example, the use of Al tools in the preparation
of material made available to the Technical Re-
port team has a relevant impact, as it speeds up the
search for fixed concepts and reference material,
as well as the possibility of improving the quality
of the prepared material” — P9 (People and Pro-
cess)

“Improved writing project proposals, email drafting,
etc.” — P51 (Project Manager)

These examples above show that the benefits of Al
tools extend beyond coding, assisting in documenta-
tion and communication tasks.

Insights and Mentoring. Improvement in content
generation and ideas:

250

“Communication: I ask Al to apply Nonviolent
Communication in emails and others; Efficiency:
I talk to Al to get insights into problem-solving,
conflicts, and lessons learned ceremonies. Team
mentoring: review card writing and acceptance
criteria; Learning: when I want to apply some-
thing new with the team and need mentoring” —
P22 (People and Process)

“I don’t use Al just for automation but also for cre-
ation. In addition to improving and creating texts,
making lists, Al can generate ideas that evolve
into other ideas. This is extremely useful for solv-
ing various problems, from UX issues to tips on
how to deal with difficult clients, as Al has the
ability to better understand contexts” — P29 (UX
Designer)

“It impacted practically all stages of a project’s ex-
ecution. I can focus more on the overall vision
of the project and delegate the creation of small
modules to AL — P25 (Product Owner)

These reflections above demonstrate how Al tools
can serve as a source of inspiration and guidance in
various aspects of work.

4.2.2 Negative Points

Need for Review and “Hallucinations”. Several re-
spondents expressed concerns about the accuracy of
the generated code:

“There would always be supervision due to common
hallucinations in free Al versions” — P8 (Devel-
oper)

“As a disadvantage, the approach suggested is not

always the most efficient, but it serves as a good
guide” — P41 (Developer)

These comments above emphasize the importance
of reviewing the suggestions generated by Al tools to
ensure correctness.

Limited Context Understanding. Some users noted
that Al tools sometimes lack a complete understand-
ing of the project’s context:

“Regarding the disadvantages, it still leaves much to
be desired in recognizing the complete context of
the project’s codes as a whole. It still gets lost a
lot.” — P25 (Product Owner)

Generates Dependency. Some respondents men-
tioned the risk of excessive dependence on the tools:

“These LLMs are a tool. But people have become
dependent on them to the point of not wanting to
think anymore and going straight to consult them.
If they continue like this, they will stop being peo-
ple who think and become just firefighters.” — P30
(Developer)



The Impact of Al Tools on Software Development: A Case Study with GitHub Copilot and Other Al Assistants

Thus, the data suggest that Al tools are playing a
significant role in transforming software development
practices, with positive impacts on the efficiency and
satisfaction of the professionals involved.

5 DISCUSSION

The results of this study provide valuable insights into
the impact of using Al-based Code Generation Assis-
tants in software development. The initial motivation
was to understand how these tools are influencing the
work of software professionals, especially in terms of
productivity, code quality, and job satisfaction.

5.1 Perceived Benefits

The quantitative data indicate that the adoption of Al
tools is significant among the professionals surveyed,
with 84% of respondents using them daily or several
times a week. This high level of adoption suggests
that Al tools are becoming an integral part of devel-
opers’ workflows.

Most participants reported increased productiv-
ity (75%) and reduced time spent on repetitive tasks
(63%). These results are consistent with Related
Works section, which suggest that Al tools can sig-
nificantly speed up the coding process and enhance
efficiency across various tasks. Additionally, 86% of
respondents experienced faster learning and knowl-
edge acquisition, highlighting the educational value
of these tools in supporting the continuous develop-
ment of professionals’ skills.

Improvement in code quality was highlighted by
449% of participants. Qualitative responses reinforce
this point, with developers like P31 (Developer) men-
tioning: “Improved code quality because I can visu-
alize other possibilities... and enabled testing new
libraries more agilely.” This suggests that Al tools not
only streamline code production but also encourage
more robust and efficient coding practices.

Furthermore, the aspect of learning is significant.
Participants reported that Al tools helped them un-
derstand new technologies and unfamiliar stacks, as
observed by P46 (Developer): “The role of Al in in-
creasing my learning process in these stacks has been
fundamental for my delivery deadlines and conven-
tional quality of the codes I produce.” This indicates
that Al tools can serve as virtual mentors, assisting in
professional growth.

The automation of repetitive tasks was another key
benefit identified. As mentioned by P27 (Developer):
“This is laborious work that takes away useful time
and energy for solving more complex and specific

problems.” By automating these tasks, Al tools al-
low developers to focus their efforts on more complex
challenges, potentially increasing innovation and the
quality of the solutions developed.

5.2 Challenges and Limitations of AI
Tools

Despite the benefits, participants also pointed out
challenges and limitations. The need for constant re-
view of the generated code was highlighted, with con-
cerns about “hallucinations” of the tools, where the
suggested code may not be accurate or appropriate.
P8 (Developer) warned: “There would always be su-
pervision due to common hallucinations in free Al
versions” This emphasizes the need for developers to
maintain an active and critical role when using these
tools, not blindly trusting the suggestions provided.

