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Abstract: This study proposes ASPERA (Action SPotting thrEe-modal Recognition Architecture), a multimodal football
action recognition method based on the ASTRA architecture that incorporates video, audio, and commentary
text information. ASPERA showed higher accuracy than models using video and audio only, excluding invis-
ible actions in the video. This result demonstrates the advantage of this multimodal approach. Additionally,
we propose three advanced models: ASPERAsrnd incorporating surrounding commentary text within a ±20-
second range, ASPERAcln removing irrelevant background information, and ASPERAMC applying a Markov
head to provide prior knowledge of football action flow. ASPERAsrnd and ASPERAcln, which refine the text
embedding, enhanced the ability to accurately identify the timing of actions. Notably, ASPERAMC with the
Markov head demonstrated the highest accuracy for invisible actions in the football video. ASPERAsrnd and
ASPERAcln not only demonstrate the utility of text information in football action spotting but also highlight
key factors that enhance this effect, such as incorporating surrounding commentary text and removing back-
ground information. Finally, ASPERAMC shows the effectiveness of combining Transformer models and
Markov chains for recognizing actions in invisible scenes.

1 INTRODUCTION

Football, also known as soccer in some countries,
is popular worldwide, with football clubs existing in
135 countries (FIFA, 2024). Additionally, the 2022
World Cup attracted approximately 1.63 million spec-
tators, and according to Mordor Intelligence (Intel-
ligence, 2024), the football market size is estimated
to reach USD 741.45 million in 2024. Due to foot-
ball’s immense popularity, research in sports analyt-
ics focusing on understanding and analyzing player
movements and situations in the game has become in-
creasingly active in recent years. Sports analytics is
utilized in various applications, such as team strategy
development, player performance evaluation, scout-
ing, referee’s decision, and highlight generation. For
example, manually creating video summaries requires
trimming and editing approximately 90 minutes of
video from both halves, demanding significant time
and effort. Therefore, enabling automated generation
not only reduces time and effort but also allows for ef-
ficient tactical reviews and immediate video delivery.
As a result, technologies for automatically recogniz-

ing player actions from broadcast videos have become
a highly active research area.

In this study, we address Action Spotting(Deliège
et al., 2021), a Temporal Action Detection (TAD) task
that identifies the temporal occurrence of specific ac-
tions within football videos. As shown in Figure 1,
the aim is to estimate the exact moments when actions
such as Goals, Corner Kicks, and YCs occur.

Figure 1: Example of Action Spotting.

In existing research, many methods have been
proposed to tackle Action Spotting, mainly with vi-

646
Kumakura, T., Orihara, R., Tahara, Y., Ohsuga, A. and Sei, Y.
ASPERA: Exploring Multimodal Action Recognition in Football Through Video, Audio, and Commentary.
DOI: 10.5220/0013300700003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 2, pages 646-657
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



sual features extracted from broadcast football videos.
However, due to the presence of replays and the dif-
ference in camera angles, some actions remain un-
recorded in the video. Actions that occur in the actual
game but missing from the video are defined as invis-
ible actions, and the challenge lies in their lower de-
tection accuracy compared to visible ones. Therefore,
recent studies aim to improve the accuracy of invisible
actions by utilizing modalities such as graphs(Cartas
et al., 2022) and audio (Gan et al., 2022; Shaikh et al.,
2022; Vanderplaetse and Dupont, 2020; Xarles et al.,
2023).

For example, Cartas et al.(Cartas et al., 2022) rep-
resented football players and referees as nodes in a
graph, modeling their temporal interactions as a se-
quence of graphs to focus on game actions. This ap-
proach was motivated by their observation that match
video captures not only the field but also spectators
in the stadium, coaches on the bench, and replays.
Additionally, Gan et al.(Gan et al., 2022) proposed a
Transformer-based(Vaswani et al., 2017) multimodal
football scene recognition method for both visual and
auditory modalities. Video frames are fed into a Vi-
sual Transformer, and audio spectrograms are fed into
an Audio Transformer. By performing late fusion on
the estimation results from both transformers, they
handle both visual and auditory modalities. Further-
more, VanderPlaetse et al.(Vanderplaetse and Dupont,
2020) set a ResNet pre-trained on ImageNet as the
Visual Stream and VGGish(Hershey et al., 2017) pre-
trained on AudioSet as the Audio Stream. After ex-
tracting features from each stream, they fused the two
modalities using seven methods and compared the re-
sults. Similarly, Xarles et al.(Xarles et al., 2023) pro-
posed a multimodal approach that utilizes audio and
visual modalities. They extracted features from au-
dio log-Mel spectrograms using VGGish and merged
them with visual features. These combined features
were then used as input to a Transformer Encoder.

However, although these methods pay attention
to the excitement, atmosphere, and voices of the au-
dience and commentators, they mainly emphasize
the acoustic properties of the audio over the actual
content of the commentary. The reason is that the
SoccerNet-v2(Deliège et al., 2021) dataset, which is
used in many existing studies on Action Spotting, has
significant language variations between match videos,
and some videos have no commentary at all, as shown
in Table 1. Since audio features vary considerably
across different languages, the model learns features
based on acoustic characteristics rather than the com-
mentary content. This relationship has been indirectly
demonstrated by previous studies, where adding au-
dio features to video-only models improved accuracy.

However, these improvements can be attributed to the
acoustic properties of the audio rather than the seman-
tic content of the commentary.

Table 1: We identified the language breakdown of the
SoccerNet-v2 dataset using FasterWhisper in this study.

