
Parallel Axis Split Tasks for Bounding Volume Construction with OpenMP®

Gustaf Waldemarson1,2 a and Michael Doggett1 b

1Department of Computer Science, Lund University, Sweden
2Arm, Lund, Sweden

Keywords: Ray-Tracing, Bounding Volume Hierarchy, OpenMP, Parallelization.

Abstract: Many algorithms in computer graphics make use of acceleration structures such as Bounding Volume Hier-
archies (BVHs) to speed up performance critical tasks, such as collision detection or ray-tracing. However,
while the typical algorithms for constructing BVHs are relatively simple, actually implementing them for
performance critical systems is still challenging. Further, to construct them as quickly as possible, it is also
desirable to parallelize the process. To that end, parallelization APIs such as OpenMP® can be leveraged to
greatly simplify this matter. However, BVH construction is not a trivially parallelizable problem. Thus, in
this paper we propose a method of using OpenMP® tasking to further parallelize the spatial splitting algorithm
and thus improve construction performance. We evaluate the proposed way and compare it with other ways
of using OpenMP®, finding that some of these work well to improve the construction time by between 3 and
5 times on an 8-core machine with a minimal amount of work and negligible quality reduction of the final
BVH.

1 INTRODUCTION

Bounding volume hierarchies are arguably one
of the most important data-structures currently in
widespread use in the field of computer graphics, and
it is often prominently used for ray-tracing during im-
age synthesis. However, it is also used for various
other tasks, such as collision detection or occlusion
based audio mixing (Fowler et al., 2014). As such,
it is often important to be able to create these hier-
archies with as high quality as possible, thus ensur-
ing that when the structure is used to accelerate some
task, that query operation is as fast as possible.

Typically, the recursive algorithms used to build
these structures are relatively simple, but rewrit-
ing them for maximum throughput in a parallelized
context can be challenging. Thus, modern ver-
sions of parallelization APIs such as OpenACC or
OpenMP® (Dagum and Menon, 1998) can be lever-
aged to trial various paralellization strategies before
committing to a particular approach, or in other cases,
be used directly in the original algorithm. However,
there are often multiple ways to apply these APIs. As
such, finding the most performant way to use them
can be a beneficial endeavor.
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2 RELATED WORK

Over the years, many variations of acceleration struc-
tures have been invented, notable examples being oc-
trees (Meagher, 1980), kd-trees (Bentley, 1975) and
bounding volume hierarchies, or BVHs. Lately how-
ever, BVHs have become the more popular category
for four main reasons: They have a predictable mem-
ory footprint, queries are robust and efficient, they
easily adapt to dynamic geometry, and most crucially:
The build itself is scalable; allowing users to either
quickly create a hierarchy with possibly slow queries,
or, to spend more time upfront to yield potentially
faster ones (Meister et al., 2021).

Thus, as it is assumed that construction of an op-
timal BVH is an NP-hard problem (Karras, 2012),
numerous heuristics and algorithms have been devel-
oped for generating these hierarchies, and depending
on the target application, one of the above approaches
are typically preferred:
1. For interactive applications, such as real-time ray-

tracing, fast builders running on the GPU are pre-
dominantly used, such as the LBVH (Lauterbach
et al., 2009), HLBVH (Pantaleoni and Luebke,
2010), and more recently, the H-PLOC algorithm
by (Benthin et al., 2024).

2. For offline ray-tracing applications, such as those
described by (Pharr, 2018), slower builders, such
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the SBVH (Stich et al., 2009) or PRBVH (Meister
and Bittner, 2018) may be preferable, where any
improvement in the quality of the BVH is often re-
covered during the actual ray-tracing phase (Aila
and Laine, 2009).

