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Abstract: Fully-transformer frameworks have gradually replaced traditional convolutional neural networks (CNNs) in
recent 3D human pose and shape estimation tasks, especially due to its attention mechanism that can capture
long-range and complex relationships between input tokens, surpassing CNN’s representation capabilities.
Recent attention designs have reduced the computational complexity of transformers in core computer vision
tasks like classification and segmentation, achieving extraordinary strong results. However, their potential
for more complex, higher-level tasks remains unexplored. For the first time, we propose to integrate the
group-mix attention mechanism to 3D human pose and shape estimation task. We combine token-to-token,
token-to-group, and group-to-group correlations, enabling a broader capture of human body part relationships
and making it promising for challenging scenarios like occlusion+blur. We believe this mix of tokens and
groups is well suited to our task, where we need to learn the relevance of various parts of the human body,
which are often not individual tokens, but larger in scope. We quantitatively and qualitatively validated our
method successfully reduces the parameter count by 97.3% (from 620M to 17M) and the FLOPs count by
96.1% (from 242.1G to 9.5G), with a performance gap of less than 3%.

1 INTRODUCTION

Estimating 3D human pose and shape (HPS) from a
monocular image is a process of inferring the three-
dimensional positions of a person’s joints (pose) as
well as their overall body shape. This task is highly
challenging considering frequently encountered prob-
lems such as the complexity of human articulation,
environmental occlusion, human self-occlusion, and
blurring in 2D images caused by rapid movement dur-
ing photography. 3D human pose and shape estima-
tion receives significant attention in the computer vi-
sion community and holds a crucial role in various
applications, including motion capture for film and
animation, virtual fashion shows and runway mod-
eling, remote rehabilitation, augmented reality (AR)
and virtual reality (VR). Existing approaches can be
divided into two types: optimization-based meth-
ods and deep learning-based methods. Optimization-
based approaches, such as Hybrik (Li et al., 2021),
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and (Zanfir et al., 2018), typically involve iteratively
fitting body models to 2D observations, e.g., silhou-
ettes, segmentations and 2D keypoints. The parame-
ters of statistical body model like SMPL (Bogo et al.,
2016) are optimized to minimize the error between
its 2D projection and these observations. However,
these optimization-based methods are highly sensitive
to the chosen initialization, leading to challenges in
fine-tuning algorithms. Early deep learning-based ap-
proaches such as HMR (Kanazawa et al., 2018), Py-
MAF (Zhang et al., 2021) and PARE (Kocabas et al.,
2021), leverage the nonlinear mapping capability of
neural networks to directly predict model parame-
ters from pixel-level information from the raw image,
and these pixel-level features lead to more realistic
and plausible predictions. More recently, researchers
have developed fully-transformer frameworks such as
METRO (Lin et al., 2021a), Adaptive Token (Xue
et al., 2022) and transcends the spatial limitations
of CNNs thanks to its attention mechanism, which
is adept at capturing intricate long-distance relation-
ships between input tokens. We observed that the ma-
jority of current 3D HPS estimation from images pre-
dominantly concentrates on feature fusion or struc-
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tural design. Given the substantial focus on reduc-
ing model parameters and computational complexity
in both Natural Language Processing (NLP) and foun-
dational Computer Vision (CV) tasks (e.g., classifica-
tion and segmentation), it is worth exploring the in-
tegration of state-of-the-art attention designs into our
higher-level HPS task.

In this work, for the first time, we propose to in-
tegrate group-mix attention (GMA) (Ge et al., 2023)
to fullly-transformer architecture in 3D HPS task. In
GMA, the author argues that Conventional attention
map, derived from queries and keys, merely can cap-
ture token-to-token correlations at a single granular-
ity, whereas self-attention should embrace a broader
mechanism to capture correlations between tokens
and groups, enhancing its representational power. We
strongly agree with this perspective, as in 3D human
pose and shape estimation we need to learn the rele-
vance of various parts of the human body, which are
often not individual tokens, but larger in scope, like
groups. By aggregating tokens into a group, we not
only capture the relationships between body parts on
a larger scope but also significantly reduce computa-
tional costs. This is because the grouped tokens serve
as a single new proxy, and the number of proxies is
much smaller than the original number of individual
tokens. Consequently, during the attention computa-
tion, we operate on these proxies rather than the indi-
vidual tokens, which reduces the token count in the at-
tention operation and lowers the computational load.
Traditional attention mechanisms also introduce at-
tention redundancy, as neighboring tokens often con-
tain similar or overlapping information. We address
this problem by grouping multiple tokens into a sin-
gle proxy, effectively reducing this redundancy, low-
ering computational costs, and enhancing the model’s
ability to capture broader relationships among human
body parts.

