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Animating hand-drawn sketches using traditional tools is challenging and complex. Sketches provide a visual

basis for explanations, and animating these sketches offers an experience of real-time scenarios. We propose an
approach for animating a given input sketch based on a descriptive text prompt. Our method utilizes a paramet-
ric representation of the sketch’s strokes. Unlike previous methods, which struggle to estimate smooth and ac-
curate motion and often fail to preserve the sketch’s topology, we leverage a pre-trained text-to-video diffusion
model with SDS loss to guide the motion of the sketch’s strokes. We introduce length-area (LA) regularization
to ensure temporal consistency by accurately estimating the smooth displacement of control points across the
frame sequence. Additionally, to preserve shape and avoid topology changes, we apply a shape-preserving
As-Rigid-As-Possible (ARAP) loss to maintain sketch rigidity. Our method surpasses state-of-the-art perfor-
mance in both quantitative and qualitative evaluations. https://graphics-research-group.github.io/ESA/.

1 INTRODUCTION

Sketches serve as a medium for communication
and visual representation. Animating 2D sketch il-
lustrations using traditional tools is tedious, cum-
bersome, and requires significant time and effort.
Keyframe-based animation is highly labor-intensive,
while video-driven animation methods are often re-
stricted to specific motions. In recent years, sketch
animation has emerged as a significant area of re-
search in computer animation, with applications in
video editing, entertainment, e-learning, and visual
representation. Previous sketch animation methods,
such as that in (Xing et al., 2015; Patel et al., 2016),
require extensive manual input and artistic skill, pre-
senting challenges for novice users. Traditional meth-
ods are limited to specific types of motion, such as
facial and biped animation. More recent techniques,
like Su et al. (Su et al., 2018), animate sketches based
on a video, but still require manual input. Animation-
Drawing (Smith et al., 2023) is a sketch animation
technique that does not rely on manual input, gen-
erating animations using pose mapping, but is lim-
ited to biped motion. In contrast, LiveSketch (Gal
et al., 2023) is a learning-based approach that takes a
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sketch and text prompt to produce an animated sketch.
While it generates promising results, it faces chal-
lenges with temporal consistency and shape preser-
vation (see Figure 1). To address these issues, we
propose a method for animating input sketches based
solely on a text description, with no manual input
required. Our approach represents each stroke as
a Bézier curve, similar to LiveSketch (Gal et al.,
2023), and extends LiveSketch’s capabilities by a
novel Length-Area regularization and rigidity loss.
Furthermore, we utilize local and global paths for mo-
tion estimation and apply Score Distillation Sampling
(SDS) loss (Poole et al., 2022) for optimization. We
propose length-area (LA) regularization that main-
tains temporal consistency, yielding smooth and accu-
rate motion in the animated sketch. Further, the As-
Rigid-As-Possible (ARAP) loss (Igarashi et al., 2005)
preserves local rigidity in the sketch’s shape during
animation. Our method outperforms state-of-the-art
techniques in both quantitative and qualitative eval-
uations. We achieve better sketch-to-video consis-
tency and text-to-video alignment compared to pre-
vious method. Our main contributions are as follows:

* We propose a Length-Area regularization to main-
tain temporal consistency across animated se-
quences. It allows for the generation of a smooth
animation sequence.
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Input sketch and text prompt
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The squirrel uses its dexterous front
paws to hold and manipulate nuts,
displaying meticulous and deliberate
motions while eating.
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Generated animation sequences

Figure 1: Problem with the LiveSketch (Gal et al., 2023) method. In this example, we can observe the lack of temporal

consistency and shape distortion during motion.

* A shape-preserving ARAP loss to preserve local
rigidity in sketch strokes during animation. The
rigidity loss overcomes the shape distortion dur-
ing animation.