No matter the application however, it is always desir-
able to be able to create these structures as quickly as
possible. To that end, these build processes are usu-
ally parallelized as much as possible. Fast builders
typically do this by relaxing some spatial constraints
to expose more parallelism, making them amenable
to fast GPU implementations. In contrast, qual-
ity focused builders typically create their hierarchies
with a CPU implementation, as that often provides
a bit more flexibility when analyzing the input ge-
ometry (Ganestam et al., 2015; Wald et al., 2014).
However, many of these algorithms build the hierar-
chy from the top-down, thus initially suffering from
poor scaling in the first few splitting tasks. To that
end, a number of parallelization schemes have been
proposed to extract additional parallelism from these
early splits (Wald, 2007; Wald, 2012; Fuetterling
et al., 2016). These approaches typically attempt to
split up the computations over all primitives, thus pro-
viding a large amount of potential parallelism, but re-
quires a number of complex synchronization mecha-
nisms to function. In contrast, in this paper we pro-
pose an arguably simpler approach by only paralleliz-
ing over the split axes, thus losing some opportunities
for parallelization, but in turn only requiring a rela-
tively simple synchronization method.

3 BACKGROUND

This section provides relevant background informa-
tion about the SBVH algorithm (Stich et al., 2009) tar-
geted for parallelization with OpenMP® in this work.

3.1 Spatial Split BVH

While BVHs have many great qualities, they can per-
form poorly in scenes with many overlapping prim-
itives, as is often the case with triangle meshes. In
those cases, Kd-trees (Bentley, 1975) are typically
able to achieve higher ray-tracing performance. To
that end, (Stich et al., 2009) developed a variation
of the BVH construction algorithm that drew inspi-
ration from the spatial splits used by kd-trees, thus
creating one of the highest performing triangle based
BVH algorithms in terms of query-time, which is typ-
ically referred to as the SBVH algorithm. However,
while the query-times are fast, its major drawback is
the construction time: It is typically the slowest BVH
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Figure 1: Graphical visualization of the typical OpenMP®

usage for splitting up tasks into parallel regions.

size_t n = 8;
#pragma omp parallel for num_threads(n)
for (size_t i = 0; i < height; ++i)
{

for (size_t j = 0; j < width; ++j)
{

im[i][j] = ray_trace(i, j);
}

}

Figure 2: A simple for-loop parallelized using an
OpenMP® compiler directive.

construction algorithm in widespread use. Further-
more, this algorithm is challenging to parallelize, as
part of its operation depend on being able to dynam-
ically create new references to triangles with subdi-
vided bounding boxes.

This particular aspect was improved by (Ganes-
tam and Doggett, 2016), who noted that only around
10 % extra references are needed in most scenes.
Thus, by pre-allocating memory for these and dis-
tributing them in each split task, parallelization gets
a bit easier. Thus, in this paper we further simplify
this matter, showing how the SBVH algorithm can be
easily parallelized with the help of OpenMP®.

3.2 OpenACC and OpenMP®

OpenACC and OpenMP® are APIs for performing nu-
merous types of multi-processing tasks in a conve-
nient and portable fashion in the C, C++ and Fortran
programming languages through the use of compiler
directives and library routines. Both of these are man-
aged by non-profit organizations: The OpenMP Ar-
chitecture Review Board, and the OpenACC organi-
zation, jointly governed by all major compiler and
hardware developers with collaboration from their
user communities.

As illustrated in figure 1, these APIs provide a rel-
atively simple way of successively parallelizing por-
tions of a program, and the simplest application of
it is typically through the use of the parallel for
compiler pragma from the OpenMP® API, as shown
in figure 2.

OpenMP® 3.0 and onwards also enables the man-
ual creation of parallel tasks that may be submitted to
a thread-pool, a process typically referred to as task-
ing. Further, tasks may even recursively create more
tasks, as seen in figure 3, thus enabling complex algo-
rithms to be parallelized in simple fashion (Ayguadé
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int fibonacci(int n)
{

int fn1, fn2;
if (n == 0 || n == 1)

return n;
#pragma omp task shared(fn1)

fn1 = fibonacci(n - 1);
#pragma omp task shared(fn2)

fn2 = fibonacci(n - 2);
#pragma omp taskwait

return fn1 + fn2;
}

Figure 3: A more complex parallelization example to
demonstrate the use of OpenMP® tasking. Note that, while
illustrative, this particular example would likely not benefit
much from parallelization as the overhead of creating tasks
likely outweigh the cost of the work itself.

et al., 2009). However, some care is still needed to
ensure that each task is able to perform a suitable
amount of work to account for the overhead of its cre-
ation. Beyond this, OpenMP® also provide directives
for automatically converting the iterations of loops to
tasks with the taskloop directive and even perform-
ing guided SIMD vectorization of loops.