We validated our method on popular 3D HPS
datasets following HMR2.0 (Goel et al., 2023), re-
ducing the parameter count by 97.3% (from 620M to
17M) and the FLOPs count by 96.1% (from 242.1G
to 9.5G), with a performance gap of less than 3%.
Our model excels in occlusion+blur scenarios by cap-
turing broader correlations among human body parts.
For explainability, we import the attention visualiza-
tion for each branch of our architecture, and these vi-
sualizations reveal interesting insights into how the
model processes information. For instance, they can
show whether the model attends to global structures
or local details, providing clues about the model’s rea-
soning process.

2 RELATED WORKS

2.1 3D Human Pose and Shape
Estimation from Images

We focus on deep learning-based methods, which
have two main types of outputs: parametric out-
puts and non-parametric outputs. Most image-based
methods such as I2LMeshNet (Moon and Lee, 2020),
Pose2Mesh (Choi et al., 2020), ROMP (Song et al.,
2020) opt to directly regress the parameters of a para-
metric model. Since they leverage the nonlinear map-
ping capability of neural networks to directly predict
model parameters from pixel-level information from
the raw image, the networks only need to produce
a low-dimensional vector in the parametric model,
which includes body pose θ, shape β, and camera pa-
rameters π = (R, t) comprising global orientation R
and translation t. For non-parametric method, instead
of predicting template parameters, they directly out-
put body shapes in the form of voxels (Varol et al.,
2018) or positions of mesh vertices (Kolotouros et al.,
2019) in three-dimensional space. Given the paramet-
ric model’s strong a prior knowledge and its capability
to handle occlusion, blurring, and joint articulation is-
sues effectively, we choose the parametric output ap-
proach.

2.2 Transformer Based Methods

The prevailing transformer-based methods for 3D
human pose and shape estimation primarily fo-
cus on feature fusion and structural design, PMCE
(You et al., 2023) proposes a symmetric transformer
enabling joint-vertex interaction via cross-attention
and adaptive layer normalization (AdaLN). Mesh
graphormer (Lin et al., 2021b) combines graph con-
volutions and self-attentions in a transformer to model
both local and global 3D vertex-pose interactions.
Component aware transformer (Lin et al., 2023) intro-
duces feature-level upsampling-crop to enhance res-
olution for small body parts like hands and face.
All these methods have addressed specific challenges
in 3D human pose and shape estimation tasks and
achieved promising results. However, none have fo-
cused on the issue of reducing model parameters and
computational effort, which motivates our work.

2.3 Attention Designs for
Computational Reduction

The attention mechanism, as a key component of both
transformer and ViT architectures, involves comput-
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ing the attention scores between each pair of tokens,
resulting in a quadratic increase in computation as the
sequence length increases. This leads to significant
computational costs when modeling global informa-
tion. In foundational CV tasks, RMT (Fan et al.,
2024) achieves linear complexity by decomposing at-
tention through horizontal and vertical directions re-
spectively. CSWin Transformer (Dong et al., 2022)
achieves efficient attention by employing a cross-
shaped window mechanism along horizontal and ver-
tical stripes, balancing computational cost and inter-
action range. We strongly resonate with GMA (Ge
et al., 2023) that the reduction in computation should
be accompanied by a more sophisticated expressive
capability to capture the relationship between tokens
and groups, rather than solely a single token-to-token
correlation. Thus, we aggregate adjacent tokens into
one group to form a single proxy, enabling token-
to-group and group-to-group relationships, while di-
rectly reducing the computational load of the atten-
tion mechanism by processing fewer resources (i.e.,
proxy).

3 METHOD

In the following subsections, we offer an overview
of our methodology for estimating 3D human poses
from an input image. Next, we delve into the details
of group-mix attention.

