
Enhancing Many-Objective Particle Swarm Optimization with  
Island Model for Agricultural Optimization 

Chnini Samia1 a, Abadlia Houda2 b, Smairi Nadia3 c and Nasri Nejah1 d 

1SETIT Laboratory, Faculty of Sciences of Gafsa, University of Gafsa, Tunisia 
2Univ. Manouba, ENSI, LARIA UR22ES01, Campus Universitaire Manouba, Tunisia 

3Nadia Smairi, COSMOS Laboratory, National School of Computer Sciences, University of Manouba, Tunisia  

Keywords: Many-Objective Optimization, Distributed Optimization, Island Model. 

Abstract: With the growing complexity of agricultural systems and the need to optimize multiple conflicting objectives 
simultaneously, traditional optimization methods often struggle to find satisfactory solutions. In this work, 
we introduce a novel enhancement to the standard Multi Objectives Particle Swarm Optimization (MOPSO) 
algorithm that significantly improves its effectiveness in handling the diverse and dynamic objectives inherent 
in agricultural optimization problems.  we propose an improvement to the MOPSO algorithm by introducing 
an islanding technique to promote exploration and exploitation of the many-objective search space. The 
improved MOPSO algorithm, called I-MOPSO guide the search towards optimal and diverse solutions by 
dividing the search space into islands and facilitating information exchange between them. We put I-MOPSO 
into practice and tested it using a series of common many objective optimization algorithms. According to 
Experimental results show that I-MOPSO is capable of finding high-quality solutions on a variety of test 
problems, often outperforming the standard MOPSO algorithm and NSGAIII. 

1 INTRODUCTION 

Numerous many-objective optimization problems 
(MaOOPs) are encountered in many scientific and 
engineering study domains. In contemporary 
agriculture, the optimization of multiple conflicting 
objectives has become increasingly vital for 
sustainable and efficient agricultural practices. 
Farmers and agricultural planners are confronted with 
complex decision-making scenarios involving trade-
offs between maximizing crop yield, enhancing 
resource utilization efficiency, and ensuring 
environmental sustainability (Anosri et al., 2023; Liu, 
Shen, Yang, & Yang, 2013)  

When dealing with many-objective optimization 
problems (MaOPs), optimization issues with four or 
more competing objectives, certain traditional 
MOEAs struggle with diversity and convergence, 
despite their effectiveness for two or three-objective 
problems. 
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Nonetheless, a wide variety of research indicates 
that evolutionary multi-objective optimization 
(EMOO) algorithms are unable to address MaOO 
issue. (Rakshit, Chowdhury, Konar, & Nagar, 2020) 

The study presented is part of larger context of 
precision agriculture, an approach that integrates 
technological advances to optimize farming practices.  

The current metaheuristic algorithms still have a 
number of shortcomings despite the specific 
advances, including a slow convergence rate, a 
tendency to trap in local optima, the use of 
complicated operators, lengthy computation times. In 
particular, they encounter problems of premature 
convergence in the case of multimodal and high-
dimensional problems. Furthermore, current 
knowledge indicates that bio-inspired and meta-
heuristic algorithms do not always achieve the 
required performance levels. Their computation time 
can vary according to the complexity of the problem 
and the nature of the solution sought. So, some 
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researchers have explored architecture modifications, 
parameter adjustments and partial operator 
improvements to overcome these weaknesses. In 
conclusion, our study seeks to harness the potential of 
advanced technologies, in particular bio-inspired 
algorithms, to solve the complex challenges of 
modern agriculture (Maraveas et al., 2023). 