Moreover, there are two types of actions regarding
commentary in the match: (1) actions that are diffi-
cult to identify without commentary, and (2) actions
that are clear from video alone; however, commentary
helps improve accuracy.

For type (1), even when one Yellow Card is shown
in the video, there are cases where Yellow Cards are
issued to players from both teams. Additionally, al-
though only a Red Card is displayed in the video,
there are instances where two Yellow Cards are given,
leading to a Red Card (YC→RC). In these situations,
the commentary may include expressions like “Yel-
low Card to [Player], and to [Player]”, indicating that
cards are given to both players or “Second Yellow
Card, so Red!” indicating a YC→RC.

For type (2), the commentator may still exclaim
“Goal!!” even when a Goal is apparent in the video.
While such events can be identified from video alone,
incorporating commentary information can lead to
more accurate predictions.

Based on these challenges and observations of
match conditions, this study proposes ASPERA (Ac-
tion SPotting thrEe-modal Recognition Architecture),
a multimodal football action recognition method
that leverages the Transformer-based ASTRA, Ac-
tion Spotting TRAnsformer for Soccer Videos(Xarles
et al., 2023), model on three modalities: visual in-
formation, audio information, and textual information
from the commentary. By incorporating the com-
mentary as an additional source of information, the
method aims to enhance accuracy in action spotting,
with a particular emphasis on recognizing invisible
actions. In this study, ASPERA is used as a baseline
model for three advanced models, and these models
with improvements over ASPERA are introduced as
ASPERAsrnd, ASPERAcln, and ASPERAMC.
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First, in ASPERA, text segments annotated with
the start and end times of speech are generated
when extracting the commentary text from audio data.
However, each generated text segment may contain
irrelevant information. For example, this could in-
clude cases where audience cheers are transcribed as
text or where commentators’ predictions are captured.
Moreover, as shown in Figure 2, a single text segment
strongly related to a non-occurring action—such as a
Free-kick—can lead to misrecognition. Even if the
surrounding commentary pertains to an actually oc-
curring Yellow Card, the non-occurring Free-kick may
be recognized instead of the Yellow Card. Therefore,
the model reduces the influence of text segments at
specific moments by incorporating commentary text
from the surrounding 20-second time frame. This is
introduced as ASPERAsrnd.

Figure 2: An example of a generated text segment. Al-
though a Yellow Card was issued in 1946s, there is a men-
tion of a Free-kick—which was actually absent—between
1943.26s and 1947.14s.

Furthermore, the commentator’s utterance at each
second often contains background information unre-

lated to the actions during the match. Therefore, irrel-
evant background information, such as coaches’ com-
ments and recent match records, was excluded from
the analysis. This is introduced as ASPERAcln.

Then, in existing research (Xarles et al., 2023),
when observing the recognition results of models us-
ing only visual information and models utilizing vi-
sual and audio information, flows of actions that were
absent in the dataset—such as a Direct Free-kick lead-
ing to a Red Card—were recognized. To address this
issue, this study aims to improve accuracy by provid-
ing prior knowledge of action flows—such as Throw-
in often following a Ball out of play, Kick-off often
following a Goal, and Indirect Free-kick often fol-
lowing an Offside—as a Markov chain. Specifically,
in cases with invisible scenes, the model is expected
to improve the recognition accuracy of invisible ac-
tions by providing prior knowledge on which action
is likely to occur based on past or subsequent actions.
This is introduced as ASPERAMC.

2 RELATED WORKS

2.1 ASTRA

Xarles et al.(Xarles et al., 2023) proposed ASTRA, a
Transformer-based model designed for Action Spot-
ting. ASTRA achieved the third-highest score on the
Challenge Set of the SoccerNet 2023 Action Spotting
Challenge. ASTRA tackles the challenge of lower ac-
curacy in invisible actions compared to visible actions
by combining audio modality with video modality to
improve performance on invisible actions.

For the video modality, Baidu Soccer Embed-
dings (Zhou et al., 2021) are fed into a Position-wise
Feed-Forward Network (PFFN), which enables paral-
lel processing at each frame. For the audio modal-
ity, audio features are extracted using VGGish (Her-
shey et al., 2017), pre-trained on AudioSet (Gem-
meke et al., 2017), from log-Mel spectrograms. The
feature-aligned video and audio embedding are then
concatenated and processed through a Transformer
Encoder-Decoder architecture. The resulting embed-
ding is fed into two heads: (1)a classification head
(Λs) for temporal position classification and (2) an
uncertainty-aware displacement head (Λd) for predic-
tion refinement.

2.1.1 Classification Head

The classification head processes the decoder’s query
outputs at 0.5-second intervals through a sequence of
operations: two linear layers followed by ReLU acti-
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vation, and finally a sigmoid function. This generates
per-class probability scores every 0.5 seconds, indi-
cating the likelihood of each action occurring. This
0.5-second interval is referred to as the feature clock.

2.1.2 Uncertainty-Aware Displacement Head

The uncertainty-aware displacement head processes
the decoder queries through two linear layers with
ReLU activation, followed by parallel linear layers
that generate estimated means and variances for each
action class. This architecture models displacement
as a Gaussian distribution, capturing temporal uncer-
tainty in the predictions.

The estimated displacements serve to refine the
classification head’s predictions by probabilistically
adjusting the temporal locations for each feature
clock.

2.2 Baidu Soccer Embeddings

Figure 3: The architecture of the two-stage approach by
Zhou et al.(Zhou et al., 2021).