Additionally, some participants noted a lack of
complete understanding of the project’s context by Al
tools, as mentioned by P25 (Product Owner). This
limitation can lead to code suggestions that do not
perfectly align with the project’s specific require-
ments.

A point of concern raised was the risk of exces-
sive dependence on Al tools. P30 (Developer) ob-
served: “People have become dependent on them to
the point of not wanting to think anymore and go-
ing straight to consult them.” This observation raises
questions about the long-term impact on the develop-
ment of professionals’ skills. If developers rely too
much on Al tools, this can negatively affect their abil-
ity to solve problems independently and think criti-
cally.

6 LIMITATIONS AND THREATS
TO VALIDITY

The primary limitation of this study is its focus on
a single organization, which may limit the general-
izability of the findings to other contexts or indus-
tries. Additionally, as Al tools continue to evolve
rapidly, the relevance of the results could diminish
over time, necessitating ongoing research. This study
provides an observational perspective on the use of Al
tools within the organization, offering insights rather
than establishing cause-and-effect relationships. Fu-
ture studies could expand the scope to include multi-
ple organizations and explore performance metrics to
complement these findings.

251



ICEIS 2025 - 27th International Conference on Enterprise Information Systems

7 CONCLUSIONS

In this study, we investigated the impact of using Ar-
tificial Intelligence (AI) tools, such as GitHub Copi-
lot, ChatGPT, and Gemini, in software development
within an R&D organization. Through quantitative
and qualitative analysis, we sought to understand how
these tools influence productivity, code quality, job
satisfaction, and other relevant aspects for profession-
als involved in the software development cycle.

The quantitative results indicated a significant
adoption of these tools, with most professionals us-
ing them daily or several times a week. The perceived
benefits include a substantial increase in productivity,
reduced time on repetitive tasks, improved code qual-
ity, and acceleration in the learning and knowledge
acquisition process. In addition, many participants re-
ported that Al tools helped them meet deadlines more
efficiently and focus on more complex tasks, delegat-
ing routine tasks to intelligent assistants.

The qualitative analysis complemented these find-
ings, revealing that developers value the ability of Al
tools to generate and search code quickly, improve
code quality through efficient suggestions, and facili-
tate learning of new technologies. The positive impact
on documentation, proposal preparation, and obtain-
ing insights and mentoring was also highlighted.

However, participants also identified challenges
and limitations. The need for constant review of the
generated code, the “hallucinations’ of the tools, and
the lack of complete understanding of the context
were pointed out as points of attention. There were
concerns about the possible excessive dependence on
Al tools, which could affect developers’ ability to
think critically and solve problems autonomously. In
addition, the importance of organizational support,
especially concerning the acquisition of paid licenses,
could mitigate some of the observed disadvantages.

While this study evaluated the impact of Al tools,
a comparative analysis of Gemini, ChatGPT, and
GitHub Copilot remains an opportunity for future re-
search to further explore their unique strengths and
applications in each of the software engineering roles.

ACKNOWLEDGEMENTS

We would like to thank Fundacdo Paulo Feitoza
(FPFtech) for the financial support, as well as the
opportunity to conduct this research and present it.
Additionally, we acknowledge all participants who
kindly contributed to this study. We also acknowledge
the use of artificial intelligence—generated text in the
preparation of this article. Specifically, the sections

252

Introduction and Discussion were produced with the
assistance of the language model ChatGPT.

REFERENCES

Imai, S. (2022). Is github copilot a substitute for human
pair-programming? an empirical study. In Proceed-
ings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings,
ICSE 22, page 319-321, New York, NY, USA. As-
sociation for Computing Machinery.

Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I,
and Pechenkina, E. (2023). Generative ai and the
future of education: Ragnardk or reformation? a
paradoxical perspective from management educators.
The International Journal of Management Education,
21(2):100790.

Lira, W., Neto, P. S., and Osorio, L. (2024). Uma analise do
uso de ferramentas de geracao de cddigo por alunos de
computacdo. In Anais do 1V Simpdsio Brasileiro de
Educagcdao em Computagdo, pages 63-71, Porto Ale-
gre, RS, Brasil. SBC.

Moon, J., Yang, R., Cha, S., and Kim, S. B. (2023). chat-
gpt vs mentor : Programming language learning as-
sistance system for beginners. In 2023 IEEE 8th In-
ternational Conference On Software Engineering and
Computer Systems (ICSECS), pages 106—110.

Peng, S., Kalliamvakou, E., Cihon, P., and Demirer, M.
(2023). The impact of ai on developer productivity:
Evidence from github copilot.

Rajlich, V. (2014). Software evolution and maintenance. In
Future of Software Engineering Proceedings, FOSE
2014, page 133-144, New York, NY, USA. Associa-
tion for Computing Machinery.

Yetistiren, B., Ozsoy, I., Ayerdem, M., and Tiiziin, E.
(2023). Evaluating the code quality of ai-assisted code
generation tools: An empirical study on github copi-
lot, amazon codewhisperer, and chatgpt.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin,
D., Simister, S., Sittampalam, G., and Aftandilian, E.
(2022). Productivity assessment of neural code com-
pletion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming,
MAPS 2022, page 21-29, New York, NY, USA. As-
sociation for Computing Machinery.