2 METHODOLOGY  

2.1 MOPSO 

Numerous research has shown the effectiveness of 
MOPSO in finding optimal solutions for a wide range 
of real-world problems. (Al-Hassan, Fayek, & 
Shaheen, 2006) 

In (Yang, Tang, Cai, Chen, & Hu, 2022) the 
authors propose a new cooperative framework with 
double elite selection and one-dimensional chaotic 
logistic perturbation (LCSDP), which leads to a 
considerable increase in convergence and diversity of 
solutions. Each class performs internal migrations to 
explore the search space and optimize the solutions in 
that class. thus, subpopulations exchange information 
and promote solution diversity. In this way, by using 
a diversity-based selection technique, the authors are 
able to prevent an early convergence to a single local 
optimum. By combining an island model with a local 
search method (Variable Neighborhood Search). In 
(Abadlia, Smairi, & Ghedira, 2017, 2018) the authors 
suggests an enhancement of the MOPSO algorithm 
that strikes a balance between search space 
exploration and exploitation. The approach uses local 
search to maximize local solutions on each island 
while combining dynamic exchanges and 
subpopulation movement (islands) to preserve 
variety.  

2.2 Island Model 

Island models divide the population into numerous 
subpopulations known as islands in order to 
parallelize the evolution process (Wu, Mallipeddi, & 
Suganthan, 2019). The subpopulations periodically 
exchange solutions between islands through a process 
called migration. This migration process plays a 
crucial role in maintaining the diversity of the islands 
(Wu et al., 2019; Delaram Yazdani et al., 2023). 

The result is a dynamic and hardy population that 
can react to fresh chances and challenges as a group, 
guaranteeing the long-term survival of the sub 
population (Khediri, Nasri, Khan, & Kachouri, 2021). 

The idea of changing population size has been applied 
in a number of evolutionary computation subfields, 
however its function varies depending on the context 
(Al-Hassan et al., 2006; Danial Yazdani, Omidvar, 
Branke, Nguyen, & Yao, 2019). 

Every particle is contained within a subswarm of 
an island, and the topology of the island determines 
its neighborhoods. Every subpopulation comprises an 
equal number of individuals and only optimizes a 
single objective (Yang et al., 2022)(Chnini, Smairi, & 
Nasri, 2024). 

2.3 The Structure and Planning of 
Islands Topology 

 
Figure 1: Island topology, a.ring topology, b.star topology, 
c. grid topology. 

The distribution of islands can be designed in many 
ways according to the topology chosen, such as ring, 
star or grid patterns. (J. Li & Gonsalves, 2022) 

Particles moving between islands usually takes 
place in a periodic manner and follows a set of rules 
of migration. This is done to promote diversity and 
reduce the chances of premature convergence. 
(Baltazar, 2015; Rakshit et al., 2020) (J. Li & 
Gonsalves, 2022; Delaram Yazdani et al., 2023). 

3 RELATED WORK 

The ability of MOPSO algorithm to explore Pareto 
fronts efficiently and enhance solution convergence 
has led to various adaptations and improvements 
tailored to the specific requirements of each 
application (Anosri et al., 2023). 

In (Jithendranath & Das, 2023), authors proposed 
a new variant of the MOPSO algorithm called NLTV-
MOPSO to optimize power flow in island-mode 
microgrids with photovoltaic generation.  

In (H. Li, Wang, Lan, Wu, & Zeng, 2023), the 
authors proposed a new dynamic multi-objective 
optimization algorithm based on non-inductive 
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transfer learning, called MSAS-DMOA (Multi-
Strategy Adaptive Selection-DMOA). This algorithm 
uses a combination of adaptive strategies to solve 
dynamic multi-objective optimization problems 
(DMOPs). By integrating transfer learning and the 
MOPSO algorithm, it improves convergence and 
solution diversity. 

A better MOPSO algorithm, known as f-MOPSO-
II, has been proposed in (Mansouri, Safavi, & Rezaei, 
2022) to optimize reservoir management in the 
context of climate change.  

In (Zarei, Azari, & Heidari, 2022) improved the 
performance of the NSGA-II and MOPSO algorithms 
for multi-objective optimization of urban water 
distribution networks by modifying the decision 
space. The results showed that modifying the decision 
space, with the integration of the penalty for 
exceeding authorized pressure limits. 