3.1 Group-Mix Attention for HPS

The Group Mix Attention (GMA) mechanism en-
hances Vision Transformers (ViTs) by overcoming
the limitations of traditional self-attention: conven-
tional self-attention focuses solely on pairwise to-
ken interactions at a single granularity, resulting in
quadratic complexity and limited contextual under-
standing. GMA extends attention beyond token-
to-token interactions to include token-to-group and
group-to-group relationships, improving both effi-
ciency and representational power. This is accom-
plished by dividing the qkv entries into token groups
and creating proxies for these groups, which are then
utilized in the attention calculation process. In par-
ticular, we divides the conventional Query, Key, and
Value components into segments and employs group
aggregation operation to establish these proxies.

As a core component, the aggregation operation
is different for each segment, as illustrated in fig-
ure 1, we adopt depth-wise convolutions with var-
ious kernel sizes to implement aggregation. In or-
der to present the aggregation operation more clearly,

we can roughly divide the aggregation structure into
two parts: attention branch and no-attention branch.
We divide Q, K, and V into five parts represented
as x[0,1,2,3,4] and employ aggregators with kernel
sizes 1,3,5,7 to create group proxies for three of them.
Note that the branch x[0] is an identity mapping equiv-
alent to a traditional token-to-token mechanism. i.e.
attention branch is represented as x[0,1,2,3]. We
obtain different group proxies from four branches,
which will be used for calculating attention later. This
allows us to perform attention calculations on com-
binations of individual tokens and group proxies at
different levels of detail. For non-attention branch,
incorporating a non-attention branch can introduce
a form of architectural diversity that potentially in-
creases the robustness of the model.

Compared to traditional attention, by using aggre-
gation, we can get (1) Efficient group proxies: we
aggregates adjacent tokens into proxies using depth-
wise convolution, significantly reducing the number
of token pairs for attention calculation, and thus lower
computational costs. (2) Multi-level attention: By
managing attention across token-to-token, token-to-
group, and group-to-group levels, we can capture re-
lationships at multiple granularities without redun-
dant recalculations, streamlining the attention pro-
cess. Additionally, we visualize this aggregation pro-
cess during attention mechanism analysis, as it serves
as one of our motivations.

3.2 Overview

The overall architecture of our approach is illustrated
in figure 1 (A). Given an input image I ∈ RC×H×W ,
where C denotes the 3 channels for the input image
initially, and H and W represent height and width,
respectively. We apply a slicing operation to trans-
form the input into a shape of [3,256,192] . This
is followed by a convolutional stem block (figure 1
(B)) consisting of two convolution operations, which
changes the shape from [3,256,192] to [200,64,48].
Subsequently, through the patch embedding block
(figure 1 (C)) we get the input Ip ∈ RN×C, where
N = H ×W = 64 × 48 = 3072, denoting the num-
ber of tokens. This Ip serves as input to stage 0 in
the network structure when p equals 0. In contrast to
general attention mechanism in transformer (Vaswani
et al., 2017) or HMR2.0 (Goel et al., 2023) we adopt
GMA for higher representational capacity, where we
set group sizes to 1, 3, 5, and 7. A group size of 1 sig-
nifies the aggregation of individual tokens as general
attention. Unlike the previous GMFormer (Ge et al.,
2023), which has 4 stages, original ViT in HMR2.0
(Goel et al., 2023) maintains a consistent feature map
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Figure 1: Panel (A) presents an overview of our method, where we employ a fully-transformer framework: taking monocular
images as input, extracting image features using a 4-stage ViT backbone integrated with Group-Mix Attention, and then
passing the extracted features through a transformer decoder to regress human shape and pose parameters. Panels (B) and
(C) depict patch embedding process, representing the same operations in our backbone, as indicated by their matching colors.
Panel (D) (in orange) illustrates the detailed structure of the group-mix attention (GMA) mechanism.

resolution of H/14 ×W/14 throughout. In GM-
Former, the resolution varies: it is H/14×W/14 in
stage 3 and downsampled to H/28×W/28 in Stage
4. To align the backbone’s feature map resolution
with the decoder’s input, we adopt a 3-stage archi-
tecture for the GMA-based ViT, with a serial depth
of [2, 4, 12], following the first three stages of GM-
Former (Goel et al., 2023). The final output of the
GMA-based ViT, referred to as context, is shaped
as [192,320] and further transformed into [192,512].
We employ an 8-head attention mechanism, deriving
the key and value from the context with a shape of
[8,192,64]. The decoder initializes with a zero input
token of shape [1,1], which is subsequently passed
through a token embedding layer to obtain the de-
coder input of shape [1,1024]. This decoder input is
further transformed into query of shape [8,1,64]. We
process this query by cross-attending to the key and
value derived from context. A stack of 6 decoder lay-
ers is employed, concluding with a linear regression
step to predict human pose, shape, and camera param-
eters, respectively.