Zhou et al.(Zhou et al., 2021) proposed a two-stage
framework for event detection in football broadcast
videos, as illustrated in Figure 3. The first stage
employs multiple fine-tuned action recognition mod-
els—TPN(Yang et al., 2020), GTA(He et al., 2020),
VTN(Neimark et al., 2021), irCSN(Tran et al., 2019),
and I3D-Slow(Feichtenhofer et al., 2019)—to extract
high-level semantic features. The second stage uti-
lizes NetVLAD++(Giancola and Ghanem, 2021) and
a Transformer as temporal detection modules for Ac-
tion Spotting.

2.3 Whisper and FasterWhisper

Radford et al.(Radford et al., 2023) introduced
a weakly supervised sequence-to-sequence Trans-
former model trained on large-scale internet audio
data. The model was trained on multiple audio pro-
cessing tasks, including multilingual speech recog-
nition, speech translation, speaker identification, and
voice activity detection. FasterWhisper(SYSTRAN,
2024), an optimized implementation of the Whis-
per architecture, enhances performance through the

CTranslate2 inference engine, 8-bit quantization, and
various optimization techniques. In GPU-based
processing, FasterWhisper demonstrates up to 4x
speedup compared to the original Whisper model,
while simultaneously achieving significant reductions
in both GPU and CPU memory consumption.

2.4 Markov Chain

Markov chains are used to model probabilistic pro-
cesses where the states of a system change discretely.
A key feature is the “Markov property”, which means
that the next state depends only on the current state,
without influence from any previous states. This al-
lows complex state transitions to be represented using
simple transition probabilities. For example, in a foot-
ball match, immediately following a Goal, the next
action is a Kick-off with approximately 87% proba-
bility according to the SoccerNet dataset. This tran-
sition illustrates the Markov property, where the next
action, Kick-off is determined solely by the current
state of Goal, independent of past events. Thus, the
flow of a football match can be represented by a sim-
ple state transition matrix, as shown in Table 2, ex-
pressing the transition probabilities between actions
throughout the game.

A transition probability matrix enables the numer-
ical representation of the probability that each action
will transition to the next during a match. This ap-
proach captures the system’s dynamic behavior within
a Markov chain framework. In recent years, the con-
cept of Markov chains has been incorporated into
deep learning and utilized as an auxiliary method to
enhance the predictive capabilities of models.

For instance, Markov chain-based methods have
been proposed for continuous action recognition.
Lei et al.(Lei et al., 2016) proposed a hybrid ar-
chitecture that combines convolutional neural net-
work(CNN) and Hidden Markov Model(HMM) to
model the statistical dependencies between neighbor-
ing sub-actions. This method leverages CNN’s high-
level feature learning capabilities to extract action fea-
tures and uses HMM to model the transitions between
these features.

Furthermore, the concept of Markov chains has
been applied in Transformer models as well. Zhang
et al.(Zhang and Feng, 2023) proposed the Hidden
Markov Transformer (HMT), which models transla-
tion initiation timing as a hidden Markov model in
simultaneous machine translation (SiMT) tasks. By
selecting the optimal start point from multiple candi-
date timings, they achieved high-accuracy simultane-
ous translation.
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Table 2: A portion of the transition probability matrix between actions during a football match.

Before
After Penalty Kick-off Goal Substitution ... Total

Penalty 0 0 0.361 0 ... 1
Kick-off 0 0.019 0.004 0.021 ... 1

Goal 0 0.872 0.019 0.067 ... 1
Substitution 0 0.091 0 0.136 ... 1

Offside 0 0.002 0 0.058 ... 1
... ... ... ... ... ... ...

3 PROPOSED METHOD

We propose ASPERA (Action SPotting thrEe-modal
Recognition Architecture), a Transformer-based mul-
timodal football action recognition method that uti-
lizes three modalities: visual information, audio in-
formation, and textual commentary content. We ob-
tained English commentary text for all match videos
in the dataset by transcribing the broadcast audio
of SoccerNet using FasterWhisper and translating
non-English content using GPT-3.5 Turbo(OpenAI,
2024a). Next, embedding generated using Text Em-
bedding Large 3(OpenAI, 2024b) for the commen-
tary text was incorporated into the existing ASTRA
model(Xarles et al., 2023) for training.

Figure 4: Data preparation flow for the audio and text
modalities.

First, the data preparation flow for Mel spectro-
grams and text embedding is shown in Figure 4. Then,
ASPERA based on ASTRA is indicated in the green
dotted line portion of Figure 5.

3.1 Creation of the Audio Modality
Dataset

To perform training using audio information, Mel
spectrograms were created from the broadcast audio
of SoccerNet-v2. Specifically, the sampling rate of
the original audio files was set to 16,000 Hz, and the

Figure 5: ASPERA adds a text modality to the ASTRA
model.

audio channels were set to mono to reduce the size of
the audio data and improve processing efficiency.

Next, to align the sequence length of Mel spec-
trograms with that of the broadcast video, the audio
files were downsampled to a rate of 100. To compute
Mel spectrograms, the parameters for the Short-Time
Fourier Transform were set as follows: nfft was set to
512, hoplength was determined by the following equa-
tion (1), and the number of Mel filter banks Nmels was
set to 128. In this context, len(y) denotes the sequence
length of the broadcast video. The power spectrogram
was then converted to decibel units to facilitate nu-
merical processing. For segments of broadcast audio
with missing or interrupted sound, zeros were added
to the audio files for consistent processing.

hoplength =

⌊
len(y)−nfft

len(y)−1

⌋
+1 (1)

These procedures were applied to all match videos
in the SoccerNet-v2 dataset, creating the dataset for
the audio modality by extracting Mel spectrograms.