2 RELATED WORK

2.1 Sketch Animation

Traditional sketch animation tools are time-
consuming and require a certain level of artistic
skills. Agarwala et al. (Agarwala et al., 2004) pro-
posed a rotoscoping approach that estimates motion
from contour tracking and animates the sketches. It
reduces manual user inputs in the contour-tracking
process. Bregler et al. (Bregler et al., 2002) extract
motion from cartoon animated characters and re-
target these to sketches using the keyframe-based
approach, producing more expressive results but
requires additional user inputs. Guay et al. (Guay
et al., 2015) propose a method that enables timestep
shape deformation by sketching a single stroke but
is limited to a few animation styles. Autocomplete
methods (Wang et al., 2004; Xing et al., 2015)
predict the subsequent sketching style by the user
using temporal coherency, but these methods require
manual user input for sketching operations for
each keyframe. Several learning-based and energy
optimization-based animation methods have been
proposed in recent years. These methods aim to
perform animation using video motion, text prompt
input, and predefined motion trajectory. Santosa et
al. (Santosa et al., 2013) animate a sketch by marking
over the video using optical flow. However, this
method suffers in the case of structural differences
between the sketch and the video object.

Deep learning-based methods (Liu et al., 2019;
Jeruzalski et al., 2020; Xu et al., 2020) provide an
alternative for animators by demonstrating robust ca-
pacity for rig generation. Animation Drawing (Smith
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et al., 2023) generates a rigged character of children’s
drawing using the alpha-pose mapping from a pre-
defined character motion. SketchAnim (Rai et al.,
2024) maps the video skeleton to the sketch skele-
ton and estimates the skeleton transformation to an-
imate the sketch using skinning weights. It han-
dles self-occlusion and can animate non-living objects
but fails to animate stroke-level sketches. Character-
GAN (Hinz et al., 2022) generates an animation se-
quence (containing a single character) by training a
generative network with only 8-15 training samples
with keypoint annotation defined by the user. Neu-
ral puppet (Poursaeced et al., 2020) adapts the ani-
mation of hand-drawn characters by providing a few
drawings of the characters in defined poses. Video-to-
image animation (Siarohin et al., 2019; Siarohin et al.,
2021; Wang et al., 2022; Mallya et al., 2022; Tao
et al., 2022; Zhao and Zhang, 2022) methods extract
the motion of keypoint learning-based optical flow es-
timated from the driving video and generate the ani-
mated images. However, it is limited to the image
modality. AnaMoDiff (Tanveer et al., 2024) estimates
the optical flow field from a reference video and warps
it to the source input. Su et al. (Su et al., 2018) defines
control points on the first frame of the video, tracks
the control points in the video for all frames, and ap-
plies this motion to the control points on the input
sketch. Unlike previous methods that require skele-
tons, control points, or reference videos, our approach
generates high-quality, non-rigid, smooth sketch de-
formations using only text prompts without manual
user input.

2.2 Image and Text-to-Video
Generation

Text-to-video generation aims to produce the cor-
responding video using text prompt input automati-
cally. Previous works have discovered the ability of
GAN:Ss (Tian et al., 2021; Zhu et al., 2023; Li et al.,
2018) and auto-regressive transformers (Wu et al.,
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2021; Yan et al., 2021) for video generation, but these
are restricted to the fixed domain. Recent progress in
diffusion models sets an enrichment in the video gen-
eration methodology. Recent methods such as (Wang
etal.,2023; Chen et al., 2023a; Guo et al., 2023; Chen
et al., 2023c; Zhou et al., 2022) utilize Stable Diffu-
sion (Ni et al., 2023) to incorporate temporal informa-
tion in latent space. Dynamicrafter (Xing et al., 2023)
generates videos from input images and text prompts.
Despite advancements, open-source video generation
faces challenges in maintaining text readability dur-
ing motion. LiveSketch (Gal et al., 2023) animates
vector sketches that do not require extensive training.
It uses a pre-trained text-to-video diffusion model to
utilize motion and instruct the motion to sketch us-
ing SDS (Poole et al., 2022). Similar to text-to-video
generation and image-to-video generation, a closed
research area aims to generate video from an input
image. Latent Motion Diffusion (Hu et al., 2023) es-
timates the motion by learning the optical flow from
video frames and uses the 3D-UNet diffusion model
to generate the animated video. Make-It-Move (Hu
et al., 2022) uses an encoder-decoder network condi-
tion on image and text prompt input to generate the
video sequences. VideoCrafter]l (Chen et al., 2023a)
and LivePhoto (Chen et al., 2023c) preserve the in-
put image style and structure by training to be con-
ditioned on text and image input. CoDi (Tang et al.,
2024) trained on shared latent space with condition-
ing and output space and aligned modalities such as
image, video, text, and audio. However, these ap-
proaches struggle to preserve the characteristics of the
vectorized input sketch.