4 EXPERIMENTS

4.1 Datasets and Implementation
Details

4.1.1 Datesets

For the training, Human3.6M (Ionescu et al., 2014),
MPI-INF-3DHP (Mehta et al., 2017), COCO (Lin

et al., 2014), MPII (Andriluka et al., 2014), InstaVari-
ety (Kanazawa et al., 2019), AVA (Gu et al., 2018), AI
Challenger (Wu et al., 2017) are used, these datasets
include controlled indoor scenes and dynamic out-
door settings, catering to a variety of needs for our
human pose and shape estimation task. We use 3DPW
(Von Marcard et al., 2018), Human3.6M val split for
3D evaluation and COCO validation set, Posetrack
validation set (Andriluka et al., 2018) for 2D evalu-
ation following previous work (Goel et al., 2023).

4.1.2 Implementation Details

Our GMA-based ViT network adopts the pretraining
paradigm proposed by HMR2.0 (Goel et al., 2023).
Specifically, we adopt a training procedure similar to
ViTPose (Xu et al., 2022). First, our proposed model
is pretrained on an ImageNet-based classification task
to learn global feature priors. Subsequently, we fine-
tune the model on the COCO 2D keypoint dataset
for keypoint prediction. This fine-tuning process al-
lows the model to acquire prior knowledge of hu-
man pose estimation. Notably, our method achieves
pose estimation performance that is slightly superior
to ViTPose, as shown in table 1. In 3D HPS task,
the input image is resized to 256× 192 before being
fed into the GMA-based ViT encoder. In our experi-
ments, the main model is trained using 8 A100 GPUs
with a batch size of 512 (8 GPUs× 64). We employ
the AdamW optimizer with a learning rate of 5e−4,
β1 = 0.9, β2 = 0.999, and a weight decay of 0.1. Our
implementation is in PyTorch.
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Table 1: We compare the pose estimation performance of
our GMA-based ViT with ViTPose in terms of AP (Average
Precision) and AR (Average Recall).

Backbone Resolution AP AR
ViTPose 256×192 73.8 79.2

GMA-based (Ours) 256×192 74.9 80.0

4.2 Quantitative Comparison

In this section, we report quantitative comparison.
The comparison is conducted on 3DPW, Human3.6M
val split for 3D evaluation and COCO validation set,
Posetrack validation set for 2D evaluation, focusing
on 3D metrics such as Mean Per Joint Position Error
(MPJPE), Procrustes Aligned Mean Per Joint Position
Error (PA-MPJPE), 2D metrics such as Percentage of
Correct Keypoints (PCK), and Computational Com-
plexity.

Table 2: We report reconstructions evaluated in 3D: Recon-
struction errors (in mm) on the 3DPW dataset. Lower ↓ is
better. The top three colors range from dark to light.

Method MPJPE↓PA-MPJPE↓
(Kanazawa et al., 2019) 116.5 72.6

VIBE (Kocabas et al., 2020) 93.5 56.5
TCMR (Choi et al., 2021) 95.0 55.8

HMR (Kanazawa et al., 2018) 130.0 76.7
I2L-MeshNet (Moon and Lee, 2020) 100.0 60.0

PyMAF (Zhang et al., 2021) 92.8 58.9
Pose2Mesh (Choi et al., 2020) 89.5 56.3

ROPM (Song et al., 2020) 91.3 54.9
PIXIE (Feng et al., 2021) 91.0 61.3

Hand4Whole(Moon et al., 2022) 86.6 54.4
ProHMR (Kolotouros et al., 2021) - 59.8
OCHMR(Khirodkar et al., 2022) 89.7 58.3

HMR2.0 (Goel et al., 2023) 81.3 54.3
GMA-based (Ours) 80.8 54.6

Our GMA-based model significantly reduces pa-
rameter count by 97.3% (from 620M to 17M) and
FLOPs count by 96.1% (from 242.1G to 9.5G) com-
pared to previous baseline methods (Goel et al.,
2023), and achieving superior efficiency in both pa-
rameters and FLOPs over existing CNN-based and
Transformer-based approaches, see table 6.