3.2 Creation of the Text Modality
Dataset

The ASTRA model was extended to incorporate com-
mentary content by converting audio commentary
into text embedding. Initially, the audio data was
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processed with the same steps as the audio modality
dataset to reduce its size and enhance processing effi-
ciency.

Audio transcription and language detection were
performed using FasterWhisper, with particular em-
phasis on preserving temporal information. The tran-
scription data was stored with timestamps marking
the beginning and end of each utterance, alongside
their corresponding spoken text segments. This for-
mat enables precise temporal tracking of all utter-
ances. For non-English matches identified by Faster-
Whisper’s language detection, translation was per-
formed using the GPT-3.5 Turbo(OpenAI, 2024a)
API. To preserve temporal alignment, translations
were processed sequentially for each text segment.
The translation prompt specified the football com-
mentary context and included language-specific ex-
amples.

In this study, we extracted each transcribed text
segment at one-second intervals if that second falls
between the beginning and end times of the utterance,
to enhance temporal accuracy. Each one-second inter-
val is defined as a text clock, and the transcribed text
segment at each text clock is referred to as sec-text.
Then, for each sec-text, we obtained the text embed-
ding using Text Embedding Large 3(OpenAI, 2024b)
and considered them as sec-text embedding. Finally,
by obtaining and concatenating a D-dimensional sec-
text embedding over approximately 45 minutes, or
around 2700 seconds, we obtained a total of approxi-
mately 2700×D text embedding for each match.

3.3 Training

ASPERA proposed in this study extends ASTRA by
adding a text modality. Specifically, the main modifi-
cation to the ASTRA model involves fusing text em-
bedding with other modalities before the Transformer
Encoder. The architecture is shown in Figure 5. The
Baidu Soccer Embeddings were divided into five parts
along the feature dimension and passed through a
Position-wise Feed-Forward Network (PFFN) to ob-
tain video embedding. The spectrograms obtained in
Section 3.1 were converted into log-Mel spectrograms
and passed through the VGGish model to obtain audio
embedding. The approximately 2700×d text embed-
ding obtained in Section 3.2 was then concatenated
with these before the Hierarchical Transformer En-
coder. This allows the model to learn dependencies
between different modalities.

Additionally, trainable temporal positional em-
bedding and feature positional embedding were added
to the text embedding before concatenation. This en-
ables the model to learn considering temporal and fea-
ture positional information.

3.4 The Refinement of ASPERA

We propose three advanced models that extend AS-
PERA.

First, ASPERAsrnd uses text embedding which
adds the text embedding of the commentary text
from 20 seconds before and after each text clock
to the sec-text embedding. Next, ASPERAcln ex-
cludes background information unrelated to actions,
such as coaches’ comments and match records,
from ASPERAsrnd. Then, ASPERAMC introduces a
Markov head to incorporate prior knowledge of ac-
tion flows to ASPERAMC.

Figure 6: The text embeddings of ASPERA, ASPERAsrnd,
ASPERAcln and ASPERAMC.

3.4.1 ASPERAsrnd

In ASPERAsrnd, we combined the transcribed texts
whose text clock within ±20 seconds fell between
their start and end times, designating this as the sur-
rounding text, and used Text Embedding Large 3 to
create the context embedding. By adding this context
embedding to the sec-text embedding, we obtained the
combined embedding, as shown in Figure 6.

3.4.2 ASPERAcln

ASPERAcln excluded background information un-
related to actions. The surrounding text from
ASPERAsrnd was provided to GPT-4o mini with the
following instruction:

“The following is a football commentary. Please
remove any text unrelated to the Action Spotting task,
which involves identifying the occurrence of specific
actions in a match, such as team records and player
achievements. Condense the remaining text into a
single sentence containing only the important infor-
mation related to the match progress and actions”.

This process allowed us to obtain the action-
focused text. Then, the action-focused text was used
to create an action-focused embedding by utilizing
Text Embedding Large 3. Similar to ASPERAsrnd, by
adding this action-focused embedding to the sec-text
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embedding, we obtained the action-extended embed-
ding, as shown in Figure 6.

3.4.3 ASPERAMC

In ASPERAMC, we considered the action flow by in-
troducing a Markov head to the output of the Trans-
former Decoder in our proposed model shown in Fig-
ure 5. The Markov head outputs the confidence of
each action at each feature clock, similar to the classi-
fication head. The actions are 18 types of actions in-
cluding the background class representing no action.
Considering only the transitions of actions that ex-
ceeded a threshold at each feature clock, we designed
the loss function as shown in equations 2 and 3.

lossM = (classbefore + classafter) · (1− transprob)
2 (2)

loss = lossC+ lossD+λ · lossM (3)

transprob represents the transition probability ma-
trix between actions during a football match, as
shown in Table 2. classbefore denotes the occurrence
frequency of the action that occurred immediately be-
fore, and classafter denotes the occurrence frequency
of the current action. (1− transprob)

2 reduces the loss
for transitions between actions with high transition
probabilities and increases the loss for transitions be-
tween actions with low transition probabilities. Addi-
tionally, Multiplying with (classbefore + classafter) in-
creases the loss or transitions between frequently oc-
curring actions, despite their low transition probabil-
ities. Furthermore, the loss in ASPERAMC was de-
signed by adding λ proportion of lossM to the loss ob-
tained by summing lossC from the classification head
and lossD from the uncertainty-aware displacement
head, as proposed in ASTRA(Xarles et al., 2023).