In contrast, OpenACC was originally intended for
offloading tasks to discrete accelerator devices, thus
providing a simple interface to program coprocessors
such as GPUs. However, modern versions of this API
can also parallelize on the host CPU when required.
Additionally, as of OpenMP® 4.0, similar device of-
floading capabilities are available for that API as well,
even if the performance of these features may be a bit
worse (Usha et al., 2020).

Still, applying device offloading correctly often
requires significantly more effort to ensure that the
data can be transferred correctly to the coprocessor,
often forcing a major restructuring of the original al-
gorithms. As such, these types of approaches are out
of scope for this paper.

4 ALGORITHM

This section provides a high-level overview of how
the SBVH algorithm recursively constructs a hierar-
chy from a collection of primitive references, i.e., a
set of triangles with potentially subdivided bounding
boxes. Our contribution for parallelizing this algo-
rithm with OpenMP® is also described here.

4.1 SBVH Splitting Tasks

In algorithm 1 each SBVH splitting task can recur-
sively create two more work-packets up to the point
that it decides to create a leaf-node instead, in a fash-

Fn build(references, bounds):
if create leaf? then

return;
end
ob j← object split(references, bounds);
spt← spatial split(references, bounds);
if spt.cost ≤ ob j.cost then

perform spatial split;
else

perform object split;
end

(1) build(left-references, left-bounds);
(2) build(right-references, right-bounds);

EndFn

Algorithm 1: High-level overview of the SBVH con-
struction algorithm. The functions object split and
spatial split are described in algorithms 2 and 3 respec-
tively. Further, lines that may be parallelized with tasks are
marked with (1) and (2) as is described in section 4.2.

Fn object split(references, bounds):
(3) foreach axis do

sort references;
foreach reference do

estimate split cost;
end

end
return optimal split cost and location;

EndFn
Algorithm 2: High level overview of the BVH object split
estimation: Find the appropriate splitting axis and segment
the objects to the left and right side of it. Note that the
axis-loop on line (3) may be parallelized as described in
section 4.2.

Fn spatial split(references, bounds):
(4) foreach axis do

foreach reference do
chop references into bins;
split references on bin boundaries;

end
find axis splitting plane;

end
return optimal split axis and plane;

EndFn

Algorithm 3: High level overview of the BVH spatial split
estimation: Find the appropriate splitting axis and plane,
and segment or create references to the left and right side of
it. Note that the axis-loop on line (4) may be parallelized as
described in section 4.2.

ion that is very similar to the OpenMP® tasking exam-
ple in figure 3. This also means that the algorithm is
not able to run at full capacity until enough tasks have
been spawned to keep all available threads occupied.
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To that end, we propose that further subdividing the
splitting task itself may expose more beneficial paral-
lelism during the early stages of the SBVH construc-
tion. E.g., by creating tasks for searching each split-
ting plane along each of the primary axes marked in
algorithms 2 and 3, and visualized in figure 4. Further,
this may allow more expensive splitting heuristics to
be evaluated each time, as more of them can be tried
in parallel. E.g., more bins can be used for the binned
surface area heuristic (SAH) by (Wald, 2007), or a
different, more expensive heuristics such as the origi-
nal SAH variant proposed by (Goldsmith and Salmon,
1987; MacDonald and Booth, 1990) can be used. This
could theoretically improve the BVH quality, while
still providing some balance between the amount of
work being done and the time it takes to execute each
task.

4.2 Variants

In order to evaluate the potential SBVH build
time improvement from multithreading with various
OpenMP® constructs, we apply one or more source
level patches to a base implementation of the algo-
rithm; effectively inserting the necessary compiler di-
rectives (i.e., #pragma omp ...) at the correct loca-
tions. In total, we evaluate five different variants of
this approach:

NoOpenMP. Reference implementation without any
OpenMP® directives.