The authors in (Reddy & Kumar, 2009) have 
developed an algorithm called EM-MOPSO (Elitist 
Mutated Multi-Objective Particle Swarm 
Optimization) for integrated water resource 
management. Their approach combines elitist and 
mutation mechanisms to improve solution diversity 
and accelerate convergence. 

4 PROBLEM DEFINITION 

A detailed description of the objective functions used in our 
agricultural optimization study is presented. 

4.1 The Optimization Function for 
Allocating Water 

This objective function seeks to minimize the 
absolute difference between water supply (supplied 
by sources) and water demand for each site and at 
each time step. (Nouiri, Yitayew, Maßmann, & 
Tarhouni, 2015). 

𝑓஽ௌ = 𝑀𝑎𝑥 ቎ቮ ෍ 𝐹𝐷(𝑠𝑒, 𝑑, 𝑡ሻ − 𝐷(𝑑, 𝑡ሻ𝐷(𝑑, 𝑡ሻேௌா೘ೌೣ
௦௘ୀଵ ቮ቏  

𝑑 = 1, … , 𝑁𝐷௠௔௫ 𝑎𝑛𝑑 𝑇௦௧௔௥௧, … 𝑇௘௡ௗ         (1)

4.2 Target Function for Drawdown 
Reduction 

This function assesses how much the exploitation of 
an aquifer reduces relative drawdowns. (Nouiri, 
Yitayew, Maßmann, & Tarhouni, 2015). 𝐹஽(𝑠𝑒, 𝑑, 𝑡ሻ < 𝐹௠௔௫𝐷(𝑠𝑒, 𝑑ሻ ∀𝑠𝑒, ∀𝑑 𝑎𝑛𝑑 ∀𝑡 (2)

4.3 Objective Function with Penalty for 
Maximum Permitted Infraction for 
Pumping 

This function calculates the discrepancy between the 
maximum pumping rates that have been set and the 
water flows that the wells have extracted. 𝑓஽஽(𝑠ሻ = 𝑀𝑎𝑥(𝐷𝑊𝐷𝑊(𝑤, 𝑡ሻ × 𝑉𝑀𝑎𝑥𝐷𝐷(𝑤ሻ൫𝐻𝑖(𝑤ሻ − 𝐵𝑂𝑇𝑀(𝑤ሻ൯ × 1(𝑤ሻ  𝑤 = 1, … , 𝑁௔௪ 𝑎𝑛𝑑 𝑡 = 𝑇௦௧௔௥௧, … 𝑇௘௡ௗ 

(3)

4.4 Objective Function with Penalty for 
Exceeding Maximum Acceptable 
Drawdown 

The percentage of the maximum allowable drawdown 
that is exceeded determines the penalty term. These 
solutions become less appealing if the drawdown over 
the threshold because the penalty term raises the 
value of the objective function. 

The problem of water distribution is a complex 
and many objective problem requires efficient 
solutions to satisfy often contradictory requirements 
(Nouiri, Yitayew, Maßmann, & Tarhouni, 2015). 𝑉𝑀𝑎𝑥𝐷𝐷(𝑤ሻ = 𝑀𝑎𝑥(𝐷𝑊𝐷𝑊(𝑤, 𝑡ሻ𝐷𝐷௠௔௫(𝑤ሻ , 1 𝑤 = 1, … 𝑁௔௪ 𝑎𝑛𝑑 𝑡 = 𝑇௦௧௔௥௧, 𝑇௘௡ௗ     

(4)

5 APPROACH 

The MOPSO algorithm has proven its effectiveness 
in reesolving multi-objective problems. However, 
like many optimization algorithms, it has certain 
limitations, most notably premature convergence and 
low diversity in the solutions proposed. In order to 
improve the quality of solutions and avoid local 
minima, several adjustments and improvements have 
been proposed in this work. These seek to improve 
diversity, optimize exploration, and dynamically 
modify the algorithm's settings. 