4 EVALUATION

4.1 Dataset

This study uses SoccerNet-v2 as the dataset for action
spotting in football. SoccerNet-v2 is a dataset consist-
ing of 550 football matches held from 2014 to 2017
in the Premier League, UEFA Champions League,
Ligue 1, Bundesliga, Serie A, and La Liga. It has
been provided for various tasks.

For action spotting, annotations for 17 types
of football actions are publicly available for 500
matches, while annotations for the remaining 50
matches are accessible only to the organizers as a
challenge dataset. Out of the 500 matches, 300 are
designated as training data, 100 as validation data, and
100 as test data, and in this study, the test data is eval-
uated according to the metrics outlined in Section 4.3.

4.2 Implementation Details

The hyperparameters of the model are determined
according to the ASTRA settings. Specifically, the
model implementation uses PyTorch, and the Adam
optimizer is applied. The initial learning rate is set
to 5× 10−5 with an initial warm-up of three epochs,
followed by cosine decay over 50 epochs. This model
uses 50-second clips with an embedding dimension
of d = 512 as input. Differences from ASTRA in
this model include the number of embedding E , the
embedding dimension of the text embedding, and the
positional embedding for the text embedding. For the
embedding, we used a total of |E | = 7, comprising
five Baidu Soccer Embeddings for visual data, one
audio embedding obtained by passing log-Mel spec-
trogram through VGGish for audio data, and one text
embedding for textual data. The embedding dimen-
sion for the text embedding is set to d = 512.

4.3 Evaluation Metrics

Average-mAP was used as the evaluation metric for
this method. This metric quantifies the area under
the mAP curve for different tolerance values, denoted
by δ. The mAP represents the mean Average Pre-
cision across all action classes. Average Precision
is a summarized value of the Precision-Recall curve,
where precision is plotted on the vertical axis and re-
call on the horizontal axis. In action spotting, the de-
tection results must match the ground truth within a
specific time range, which is why different tolerance
values δ are set. SoccerNet adopts the metrics of tight
Average-mAP and loose Average-mAP for Average-
mAP. The metric of tight Average-mAP uses a δ range
of 1 to 5 seconds, while loose Average-mAP uses a
δ range of 5 to 60 seconds. This study also used
tight Average-mAP and loose Average-mAP for eval-
uation. In addition, each action class was evaluated
with tight Average-mAP and loose Average-mAP. All
reported metrics represent the average values obtained
by training each model five times with different ran-
dom seeds.

4.4 Evaluation of the Proposed Models

Since the audio spectrograms, commentary text, and
text embedding were created in this study, we trained
and evaluated seven cases: (i) visual modality only,
(ii) visual and audio modalities, (iii)video and com-
mentary text modalities, (iv) ASPERA (visual, audio,
and commentary text modalities), (v)ASPERAsrnd,
(vi)ASPERAcln, and (vii)ASPERAMC. The results
are shown in Table 3, 4, and 5. In the tables, tight
Average-mAP is abbreviated as “tight” and loose
Average-mAP as “loose”.
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Table 3: Average-mAP for all actions, visible actions, and invisible actions.

Model All visible invisible

tight loose tight loose tight loose

ASTRA(video) 66.35 77.96 71.83 82.25 36.43 52.40
ASTRA(video+audio) 66.19 77.98 71.61 82.03 37.28 52.59
video+commentary text 66.17 77.97 71.70 82.28 36.66 52.44
ASPERA 66.93 78.39 72.21 82.47 36.64 52.55
ASPERAsrnd 67.13 78.18 72.50 82.34 36.936 52.766
ASPERAcln 67.05 78.24 72.39 82.35 37.02 52.958
ASPERAMC 66.98 78.02 72.45 82.26 37.42 53.30

Table 4: The metric of tight Average-mAP for all actions, including both visible and invisible actions, in each football action
class (Penalty, Kick-off, Goal, Sub, Offside, SonT, SoffT, Clearance, and BOOP).

Penalty Kick-off Goal Sub Offside SonT SoffT Clearance BOOP

ASTRA(video) 87.29 67.28 84.01 53.67 61.09 61.11 65.63 65.45 80.47
ASTRA(video+audio) 86.93 67.28 82.26 55.84 62.28 60.77 66.18 66.04 80.85
ASTRA(video+text) 85.87 67.86 83.66 55.07 60.32 61.05 65.30 65.24 80.41
ASPERA 86.44 67.49 83.75 55.24 64.25 62.16 66.64 66.17 80.48
ASPERAsrnd 86.52 68.30 83.94 55.57 62.19 62.18 66.35 66.58 81.37
ASPERAcln 87.23 68.38 84.04 55.24 62.14 61.85 66.20 66.44 81.30
ASPERAMC 86.21 68.63 84.17 55.74 62.06 62.05 66.20 66.20 81.44

Table 5: The metric of tight Average-mAP for all actions, including both visible and invisible actions, in each football action
class (Throw-in, Foul, Indirect FK, Direct FK, Corner, YC, RC, and YC→RC).

Throw-in Foul Indirect FK Direct FK Corner YC RC YC → RC

ASTRA(video) 78.26 77.02 55.53 73.78 83.58 64.59 40.41 28.75
ASTRA(video+audio) 78.77 77.34 55.45 73.43 83.96 64.27 38.77 24.75
ASTRA(video+text) 78.85 77.31 55.69 73.69 83.25 64.90 38.48 27.97
ASPERA 78.89 77.68 56.00 73.75 84.01 65.24 40.96 26.53
ASPERAsrnd 79.21 78.23 56.45 74.01 84.38 65.40 41.17 29.36
ASPERAcln 79.17 78.21 56.49 74.00 83.99 65.11 40.57 29.81
ASPERAMC 79.49 78.23 56.20 73.67 84.56 65.49 40.07 28.27

4.4.1 Evaluation on All Actions, Visible Actions,
and Invisible Actions Using Tight and
Loose Average-mAP

Table 3 showed that ASPERA achieved the high-
est accuracy in both tight Average-mAP and loose
Average-mAP for all actions and visible actions com-
pared to the original ASTRA, which use only video
and video+audio modalities. The result confirms
the effectiveness of multimodal learning that uti-
lizes three modalities—video, audio, and commentary
text—for action spotting.