TaskingOnly. Parallel tasks are created using the
#pragma omp task directive for each recursive
call to build in algorithm 1, similar to the tasking
example in figure 3.

Tasks. Same as TaskingOnly, but create additional
tasks for each iteration of the object and spatial
axis search loops, i.e., for the marked loops in al-
gorithms 2 and 3 and ensure that these tasks are
synchronized afterwards using the #pragma omp
taskwait directive.

Taskloop. Same as Tasks, but use the #pragma omp
taskloop directive instead, thus avoiding the
need for explicit task synchronization through the
#pragma omp taskwait directive.

ParallelFor. Same as TaskingOnly, but use nested
parallelism for each object and spatial axis search
using the #pragma omp parallel for direc-
tive, similar to the example in figure 2.

Further, we also investigate only parallelizing the ob-
ject and spatial split search tasks, i.e., we do not par-
allelize the recursive splits in algorithm 1. However,
these variants are not expected to scale beyond three

available threads as there are only three axes to search
in each task. To that end, we test the following addi-
tional variants:

NoTaskingFor. Use the #pragma omp parallel
for directive to search each axis, as in the Par-
allelFor variant.

NoTaskingTasks. Same as NoTaskingFor, but use
OpenMP® task constructs as in the Tasks variant.

NoTaskingTaskloop. Same as NoTaskingTasks, but
use the #pragma omp taskloop directive instead,
same as for the Taskloop variant.

5 RESULTS

All BVH construction algorithms and their varia-
tions ran on an Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz built by the gcc (gcc (Ubuntu 11.4.0-
1ubuntu1 22.04) 11.4.0) and clang (Ubuntu clang
version 14.0.0-1ubuntu1.1) compilers.

Each scene was rendered with an OpenCL based
ray-tracer running on an NVIDIA GeForce RTX 3060
GPU using an ambient occlusion algorithm, example
renders of which can be seen in figure 5.

The results depicting how these variants scale
with additional threads can be found in figures 6 and
7 for gcc and clang respectively, clearly demon-
strating that OpenMP® is able to provide a sub-
stantial improvement to the BVH construction time:
Up to 5 times faster than the single thread result
on our 8-core setup. Thus, proving that the addi-
tional task parallelization of the object and spatial axis
searches proposed in section 4.1 is able to provide
some additional benefits. However, there is only a
non-significant difference between using plain tasks
(Tasks and NoTaskingTasks) or using the taskloop
directive (Taskloop and NoTaskingTaskloop), as such,
performance-wise, it does not matter which of these
are actually used, but the taskloop directive is usu-
ally a bit easier to read at a glance and does not require
explicit synchronization, and may thus be preferred.

6 DISCUSSION

While figures 6 and 7 demonstrate a notable improve-
ment, it is also evident that the scaling is logarith-
mic: Each additional thread is able to increase the
performance, but each subsequent gain is always di-
minished. In fact, as can be seen in figure 8, on a
heavily multi-threaded machine scaling almost com-
pletely stops between 10 and 20 threads. This can be
explained by viewing this type of BVH construction
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Figure 4: Graphical representation of the task creation process during the construction of an SBVH as well as the further
parallelizable regions of a single BVH splitting task.

Sponza: 393 meshes, 262267 triangles. Hairball: 2 meshes, 2880002 triangles. Bistro: 1 mesh, 3847246 triangles.

San-Miguel: 287 meshes, 9980699 triangles. Buddah: 1 mesh, 1087720 triangles. Powerplant: 21 meshes, 12759246 triangles.

Figure 5: The scenes investigated during this work along with their mesh and triangle counts.

Figure 6: Visualization of how each variant scales with more available threads in the gcc implementation.

as a divide-and-conquer problem: At first, each addi-
tional thread greatly reduces the amount of necessary
work, but eventually each task becomes too small to
benefit from being processed in parallel, thus stopping
the scaling.

Furthermore, depending on how the SBVH algo-
rithm is implemented, some synchronization, or crit-
ical regions may be necessary. As an example, in
our implementation, one such region is used to allo-
cate indices for each of the BVH nodes. Thus, one
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Figure 7: Visualization of how each variant scales with more available threads in the clang implementation.