Our optimization strategy incorporates the 
previously mentioned objective functions through the 
utilization of the MOPSO algorithm, which has been 
augmented by the island model. In this study, we have 
selected the ring and star topologies to examine how 
their interaction dynamics influence solution 
convergence and diversity.  

The I-MOPSO algorithm begins by dividing the 
global population into several sub-populations, called 
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islands. Each island contains a number of particles, 
representing potential solutions to the optimization 
problem. Each algorithm had a population size of 100 
particles or solutions, and the maximum number of 
iterations was set at 600.The particles on each island 
are randomly initialized in the space of decision 
variables, and their velocity is set randomly. Each 
particle has a memory of the best solution it has 
encountered so far, called bestPosition, as well as an 
archive of non-dominated solutions.Over the course 
of iterations, particles update their position in the 
search space. This update is influenced by three 
components : inertia (which retains part of the 
previous velocity), a cognitive term (influenced by 
the best individual position reached by the particle), 
and a social term (influenced by a leader selected 
from the island's archive of non-dominated 
solutions). Periodically, information is exchanged 
between islands (each 20 iterations). For I-MOPSO, 
the star topology is used to connect the islands. 
Islands share their best solutions to date. A percentage 
of the best particles on each island migrate to the other 
islands. This process promotes solution diversity by 
allowing different sub-populations to exchange 
information. After each exchange phase, the overall 
best solution is updated, taking into account the best 
solutions from all the islands.This island approach 
enables a more complete exploration of the search 
space. Each island explores a part of this space 
independently, thus increasing the diversity of 
solutions explored.  

5.1 Experiments and Metrics 

In order to assess the effectiveness of the proposed I-
MOPSO method in a star topology, we created a 
series of tests to investigate how important 
parameters affect the caliber of the results. The 
number of islands, the number of particles per island 
and the migration rate are the relevant parameters. We 
compare the performance of our I-MOPSO model, 
NSGA-III and MOPSO in a many-objective 
optimization problem, specifically applied to water 
distribution management. Finding out how well these 
algorithms perform in terms of diversity of generated 
solutions and convergence to the Pareto front is the 
aim. We changed the number of islands (3, 5, 10), the 
number of particles per island (100, 200, 300) and the 
migrate rates (0.1,0.5,0.8) in order to do this. These 
factors have a significant impact on the quality of the 
solutions and the rate of convergence of population-
based algorithms. 
 

• Performance Metrics 
Two indicators are used in this paper to assess the 
algorithm.On the one hand, the method is evaluated 
using the coverage metric  known as the  C metric is 
a performance indicator used to assess the degree of 
coverage between two solution sets produced during 
optimization. (Selvam, Vinod Kumar, & Siripuram, 
2017). This quality indicator can be assessed in the 
manner described below. 𝐶 = |ሼ𝑦 ∈ 𝑃஻ ∃ 𝑋 ∈ 𝑃஺; 𝑥 > 𝑦ሽ||𝑃஻|  (5)

If 𝐶(𝑃஺ , 𝑃஻ሻ < 𝐶(𝑃஻ , 𝑃஺ሻ, the pareto front PB have 
the better solutions than PA (Selvam, Vinod 
Kumar, & Siripuram, 2017) 

In the other hand, hypervolume (J. Li & 
Gonsalves, 2022; Delaram Yazdani et al., 2023) is 
also algorithm’s evaluation indication. Additionally, 
it provides a through indication for assessing 
distribution and convergence. A higher hypervolume 
reflects better diversity of solutions. 

5.2 Results and Discussion 

The tables 1, 2 and 3 displays the C metric findings 
for comparisons between I-MOPSO, NSGA-III and 
MOPSO as a function of the following algorithm 
parameters: population size, migration rate, and 
number of islands. The C measure shows the 
proportion of solutions on one front that are 
dominated or covered by those on another front.  