DreamFusion (Poole et al., 2022) proposed SDS
loss that generates 3D representations from text input
using 2D image diffusion. The SDS loss is similar
to diffusion model loss. However, it does not include
the U-Net jacobian, which helps it overcome the high
computation time of backpropagation within the dif-
fusion model and aligns the image per the text condi-
tion by guiding the optimization process. SDS loss is
also used to optimize the other generative tasks such
as sketches (Xing et al., 2024), vector graphics (Jain
et al., 2023), and meshes (Chen et al., 2023b). The
diffusion network predicts the sketch points’ position
for each frame and aligns the entire animation with
the text prompt using SDS loss.

3 METHODOLOGY

Our methodology extends the framework introduced
by Gal et al. (Gal et al., 2023), which produces ani-
mations from sketches guided by textual descriptions.

Each sketch consists of a set of strokes, represented as
cubic Bézier curves. We represent the set of control
points within a frame as B = {pi}?i , Where p; € R?
and k is the total number of strokes. Further, we de-
fine a sketch video of n frames by a set of moving
control points Z = {B;}_,, where Z € R#>*"x2,

Animation of a sketch requires the user to pro-
vide a text prompt passed into the network as input
along with the sketch. Similar to LiveSketch (Gal
et al., 2023), we use a neural network architecture
that takes an initial set of control points, Znit 4 in-
put and produces the corresponding set of displace-
ments, AZ. For each frame, Z" is initialized to the
set B. Each control point is first projected onto a latent
space using a mapping function, ggareq : R — RP.
This function takes the initial point set Z"' ¢ R?
and projects it into a higher-dimensional space en-
riched with positional encoding, thereby generating
point features. These features are processed through
two branches: a local motion predictor, M, imple-
mented as a multi-layer perceptron (MLP) Fg, which
computes unconstrained local motion offsets, and a
global motion predictor, M,, which estimates trans-
formation matrices M; for scaling, shear, rotation,
and translation, yielding the global motion offsets
T;. The generated animation sequence suffers from
a lack of temporal consistency and degradation of
sketch identity during motion. We propose a novel
Length-Area (LA) regularization framework to signif-
icantly enhance temporal coherence in animated se-
quences. Our approach estimates the Bézier curve
length and the area between consecutive frames. Fur-
thermore, we introduce a shape-preserving As-Rigid-
As-Possible (ARAP) loss, leveraging a mesh con-
structed via Delaunay triangulation (Delaunay, 1934)
of control points within each frame. Unlike exist-
ing methods, our ARAP loss is explicitly designed to
maintain local shape consistency, addressing critical
challenges in deformation handling and ensuring ro-
bust animation fidelity. Figure 2 provides a detailed il-
lustration of our proposed network architecture, high-
lighting its key components. To evaluate its perfor-
mance, we experimented with different learning rate
configurations and conducted multiple iterations of
the optimization process, systematically refining the
model.