Comparing the model utilizing only video with
the model utilizing both video and commentary
text, some metrics showed a decrease in accu-
racy. This suggests that ASPERA improved accuracy
by effectively capturing cross-modal relationships.

ASPERAsrnd demonstrated high accuracy primarily in
tight Average-mAP, while ASPERAcln showed sta-
ble and high accuracy across both tight and loose
Average-mAP. This suggests that considering the sur-
rounding text improves tight Average-mAP, while ex-
cluding background information enhances overall de-
tection accuracy. ASPERAMC showed the highest
accuracy for invisible actions, achieving improve-
ments of 0.78 in tight Average-mAP and 0.75 in loose
Average-mAP compared to ASPERA. This suggests
that introducing a Markov chain as prior knowledge
of football action sequences enhances the accuracy of
recognizing invisible actions. This effectiveness is at-
tributed to modeling temporal dependencies that al-
low for predicting the next likely action based on pre-
vious actions and addressing the lack of sufficient vi-
sual data in recognizing invisible actions.
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Figure 7: The transition probability matrix between each football class. The football classes are ordered along the horizontal
axis based on the magnitude of their transition probabilities. The vertical axis shows the values of the transition probabilities.

4.4.2 Evaluation Using Tight Average-Map for
Each Football Action Class

Tables 4 and 5 show the results of tight Average-mAP
for all actions, including both visible and invisible
actions, across all football action classes. Sub,
SonT, SoffT, BOOP, FK, YC, and RC stand for
Substitution, Shots on target, Shots off target, Ball
out of play, Free-kick, Yellow Card, and Red Card,
respectively. The Average-mAP for each football
action in visible and invisible actions is published at
http://www.ohsuga.lab.uec.ac.jp/information/average-
mAP ICAART.pdf.

ASTRA(video+text) and ASPERA. From Table 4,
adding commentary text to ASTRA(video) or AS-
TRA(video and audio) improves accuracy for Kick-
off, Offside, SonT, SoffT, Clearance, Throw-in, Foul,
Indirect FK, Corner, YC, RC, and YC→RC. On
the other hand, adding commentary text to AS-
TRA(video+text) or ASPERA decreases accuracy for
Penalty, Goal, Sub, BOOP, Direct FK, and YC→RC.
Based on the following two observations, this is be-
lieved to be due to the occurrence of the same words
near different football action classes.

The first observation is the similarity of text em-
beddings spoken within five seconds of each foot-
ball action class. The two graphs at the top of Fig-
ure 8 show examples where accuracy improved by
considering commentary, for Foul and Offside. The
two graphs at the bottom show examples where ac-
curacy decreased, for Penalty and YC→RC. From
these graphs, it can be inferred that the football ac-
tions where accuracy decreased by considering com-

Figure 8: Similarity of text embeddings spoken within five
seconds of each football action. The vertical axis represents
frequency, and the horizontal axis represents similarity.

mentary had low similarity between text embeddings.
This indicates that, for football actions with low ac-
curacy, the commentary contained information unre-
lated to the game flow or insufficiently conveyed the
game flow by itself.

The second observation is the frequency of tokens
spoken within five seconds of each football action. In
Figure 10, the upper graph shows the frequency when
Goal was recognized based on tight Average-mAP,
the lower left graph shows the frequency when BOOP
was recognized, and the lower right graph shows the
frequency when BOOP was predicted but did not oc-
cur within the five-second window. Here, when Goal
was recognized, the token “Goal” ranked first, and
when BOOP was recognized, the token “Goal” ranked
second. And when BOOP did not occur, the to-
ken “Goal” ranked second. This observation suggests
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Figure 9: The frequency of each token spoken within five
seconds of each football action. The vertical axis shows
frequency, and the horizontal axis lists the top five tokens
with the highest frequency.

the accuracy decreased because the token “Goal” fre-
quently appeared in other classes.

ASPERAsrnd. The metric of tight Average-mAP for
each action class improved in ASPERAsrnd compared
to ASPERA, except for Offside and SoffT. This is
likely due to sec-text not fully capturing the game
flow. Considering surrounding text provides addi-
tional game flow information, which reduces the im-
pact of sec-text. Here, we examined the frequency
of tokens spoken within five seconds of Offside and
SoffT.

Figure 10: The frequency of each token spoken within five
seconds before and after Offside and Shots off target. The
vertical axis shows frequency, and the horizontal axis lists
the top five tokens with the highest frequency.

It was found that, when Offside was correctly
detected based on tight Average-mAP, the token
“Offside” appeared most frequently and was not
among the top five for any other football action
classes. When Offside was not detected based on tight
Average-mAP metric, the token “Offside” did not ap-
pear in the top five. Additionally, when consider-
ing commentary, the accuracy for Offside significantly
improved. This suggests that the token “Offside” had
a major impact on accuracy improvement. It is be-
lieved that considering surrounding text reduced the
impact of this token, leading to a decrease in the ac-
curacy of ASPERAsrnd for Offside.