Regarding the comparison of MOPSO and I-
MOPSO, the latter appears to encompass a significant 
portion of the MOPSO front. As soon as the 
population size reaches 200 or more, I-MOPSO gains 
complete dominance over NSGA-III when the 
number of islands is set to 3.  
Furthermore, NSGA-III is totally overpowered by 
MOPSO in these configurations, suggesting that 
NSGA-III performs worse in these 
circumstances.According to the C metric values, I- 
MOPSO continuously outperforms NSGA-III across 
all configurations, attaining 100% coverage for a 
number of parameter combinations. This indicates 
that I-MOPSO frequently outperforms MOPSO, 
especially when the number of islands and population 
values are high. 
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Table 1: Performance of the algorithms using C metric (MigRate=0.1).

Nu
mI   

Mig
Rate 

P
op 

C(IMOPSO,
NSGAIII)       

C(NSGAIII,
IMOPSO)

C(MOPSO,
NSGAIII)

C(NSGAIII,
MOPSO)

C(MOPSO,
IMOPSO  

C(IMOPSO
,MOPSO

3 0.1 
100 100 0 100 0 86,96 99,58 
200 100 0 100 0 99,17 97,19 
300 100 0,30 100 0 84,05 98,79 

5 0.1 
100 100 0,36 100 0 88,85 99,61 
200 100 0 100 0 86,98 97,17 
300 100 0 100 0 95,3 95,85 

10 0.1 
100 100 0 100 0 80,65 99,59 
200 100 0 100 0 97,07 98,72 
300 100 0 100 0 97,59 99,29 

Table 2: Performance of the algorithms using C metric (MigRate=0.5). 

Num
I     

MigRa
te  Pop C(IMOP,N

SGAIII)       
C(NSGAIII,I
-MOPS)

C(MOPSO,
NSGAIII)

C(NSGAIII,M
OPSO)

C(MOPSO,I
-MOPSO 

C(IMOPSO,
MOPSO)

3 0.5 
100 100 0 100 1,73 96,54 91,47 
200 100 0 100 0 93,74 96,45
300 100 0 100 0 67,22 99,97

5 0.5 
100 100 0 100 0 99,94 65,65
200 100 0 100 0,36 84,75 99,27
300 100 0 100 1,02 86,77 99,33

10 0.5 
100 100 0 100 0 94,81 99,47
200 100 0 100 0 96,89 98,63
300 100 0 100 0 74,13 99,91

Table 3: Performance of the algorithms using C metric (MigRate=0.8). 

Num
I     

MigRa
te  Pop C(IMOP,N

SGAIII)       
C(NSGAIII,I
-MOPS)

C(MOPSO,N
SGAIII)

C(NSGAIII,
MOPSO)

C(MOPSO,I
-MOPSO 

C(IMOPSO,
MOPSO)

3 0.8 
100 100 0 100 0 90,05 97,44 
200 100 0 100 0 90,46 98,99
300 100 0 100 0 99,84 64,25

5 0.8 
100 100 0 100 0 99,31 80,33
200 100 0 100 0,56 99,66 93,68
300 100 0 100 1,21 87,76 99,66

10 0.8 
100 100 0 100 0 98,86 91,32
200 100 0 100 0 96,25 99,41
300 100 0 100 0 98,51 96,06

5.2.1 Impact of the Number of Islands: 
Number of Islands  
(Numislands = 3, 5, 10) 

The number of islands is a determining factor in the 
effectiveness of I-MOPSO. With only three islands, 
I-MOPSO dominates NSGA-III but shows partial 
coverage over MOPSO. However, I-MOPSO’s 
dominance over MOPSO increases with the number 
of particles, indicating that even with a small number 
of islands, I-MOPSO can be competitive if the 
population size is sufficient. With 10 islands, I-
MOPSO reaches its maximum performance, 

completely dominating NSGA-III and MOPSO in 
several configurations. Then, a large number of 
islands gave I-MOPSO increased capacity to 
effectively explore the Pareto front.  