3.1 Regularization

The LA regularizer is designed to minimize abrupt
changes in stroke lengths between consecutive
frames, ensuring smoother transitions and preserving
structural consistency by maintaining stable stroke
lengths across the animation. To mitigate error propa-
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Figure 2: Network architecture of our proposed framework. We use a Length-Area loss to maintain temporal consistency and
avoid drastic shape changes. Further ARAP loss maintains the sketch stroke’s rigidity and prevents shape distortions during

motion.

gation, the length minimization for a stroke in a given
frame is computed relative to its length in the initial
frame. The stroke length is estimated as the curve
length, L = [, |£(u)| du of the Bézier curve £(x).

Bézier curves lack local control, meaning that
even minor adjustments to control point positions can
lead to significant changes in the resulting curve. To
mitigate this issue, we introduce an area loss term that
minimizes the area spanned by a stroke between con-
secutive frames, thereby enhancing temporal stabil-
ity and reducing undesirable deformations. To com-
pute this area, we consider a stroke represented by
the Bézier curve f;(u) defined by the control points
pij, where j = {0...3}, for an intermediate frame
i. Let the estimated global transformation matrix
of control points for frame i be denoted as M;, and
the corresponding local motion offsets as Ap; ;. The
control points for the next frame are determined as
Pir1,j = M;p; j + Ap; j. The space-time Bézier sur-
face f(u,t) for ¢ € [t;,¢;+1] is defined by time-varying
control points p;(r) = M(t)p; ; + Ap; ;(t —1;)/ (tix1 —
t;), where M(¢) is obtained by interpolating the trans-
formation parameters appropriately over time. The
surface area swept by the stroke between frames i and
i+ 1is computed as

8f

tit1

of

The LA regularization, denoted as L4 is defined
as

154

n—1
Lia =Y M|Liv1 — Lil +XAy) 2

i=0
where L;4 represents the length-area loss func-
tion. This formulation aims to minimize both the
variation in stroke length and the swept area between
consecutive frames, ensuring temporal coherence and
stability in animation. We use a multilayer perceptron
(MLP) to optimize this loss, with values of hyperpa-
rameters A; and A, set to 0.1 and le — 5, respectively.
LiveSketch (Gal et al., 2023) uses the SDS loss
to train its model, which has separate blocks for opti-
mizing the global and local motion. The SDS loss is

defined as
ox
00
where €g(xy,Y,y) is the output of the diffusion model,
€ denotes the actual noise, 7y represents the timestep,
and w(Y) is a constant term that depends on the nois-
ing schedule. The SDS loss is calculated at every
step of the diffusion generation process for all frames,
guiding the training of these blocks and the overall
generation process. During each generation step, the
optimization occurs after completing the SDS loss-
based optimization for both blocks of the base model,
resulting in updated control points. These control
points are used as input for our optimization proce-

dure.

V¢Lsds = W(Y) (ge(xva’Y) - 8) (3)
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Figure 3: Cubic Bézier curve of each stroke and their corre-
sponding control points. Delaunay triangulation of Bézier
control points.

3.2 Shape Preservation

As-rigid-as-possible deformation enables point-
driven shape deformation by moving anchor points,
which act as constraints within the model. This
deformation framework maintains the rigidity of
each element of the mesh as closely as possible,
ensuring that transformations are smooth and visually
coherent. The ARAP method leverages a two-step
optimization algorithm. In the first step, an initial
rotation is estimated for each triangle in the mesh.
This involves computing the optimal rotation matrix
that best approximates the transformation required
to map the vertices of each triangle from their initial
positions to their target positions while minimizing
distortion. The second step involves adjusting the
scale, ensuring that the transformation adheres to
an as-rigid-as-possible model by minimizing the
amount of stretch that would distort the original
shape. The approach minimizes distortion across the
triangular mesh by optimizing each triangle’s local
transformations while maintaining global consistency
across the mesh.

In our proposed approach, we extend the standard
ARAP loss (Igarashi et al., 2005) by formulating it as
a differentiable function, enabling the use of gradient-
based optimization techniques and backpropagation
within the network. This differentiable ARAP loss
is optimized using a multilayer perceptron (MLP), al-
lowing adaptive and flexible shape deformation.