For SoffT, no token appeared repeatedly in the
five-second window around its correct detection based
on tight Average-mAP. Additionally, surrounding text
for SoffT often described strategies and player sit-
uations. Below are examples of surrounding text
for successful and failed detection of SoffT based on

tight Average-mAP. The underlined part corresponds
to sec-text. The decrease in accuracy is likely due to
surrounding text for SoffT containing little relevant in-
formation.
• successful detection: That was the play of

Chelsea’s goal although it had a second part and
let’s say it is a prolongation with that recovery al-
most on the side of the area but the start of the
Chelsea’s play was like this let’s see there’s Casar
Casar who has moved well towards Ivanovich.
Ivanovic’s center is not good now, it’s way too far,
he has to be very careful. Barley because what is
that simply with that pass Gaby what has caused
is that everything team would go up again this is
what we are saying the Barley has its lines in a point
of the field in which Chelsea with relative ease be-
cause they are very.

• failed detection: But look where Barley is installed.
That is to say, obviously there will be bad stretches.
He is going to suffer a lot and he is going to suffer
the onslaughts of Chelsea. He will have to lower
his center of gravity, right? Its center of gravity,
the team. But while he can, he keeps the lines at a
good height for the team. Boyd arrives. He didn’t
think twice. Filipe was being closed down. That
is, the idea is not to lock themselves in. Obviously,
if a team locks itself in, it is almost impossible to
achieve something positive. You can lock it up but
you have to unfold it at some point. Barley is try-
ing, look, here it is again, don’t huddle too much.

ASPERAcln. The metric of tight Average-mAP for
each football action class in ASPERAcln improved
for Penalty, Kick-off, Goal, Indirect FK, and YC→RC
compared to ASPERAsrnd. On the other hand, the
accuracy decreased for Sub, Offside, SonT, Shots off
target, Clearance, BOOP, Throw-in, Foul, Direct FK,
Corner, YC, and RC. This is likely due to remov-
ing irrelevant information, which preserved the over-
all game flow while excluding specific football ac-
tion details. Below are examples of surrounding text
and action-focused text when Sub occurred. The un-
derlined part corresponds to sec-text. Sub is men-
tioned in surrounding text, while in action-focused
text, only the YC that happened just before is men-
tioned, and Sub is not referenced. Although the accu-
racy for many football actions decreased under tight
Average-mAP, the accuracy increased under loose
Average-mAP as shown in Table 3. This indicates that
ASPERAcln is effective under loose Average-mAP.
• surrounding text: And a yellow card for Keitli for

that tackle. About Cés. The previous action that
was a clear yellow. And the referee does it very
well here. He takes down his license plate num-
ber and then shows him a yellow card. Very ag-
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gressive in some phases the Barley, leaving these
entries a little rough. Good, William for Cuadrado.
Cuadrado hasn’t shined, to be honest. He has not
been at a great level. It will be getting into the
team’s dynamics. It has been rumored this week.
Who had an English teacher. Sculpture. There have
been many jokes on Twitter. And he had to put a
photo with his real English teacher.

• action-focused text: A yellow card was issued to
Keitli for a tackle on Cés, while Cuadrado has not
been performing at a high level.

ASPERAMC. The metric of tight Average-mAP for
each football action class in ASPERAMC improved
for Kick-off, Goal, Sub, SonT, BOOP, Throw-in, Foul,
Corner, YC, and YC→RC compared to ASPERAcln.
On the other hand, the accuracy decreased for Penalty,
Offside, Clearance, Indirect FK, Direct FK, and RC.
This is due to the design of the Markov loss, which
emphasizes the occurrence frequency and transition
probabilities of each football action, leading to im-
proved accuracy for actions involving transitions with
high occurrence frequency or extreme transition prob-
abilities. Here, “extreme” refers to transition prob-
abilities farther away from 0.5. Figure 7 shows the
transition probability matrix between each football
class. The accuracy of Goal, Sub, and YC→RC im-
proved, as they have extreme transition probabilities
compared to other football actions. On the other hand,
Penalty and Direct FK, where accuracy decreased,
had transition probabilities closer to 0.5 compared to
other football actions. Additionally, Penalty, a less
frequent action that also saw a decrease in accuracy,
had many frequent transitions involving actions with
fewer occurrences, which likely led to the decrease in
tight Average-mAP.

5 CONCLUSION

In this study, we propose ASPERA, a multimodal
football action recognition method by applying
the Transformer-based architecture ASTRA to three
modalities: video, audio, and commentary text. AS-
PERA, which was trained using these three modali-
ties—video, audio, and commentary text—achieved
improvements of 0.26 in tight Average-mAP and 0.80
in loose Average-mAP over models with video and
audio modalities.

In addition to ASPERA, we developed three
advanced models with enhanced text handling.
ASPERAsrnd incorporated surrounding text, includ-
ing transcription within a ±20-second range around
each text clock to reduce the effects of each sec-

text. ASPERAcln further refined this by removing
non-action-related background information, such as
coaches’ comments, which allowed a more targeted
focus on action-relevant data. ASPERAMC introduced
Markov head to ASPERAcln, adding prior knowledge
of football action flow via a Markov chain.

As a result, ASPERAsrnd improved tight Average-
mAP by leveraging background context around ac-
tions, and ASPERAcln achieved stable high accuracy
across all metrics by focusing on action-related infor-
mation. ASPERAMC showed the highest accuracy in
detecting invisible actions, with increases of 0.78 in
tight Average-mAP and 0.75 in loose Average-mAP,
due to the predictive benefit of prior action flow pat-
terns.