Figure 8: Scaling results for the Powerplant scene on
a heavily multithreaded machine (Intel(R) Xeon(R) w7-
3465X).

side effect of the parallelization is that the ordering of
the nodes is no longer guaranteed to be determinis-
tic. This is particularly noticeable for the Tasks and
Taskloop variants that may interleave axis searches
between the main build tasks. While subtle, this effect
is evident in figure 9 where it manifests as a minor in-
crease in the average and variation of the rendering
time due to cache-misses from the increased memory
fragmentation of the BVH nodes.

Further, it appears that there is a moderate gain
from only parallelizing the object and spatial split
axis searches, with a minor lead for the NoTask-
ingFor variant, which is likely explained by the
parallel for directive being more mature and that

Figure 9: Rendering time using the constructed BVH by
each of the OpenMP constructs using a OpenCL based ray-
tracer.

it has less overhead than a task queue implementa-
tion. Thus, this method may be beneficial if there
is a strict requirement on a deterministic BVH hier-
archy. As expected, none of these approaches scale
beyond three threads, and should in fact be locked to
that level, as the more threads cause a significant per-
formance overhead.

Additionally, in figure 7, we can see that when us-
ing the clang compiler, it works well to create nested
parallel regions, i.e., when tasks and parallel for
are used inside one-another, as is done in the Paral-
lelFor variant. In contrast, the gcc implementations
in figure 6 experience dramatic regressions by several
times the baseline for this variant. This is most likely
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a consequence of the thread-cache not being used for
nested parallel regions1. Thus, given that the perfor-
mance is in-line with the Tasks and Taskloop variants,
it may be prudent to avoid nested regions, unless the
targeted compiler is known beforehand.

Finally, note that using OpenMP® is not strictly
beneficial: If the code is serialized, i.e., only a sin-
gle thread is being used, effectively all variants have
a small but noteworthy penalty to the construction
times.

7 FUTURE WORK

Object Cost

Spatial Cost

Split Leaves? Recurse

X

Y

Z

X

Y

Z

Figure 10: A potentially improved SBVH construction task:
The object and spatial cost evaluation are theoretically in-
dependent and may thus run in parallel. Further, by deter-
mining if a child node would become a leaf before recursing
can greatly reduce the number of necessary tasks.

Implementation-wise, there are a number of things
that could be improved: Currently, the additional
tasks for the axis searches are beneficial, particularly
when each split contains a lot of primitives. However,
smaller tasks are typically less useful, but OpenMP®

also has support for conditionally merging or spawn-
ing tasks. Thus, finding an appropriate metric that can
be used for tuning the task creation process may be a
beneficial endeavor. Moreover, as seen in figure 10, it
should be possible to restructure the splitting task it-
self to expose more opportunities for parallelism and
thus improve the performance even further. Addi-
tionally, this work only considered binary BVHs, but
research is currently being done on hierarchies with
higher branching factors. While building such struc-
tures is more complicated, the additional branching
may provide even more opportunities to parallelize
the construction.

As noted in section 3.2, modern implementations
of OpenMP® and OpenACC have support for of-
floading computations to coprocessors using e.g., the
target directive. This was not investigated as a part
of this work due to the additional complexity of map-
ping the input data-structures to the devices. Fur-
thermore, as can be seen in figure 8, this particular
algorithm does not appear to scale beyond 30 or 40
threads, thus it is questionable whether it would ben-
efit from a massively parallel architecture.

1https://gcc.gnu.org/bugzilla/show bug.cgi?id=108494

8 CONCLUSIONS

OpenMP® is a very convenient way to drastically re-
duce the amount of necessary code required to im-
plement many complex algorithms, such as the con-
struction of bounding volume hierarchies (BVHs). In
this paper we have both devised a new way of fur-
ther parallelizing the splitting tasks of the so-called
Spatial Split BVH algorithm, and tested numerous
ways of applying OpenMP® on it. Thus showing
that OpenMP® tasking can be effectively leveraged
to keep the construction algorithms simple while still
improving the build time by up to 5 times on a modern
8-core consumer workstation.
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