The ARAP loss is computed based on a global
mesh structure formed by triangulating Bézier control
points (see Figure 3) within each frame. Calculating
the ARAP loss relative to a similar triangulated mesh
for the next frame ensures stroke preservation, which

is essential for generating smooth and consistent ani-
mations. The ARAP loss L4gap is computed by iden-
tifying all triangles in the mesh formed by the control
points of a given frame, with the triangulation topol-
ogy 7 remaining fixed across all frames. The same is
defined as

LARAp = Z e ||e/—De| 27
ecT

“

where D is the ARAP transformation matrix, e repre-
sents an edge of a triangle, estimated from the control
points of the initial sketch, and ¢’ denotes the corre-
sponding deformed edge of the triangle of the subse-
quent frames. o, denotes the weight, usually propor-
tional to the edge length. The ARAP loss in equa-
tion 4 is calculated by first identifying the triangles
that form the mesh of the given frame. These trian-
gles are used to compute the transformation matrix,
which is then optimized using a multi-layer percep-
tron (MLP).

4 EXPERIMENTS AND RESULTS

4.1 Implementation Details

We use a text-to-video diffusion model (Wang et al.,
2023) similar to the approach in LiveSketch (Gal
et al., 2023), to generate the required motion in pixel
space. Further, we use the generated frames to apply
the SDS loss training for a timestep to find the up-
dated control points. These updated control points are
then further optimized using our learning procedure.
It takes the post-LiveSketch updated control points of
the current frame as input and outputs the optimized
control points. We train the MLP for 1000 iterations
of the LiveSketch model. We have used t=1000 to
estimate the Bézier curves and find their length and
area. We use the values of A;, A, and Agpqp as 0.1,
le — 5, and 0.1 respectively. Further, we use sim-
ilar parameters for the local and global paths given
by LiveSketch (Gal et al., 2023). Our method takes
approximately 2 hours to generate a sequence of 24
animated sketches.

4.2 Results and Comparison
4.2.1 Quantitative Evaluation

We compare our approach with previous baseline
methods VideoCrafter] (Chen et al., 2023a), and
LiveSketch (Gal et al., 2023). We use sketch-to-
video consistency and Text-to-video alignment as
evaluation matrices similar to LiveSketch (Gal et al.,
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Text Prompt: A butterfly fluttering its wings and flying gracefully.”

Figure 4: Qualitative results of our proposed method and generated animated sketch sequences from input text prompts.

Table 1: Comparison with state-of-the-art methods.

Sketch-to-video consistency (1)

Text-to-video alignment (1)

VideoCrafterl (Chen et al., 2023a)
LiveSketch (Gal et al., 2023)
Ours

0.7064
0.8287
0.8561

0.0876
0.1852
0.1893

2023) that use CLIP (Radford et al., 2021) to es-
timate sketch-to-video consistency and X-CLIP (Ni
et al.,, 2022) for text-to-video alignment. We used
20 unique sketch samples and text for the quantita-
tive evaluation. VideoCrafterl (Chen et al., 2023a)
is an image-to-video generation model and the con-
ditions on image and text prompts. Table 1 depicts
that our method outperforms the quantitative analy-
sis compared to previous methods. We maintain the
text-to-video alignment similar to LiveSketch (Gal
et al., 2023), but the sketch-to-video consistency per-
formance is superior to our method.

4.2.2 Qualitative Evaluation

In the qualitative comparison, we measure the sketch-
to-video consistency and Text-to-video alignment. In
the streamline, we further estimate the improvements
such as temporal consistency and shape preservation
(see Figure 4). Sketch-to-video consistency describes
the temporal consistency of the generated sketch se-
quences. Figure 5 shows that the bottom of the
wine glass and squirrel is temporally consistent in all
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the frames compared to VideoCrafterl (Chen et al.,
2023a), and LiveSketch (Gal et al., 2023). On the
other hand, we observe that the surfer and squirrel
examples preserve the original shape during anima-
tion. The mesh-based rigidity loss helps to produce a
smooth deformation compared to the baseline meth-
ods. Our method maintains temporal consistency, pre-
serves shape during animation, and outperforms base-
line methods.