While achieving the highest efficiency, our model
also delivers competitive results on the benchmark
datasets. On the 3DPW dataset (shown in table
2), compared to the baseline model, we reduced
MPJPE (lower ↓ is better) by 0.5mm, with PA-
MPJPE (lower ↓ is better) misses baseline model by
only 0.3mm, demonstrating highly competitive per-
formance. On the Human3.6M dataset (shown in ta-
ble 3), our MPJPE matches the baseline, while PA-
MPJPE misses baseline by 2mm. However, as shown

Table 3: We report reconstructions evaluated in 3D: Re-
construction errors (in mm) on the Human3.6M val split
dataset. Lower ↓ is better.

Method MPJPE↓PA-MPJPE↓
(Kanazawa et al., 2019) - 56.9

VIBE (Kocabas et al., 2020) 65.9 41.5
TCMR (Choi et al., 2021) 62.3 41.1

HMR (Kanazawa et al., 2018) 88.0 56.8
I2L-MeshNet (Moon and Lee, 2020) 55.7 41.1

PyMAF (Zhang et al., 2021) 57.7 40.5
Pose2Mesh (Choi et al., 2020) 64.9 46.3

ROPM (Song et al., 2020) - -
PARE (Kocabas et al., 2021) 76.8 50.6

ProHMR (Kolotouros et al., 2021) - 41.2
THUNDR (Zanfir et al., 2021) 55.0 39.8

Mesh Graphormer(Lin et al., 2021b) 51.2 34.5
METRO (Lin et al., 2021a) 54.0 36.7

PyMAF-X (Zhang et al., 2022) 54.2 37.2
VisDB (Yao et al., 2022) 51.0 34.5

VitualMarker (Ma et al., 2023) - 32.0
HMR2.0 (Goel et al., 2023) 50.0 32.4

GMA-based (Ours) 50.0 34.4

Table 4: We report reconstructions evaluated in 2D: PCK
scores of projected keypoints at different thresholds on the
COCO validation set. Higher ↑ is better.

Method PCK@0.05↑PCK@0.1↑
PyMAF (Zhang et al., 2021) 0.68 0.86
PARE (Kocabas et al., 2021) 0.72 0.91

CLIFF (Li et al., 2022) 0.63 0.88
PyMAF-X (Zhang et al., 2022) 0.79 0.93

HMR2.0 (Goel et al., 2023) 0.86 0.96
GMA-based (Ours) 0.83 0.95

Table 5: Performance comparison on 2D dataset: Posetrack
validation set. Higher ↑ is better.

Method PCK@0.05↑PCK@0.1↑
PyMAF (Zhang et al., 2021) 0.77 0.0.92
PARE (Kocabas et al., 2021) 0.79 0.93

CLIFF (Li et al., 2022) 0.75 0.92
PyMAF-X (Zhang et al., 2022) 0.85 0.95

HMR2.0 (Goel et al., 2023) 0.90 0.98
GMA-based(Ours) 0.87 0.96

in table 6, our model achieves these results with the
fewest parameters and FLOPs, highlighting its excep-
tional efficiency. We also validated our model on 2D
datasets: Both on the COCO validation set and Pose-
Track, we achieved the second-best results (see table
4 and table 5). While the top performance belongs
to the baseline SOTA model, our approach achieves a
remarkable reduction in parameter count (97.3%) and
FLOPs (96.1%), with only a slight performance gap
of less than 3%.
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Table 6: We compare the computional complexity
with papameters and FLOPs with both CNN-based and
Transformer-based methods. Input image size is 256 ×
192. We focus exclusively on the ViT-based backbones in
HMR2.0 (Goel et al., 2023), Expose (Choutas et al., 2020)
and OSX (Lin et al., 2023), excluding the influence from de-
coders. Similarly, for CNN-based methods, we compare the
CNN-based backbones, ensuring a fair and focused evalua-
tion of the backbone architectures.