5.2.2 Impact of Number of Particles: 
(Particles = 100, 200, 300) 

With a population of 100, I-MOPSO manages to 
dominate NSGA-III but shows partial coverage of 
MOPSO's Pareto front, particularly when the number 
of islands is minimal. By increasing the population to 
200, I-MOPSO improves its coverage, achieving 
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complete domination of NSGA-III and superior 
coverage than MOPSO. This suggests that a 
population of 200 is sufficient to enable I-MOPSO to 
generate a high-quality Pareto front in moderate 
migration and island number configurations. 

5.2.3 Impact of Migration Rate 
(MigrationRate=0.1, 0.5,0.8) 

With a migration rate of 0.8, I-MOPSO achieves high 
dominance results, indicating that the frequent 
exchange of individuals between islands improves the 
diffusion of optimal solutions. This high migration 
rate promotes rapid convergence towards the Pareto 
front while maintaining a diversity of solutions, 
which is essential for the quality of the front 
generated. A lower migration rate might retain more 
local diversity, but could slow convergence. 

A migration rate of 0.8 appears to be the best 
setting for I-MOPSO overall, providing for a balance 
between Pareto front exploration and exploitation.  

Analyzing the findings reveals that I-
MOPSO performs the best in most configurations, 
particularly when paired with a big population (200–
300), a migration rate of 0.8, and a high number of 
islands.  

In order to evaluate the I-MOPSO algorithm's 
performance, we measured the mean hypervolume 
(Mean Hypervolume) and the standard deviation of 
hypervolume (Std Hypervolume) throughout the last 
50 iterations of each execution. Comparative analysis 
of the obtained hypervolumes provides essential 
information on how parameters affect the algorithm's 
ability to efficiently search the space of solutions while 
maintaining a steady convergence towards the Pareto 
front. These findings make it possible to determine the 
best configurations for many objective problems in 
order to maximize solution diversity and convergence. 

 
Figure 2: Comparison of hypervolume evolution for over 
iterations. 

The figure 2 illustrates differences in the stability 
and efficiency of algorithms for maximizing 
hypervolume over the course of iterations. I-MOPSO 
seems to indicate higher variability, with multiple 
notable peaks, which would suggest a more intensive 
search for solutions. Reflecting a more gradual 
convergence, NSGA-III exhibits fewer fluctuation and 
is comparatively stable. In terms of hypervolume 
values, MOPSO exhibits regular fluctuations but is still 
generally less effective than I-MOPSO. 

By obtaining a greater mean hypervolume, I-
MOPSO continuously surpasses NSGA-III and  
MOPSO, demonstrating its superior exploration and 
exploitation capabilities. whereas NSGA- 
III consistently achieves the lowest mean 
hypervolume. I-MOPSO maintains its edge in the 
majority of cases (table 4,5 and 6), whereas NSGA-
III becomes more competitive as migration rates rise. 

Both I-MOPSO and MOPSO's mean 
hypervolume improves with population size, with I-
MOPSO maintaining a slight advantage. 
NSGAIII continues to be the least competitive in 
mean hypervolume and stability, despite a minor 
improvement with bigger populations. 

Table 4: Means ans stds Hypervolume values throughout the last 50 iterations (MigRate=0.1). 

NumI   MigRate Pop  
I-MOPSO NSGAIII MOPSO 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

3 0.1 
100 1.223e+00 8.147e-01 6.029e-01 1.124e-01 1.109e+00 6.185e-01
200 1.256e+00 9.117e-01 6.321e-01 1.324e-01 1.171e+00 7.330e-01
300 2.106e+00 1.768e+00 6.290e-01 1.263e-01 1.554e+0 1.020e+00

5 0.1 
100 1.117e+00 7.743e-01 6.270e-01 1.081e-01 9.974e-01 6.410e-01
200 1.501e+00 9.620e-01 6.473e-01 1.251e-01 1.472e+00 1.016e+00
300 1.725e+00 1.419e+00 6.188e-01 1.208e-01 1.494e+00 1.087e+00

10 0.1 
100 1.313e+00 6.939e-01 6.403e-01 1.447e-01 1.062e+00 8.615e-01
200 1.867e+00 1.356e+00 6.125e-01 1.274e-01 1.400e+00 7.621e-01
300 2.393e+00 1.770e+00 5.913e-01 1.070e-01 1.459e+00 9.708e-01
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Table 5: Means ans stds Hypervolume values throughout the last 50 iterations(MigRate=0.5). 
 