These results demonstrate how different combi-
nations of modalities and additional information in
each model affect the accuracy of action spotting.
ASPERAsrnd achieved high accuracy in tight Average-
mAP, ASPERAcln showed stable high accuracy across
metrics, and ASPERAMC was advantageous for invis-
ible actions, suggesting a tailored model choice for
different applications.

Future research directions include three main ar-
eas. First, optimizing the surrounding text feature
representation may further improve action spotting,
especially by pre-processing it similarly to video fea-
tures before Transformer encoding. Second, combin-
ing Transformers and Markov chains holds promise
for action recognition in invisible scenes, potentially
extending to other sports and general activity recog-
nition. The third point is player evaluation. Currently,
research in player evaluation mainly focuses on ana-
lyzing scoring contributions by predicting player tra-
jectories from video, as in Teranishi et al.(Teranishi
et al., 2022); however, commentary texts can provide
information such as which players were noticed, who
scored goals, who made good plays, and who excelled
in passing. Therefore, utilizing live commentary texts
enables more detailed player evaluations.
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Deliège, A., Cioppa, A., Giancola, S., Seikavandi, M. J.,
Dueholm, J. V., Nasrollahi, K., Ghanem, B., Moes-
lund, T. B., and Van Droogenbroeck, M. (2021).
SoccerNet-v2: A dataset and benchmarks for holis-
tic understanding of broadcast soccer videos. In 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 4503–
4514.

Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2019).
Slowfast networks for video recognition. In 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6201–6210.

FIFA, I. (2024). FIFA publishes Professional Football Re-
port 2023. https://inside.fifa.com/legal/news/fifa-pub
lishes-professional-football-report-2023. Accessed:
04/06/2024.

Gan, Y., Togo, R., Ogawa, T., and Haseyama, M. (2022).
Transformer based multimodal scene recognition in
soccer videos. In 2022 IEEE International Confer-
ence on Multimedia and Expo Workshops (ICMEW),
pages 1–6.

Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen,
A., Lawrence, W., Moore, R. C., Plakal, M., and Rit-
ter, M. (2017). Audio Set: An ontology and human-
labeled dataset for audio events. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 776–780.

Giancola, S. and Ghanem, B. (2021). Temporally-aware
feature pooling for action spotting in soccer broad-
casts. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 4485–4494.

He, B., Yang, X., Wu, Z., Chen, H., Lim, S.-N., and Shri-
vastava, A. (2020). GTA: Global temporal atten-
tion for video action understanding. arXiv preprint
arXiv:2012.08510.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke,
J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D.,
Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J.,
and Wilson, K. (2017). CNN architectures for large-
scale audio classification. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 131–135.

Intelligence, M. (2024). FOOTBALL MARKET. https:
//www.mordorintelligence.com/industry-reports/foo
tball-market. Accessed: 04/06/2024.

Lei, J., Li, G., Zhang, J., Guo, Q., and Tu, D. (2016).
Continuous action segmentation and recognition using
hybrid convolutional neural network-hidden markov
model model. IET Computer vision, 10(6):537–544.

Neimark, D., Bar, O., Zohar, M., and Asselmann, D. (2021).
Video transformer network. In 2021 IEEE/CVF Inter-
national Conference on Computer Vision Workshops
(ICCVW), pages 3156–3165.

OpenAI (2024a). GPT-4o. https://platform.openai.com/do
cs/models/gpt-4o.

OpenAI (2024b). text embedding large 3. https://platform
.openai.com/docs/models/embeddings.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. (2023). Robust speech recogni-
tion via large-scale weak supervision. In International
conference on machine learning, pages 28492–28518.
PMLR.

Shaikh, M. B., Chai, D., Islam, S. M. S., and Akhtar, N.
(2022). MAiVAR: Multimodal audio-image and video
action recognizer. In 2022 IEEE International Confer-
ence on Visual Communications and Image Process-
ing (VCIP), pages 1–5.

SYSTRAN (2024). Faster whisper. https://github.com/S
YSTRAN/faster-whisper. Accessed: 2024-06-10.

Teranishi, M., Tsutsui, K., Takeda, K., and Fujii, K. (2022).
Evaluation of creating scoring opportunities for team-
mates in soccer via trajectory prediction. In Interna-
tional Workshop on Machine Learning and Data Min-
ing for Sports Analytics, pages 53–73. Springer.

Tran, D., Wang, H., Feiszli, M., and Torresani, L. (2019).
Video classification with channel-separated convolu-
tional networks. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5551–
5560.

Vanderplaetse, B. and Dupont, S. (2020). Improved soccer
action spotting using both audio and video streams.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages
3921–3931.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, page 6000–6010,
Red Hook, NY, USA. Curran Associates Inc.

Xarles, A., Escalera, S., Moeslund, T. B., and Clapés, A.
(2023). ASTRA: An action spotting transformer for
soccer videos. In Proceedings of the 6th International
Workshop on Multimedia Content Analysis in Sports,
pages 93–102.

Yang, C., Xu, Y., Shi, J., Dai, B., and Zhou, B. (2020).
Temporal pyramid network for action recognition. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 588–597.

Zhang, S. and Feng, Y. (2023). Hidden markov trans-
former for simultaneous machine translation. ArXiv,
abs/2303.00257. https://api.semanticscholar.org/Corp
usID:257255341.

Zhou, X., Kang, L., Cheng, Z., He, B., and Xin, J. (2021).
Feature combination meets attention: Baidu soccer
embeddings and transformer based temporal detec-
tion. CoRR, abs/2106.14447.

ASPERA: Exploring Multimodal Action Recognition in Football Through Video, Audio, and Commentary

657