Method Parameter (M)FLOPs (G)
Hand4Whole(Moon et al., 2022) 77.9 16.7

PIXIE (Feng et al., 2021) 192.9 34.3
ExPose (Choutas et al., 2020) 135.8 28.5

OXS (Lin et al., 2023) 102.9 25.3
PyMAF-X (Zhang et al., 2022) 205.9 35.5

HMR2.0 (Goel et al., 2023) 630 242.1
GMA-based (Ours) 17.0 9.5

4.3 Attention Mechanism Analysis

Given the input image, we then show the attention
maps of the outputs from the attention branches x[0]
to x[3] and non-attention branch in x[4], shown in fig-
ure 2. From x[1] 3× 3 attention branch to x[3] 7× 7
attention branch in early stage[0], our model gradu-
ally expands the focus to slightly larger areas, show-
ing more contiguous body parts, useful for captur-

Figure 2: Attention visualization. Visualization shows that
which part of the input data a model is focusing on. The
model focuses more on the pixels highlighted in red com-
pared to the other pixels. From x[0] to x[3], we show the
attention maps with varying group sizes in the attention
branches, specifically branches with group sizes of 3, 5, and
7, as well as the identity mapping branch in x[0]. In x[4], we
show the maps in the non-attention branch.

ing the relationship between adjacent keypoints and
helps in understanding the spatial configuration. x[4]
3×3 non-attention branch serves as a control, show-
ing how the model behaves without specific attention
mechanisms, which appears more dispersed and less
focused. In stage[1], almost every attention branch fo-
cuses on the human body. While we observe that the
x[1] 1× 1 branch emphasizes small regions, such as
the hands and face. However, the x[2] 5× 5 and x[3]
7× 7 branches focus more on the features of larger
areas, such as the entire leg region. In stage[2], the
x[0] 1×1 branch continues to focus on small regions,
such as features around the shoulder area, while the
x[1] 3 × 3, x[2] 5 × 5, and x[3] 7 × 7 branches cap-
ture features from increasingly larger areas: below the
knees for x[1], above the knees for x[2], and specifi-
cally around the knee region for x[3].

We observe that applying a self-attention mecha-
nism on pairwise tokens sometimes fails to focus on
the human in ealry stage, but rather attends to the
background. as shown in stage[0] of x[0]. In this sce-
nario, when computing correlations between groups,
using aggregations with kernal sizes of 3, 5, and 7
proves effective in centering on the human and at-
tends to larger regions of the body. Our findings indi-
cate that accurately estimating human pose and shape
requires considering all elements together to capture
broader characteristics. Emphasizing larger body re-
gions contributes to a better understanding of human
spatial configuration, which is essential for our needs.

4.4 Qualitative Result

We presents a qualitative comparison between our
GMA-based model and the baseline HMR 2.0 as
shown in figure 3. Our model demonstrates superior
robustness in handling blur+occlusion scenarios, ac-
curately reconstructing arm and leg poses where the
baseline often struggles. The occasional slight mis-
alignment in highly complex poses may stem from
joint ambiguity or overlapping limbs. In general blur
or occlusion scenarios, our model achieves compa-
rable performance to the baseline, which is why no
dashed boxes are highlighted in those cases. Overall,
the reduction in computational complexity does not
compromise the visual quality of the results.

5 CONCLUSION

In this paper, we introduce Group-Mix Attention
(GMA) into a fully-transformer framework for 3D
human pose and shape estimation, capturing multi-
level relationships—token-to-token, token-to-group,
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Figure 3: Qualitative comparison with baseline. For each example we show comparison in complex pose, blur, occusion, and
blur+occusion, We have highlighted the best reconstruction results and the failure cases. Our model generally outperforms
the baseline (Goel et al., 2023) in scenarios with occlusion+blur, accurately reconstructing arm and leg poses where the
baseline often struggles, particularly with elbows and knees. However, we observed that in highly complex poses, our model
occasionally shows slightly lower alignment compared to the baseline.

and group-to-group—enabling a detailed spatial rep-
resentation of body parts. Our method achieves high
efficiency while delivering competitive performance
on key metrics. We believe our model offers an op-
timal balance between computational efficiency and
model accuracy, making it effective and interpretable
for complex 3D pose-related tasks. Future work could
enhance attention visualization and token grouping
analysis to improve interpretability and reveal deeper
insights into spatial relationship modeling.
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