4.3 Ablation Study
4.3.1 With and Without Regularization

We evaluate our method without LA regularization
and observe that it fails to maintain temporal consis-
tency. LA regularization helps to address the issue of
drastic changes in stroke. In Figure 6, the lizard’s tail
and legs move rapidly, and the stroke length varies
excessively. In our proposed method, we can see the
smooth motion and nominal change in stroke length.
Table 2 shows the quantitative results w/o the LA reg-
ularizer and our method with the LA regularization.
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Text Prompt: “The squirrel uses its dexterous front paws to hold and
manipulate nuts, displaying meticulous and deliberate motions while eating.”

Figure 5: Comparison with state-of-the-art methods (VideoCrafterl (Chen et al., 2023a) and LiveSketch (Gal et al., 2023)) .
In the above figure, the base of the wine glass is distorted in the previous methods, and in the surfer base, the original shape
is missing compared to ours. The squirrel tails and body shape contain the original topology in our method.
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Text Prompt: “The lizard moves with a sinuous, undulating motion, gliding

smoothly over surfaces using its agile limbs and tail for balance and propulsion.”

Figure 6: Ablation study on different setting such as w/o LA regularization, w/o shape preserving ARAP, and our full method.

4.3.2 With and Without Shape-Preserving
ARAP

We evaluate the method without shape preservation
and observe shape distortion during animation. The
animated sketch shows distortion when local motion
increases, as topology is not preserved in the animated
sketch video. In Figure 6, the lizard body distorts dur-
ing the motion, compared to our method with shape-
preserving arap loss. Quantitatively (see Table 2), the
performance without shape preservation is compara-
ble, but our complete method gives better results.

S LIMITATIONS

Our method relies on a pre-trained text-to-video
prior (Zhu et al., 2023), which may struggle with cer-
tain types of motion, leading to errors that propagate
and manifest as noticeable artifacts in some cases of
the generated animations. Improvements could be
made by employing more advanced text-to-video pri-
ors capable of handling text-to-video alignment with
higher accuracy. Additionally, our approach faces
challenges in animating multi-object scenarios, par-
ticularly when functional relationships exist between
objects. Designed primarily for single-object anima-
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Input Sketch Ours

Text Prompt: “The two
dancers are passionately
dancing the Cha-Cha,
their bodies moving in
sync with the infectious
Latin rhythm.”

Text Prompt: “The biker
is pedaling, each leg
pumping up and down as
the wheels of the bicycle
spin rapidly, propelling
them forward.”

Figure 7: Failure cases.

tions, the method experiences a decline in quality
when dealing with such cases. For example, as shown
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Table 2: Ablation results—the quantitative evaluation on w/o LA regularization, w/o shape preserving ARAP, and our pro-

posed method.

Sketch-to-video consistency (1)

Text-to-video alignment (1)

W/o LA reg. 0.8306 0.1864
W/o Shape-preserving ARAP 0.8489 0.1891
Ours 0.8561 0.1893

in Figure 7, the human and the bicycle are incor-
rectly separated, resulting in unnatural motion during
the animation. Future work could address this lim-
itation by implementing object-specific translations
rather than relying on relative motion.

6 CONCLUSION

This work presents a method for generating animated
sketches from a combination of sketch inputs and text
prompts. To ensure temporal consistency in the an-
imations, we introduce a Length-Area (LA) regular-
izer, and to preserve the original shape’s topology,
we propose a shape-preserving ARAP loss. Our ap-
proach delivers superior performance both quantita-
tively and qualitatively, addressing challenges in an-
imation generation. However, the method has cer-
tain limitations, including its inability to handle multi-
object scenarios and its reliance on a pre-trained text-
to-video prior. Future work will focus on addressing
these limitations to further enhance the method’s ca-
pabilities.
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