NumI MigRate Pop  
I-MOPSO NSGAIII MOPSO 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

3 0.5 
100 1.163e+00 5.071e-01 6.250e-01 1.186e-01 1.210e+00 6.833e-01
200 1.781e+00 1.349e+00 6.120e-01 1.000e-01 1.411e+00 8.732e-01
300 1.772e+00 1.299e+00 5.953e-01 1.246e-01 1.578e+00 1.023e+00

5 0.5 
100 9.974e-01 6.986e-01 6.438e-01 1.461e-01 9.559e-01 4.154e-01
200 1.745e+00 1.281e+00 6.104e-01 1.206e-01 1.476e+00 9.575e-01
300 1.781e+00 1.191e+00 6.105e-01 1.117e-01 1.511e+00 1.002e+00

10 0.5 
100 1.290e+00 8.168e-01 6.376e-01 1.225e-01 1.149e+00 5.246e-01
200 2.269e+00 1.862e+00 6.040e-01 1.153e-01 1.140e+00 5.567e-01
300 2.353e+00 1.957e+00 6.174e-01 1.264e-01 1.315e+00 8.303e-01

 

Table 6: Means ans stds Hypervolume values throughout the last 50 iterations (MigRate=0.8). 
 

NumI   MigRate Pop  
I-MOPSO NSGAIII MOPSO 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

Mean 
Hypervolume 

Std 
Hypervolume 

3 0.8 
100 1.092e+00 5.180e-01 6.267e-01 1.150e-01 1.254e+00 7.429e-01
200 1.314e+00 8.915e-01 6.463e-01 1.200e-01 1.255e+00 9.626e-01
300 1.975e+00 1.700e+00 6.481e-01 1.320e-01 1.889e+00 1.404e+00

5 0.8 
100 1.175e+00 7.390e-01 6.455e-01 1.243e-01 1.133e+00 6.587e-01
200 1.789e+00 1.741e+00 6.707e-01 1.688e-01 1.420e+00 8.965e-01
300 1.635e+00 1.001e+00 6.097e-01 1.261e-01 1.428e+00 9.532e-01

10 0.8 
100 1.393e+00 9.896e-01 6.240e-01 1.340e-01 9.884e-01 4.672e-01
200 1.501e+00 1.061e+00 6.146e-01 1.033e-01 1.601e+00 1.135e+00
300 2.760e+00 1.763e+00 6.066e-01 1.202e-01 1.345e+00 1.097e+00

 
6 CONCLUSIONS 

In this study, we have proposed an innovative many-
objective approach based on the Island model to solve 
the water distribution optimization problem, taking 
into account several conflicting objectives. The 
distinguishing feature of this method is its 
decomposition of the problem into several 
subpopulations spread over islands, enabling more 
efficient exploration of the solution space by 
combining local search and migration strategies 
between islands. 

Our experiments on agricultural optimization 
problems show that this method can effectively find 
many high-quality solutions. When compared to other 
evolutionary algorithms, it does better at solving 
agricultural problems with many objectives. This study 
improves optimization techniques for agriculture and 
opens up new avenues for future research in this area. 
Finally, our analysis shows that the adjustment of 
parameters such as the number of islands and particles 
plays an essential role in improving the performance of 
our model. The proposed approach thus offers a robust 

and flexible method, which can be adapted to a wide 
variety of many-objective problems in the field of 
resource optimization.  
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