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Abstract: Recent advances in prompting techniques and multi-agent systems for Large Language Models (LLMs) have
produced increasingly complex approaches. However, we lack a framework for characterizing and comparing
prompting techniques or understanding their relationship to multi-agent LLM systems. This position paper
introduces and explains the concepts of linear contexts (a single, continuous sequence of interactions) and
non-linear contexts (branching or multi-path) in LLM systems. These concepts enable the development of
an agent-centric projection of prompting techniques, a framework that can reveal deep connections between
prompting strategies and multi-agent systems. We propose three conjectures based on this framework: (1)
results from non-linear prompting techniques can predict outcomes in equivalent multi-agent systems, (2)
multi-agent system architectures can be replicated through single-LLM prompting techniques that simulate
equivalent interaction patterns, and (3) these equivalences suggest novel approaches for generating synthetic
training data. We argue that this perspective enables systematic cross-pollination of research findings between
prompting and multi-agent domains, while providing new directions for improving both the design and training
of future LLM systems.

1 INTRODUCTION

Large Language Models (LLMs) are a recent devel-
opment in Generative Artificial Intelligence that can
mimic human-like behavior (Park et al., 2023), es-
pecially in conversations (Cai et al., 2023). LLMs
have also shown a kind of general intelligence (Rad-
ford et al., 2019; Yogatama et al., 2019). Central
to harnessing the capabilities of LLMs is the con-
cept of prompting, a strategy that significantly influ-
ences task performance by instructing LLMs in spe-
cific ways (Chen et al., 2023).

HYPOTHESIS AND GOALS: In this position pa-
per, we hypothesize that viewing prompting tech-
niques through a proposed agent-centric lens can help
uncover structural equivalences between single-LLM
prompting and multi-agent approaches. Our goal is
to (1) introduce a unified framework for comparing
these techniques, (2) develop and examine conjec-
tures about their relationship, and (3) outline how
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this perspective can inform the generation of synthetic
training data.

Consider a simple math problem. When we di-
rectly prompt an LLM, “What is 13 × 27?”, we might
receive a single numeric answer. However, when we
ask, “Let’s solve this step by step: what is 13 × 27?”,
we explicitly prompt for intermediate reasoning plus
the final result (Kojima et al., 2023; Yu et al., 2023).
While both prompts seek the same final answer, are
they both still the same problem if one has a different
“correct” answer?

Another approach to improving end-task perfor-
mance when using LLMs has been to incorporate
“reasoning” (OpenAI, 2024). The model outputs ar-
bitrarily long “reasoning traces” before responding to
the prompts. These traces are sequences of natural
language statements like “Let’s first understand the
input and output formats”. OpenAI o1 is a single large
language model or agent.

If we simply added role identifiers before each
statement - “Analyst: Let’s first understand the input
and output formats” - would it suddenly qualify as a
multi-agent system?
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What about approaches where an LLM analyzes
problems from multiple perspectives in separate con-
versations before merging all perspectives together in
another conversation (Saha et al., 2023)? Is each con-
versation a different “agent” performing a subtask? Is
this a multi-agent system?

We argue that these questions can be systemat-
ically addressed by viewing prompting techniques
through an agent-centric lens. By developing the
concepts of linear and non-linear contexts in LLM
systems, we shed light on possible connections be-
tween single-LLM prompting techniques and multi-
agent systems. We discuss implications for the future
of LLM systems, from enabling cross-pollination of
research findings between prompting techniques and
multi-agent systems to suggesting novel approaches
for generating synthetic training data that could en-
hance capabilities in both domains.

To develop this argument, we first establish foun-
dational definitions and examine previous work on
prompting techniques and task-oriented LLM systems
(§ 2). Building on these foundations, we present our
framework for agent-centric projection and explore its
implications for both system design and training (§ 3).
We conclude by discussing the larger impact of this
perspective on future research in LLM systems (§ 4).

2 DEFINITIONS AND PRIOR
WORK

A task-oriented LLM system is a Large Language
Model (LLM) system configured to perform specific
tasks, rather than open-ended conversations1. Such
systems have shown promise in complex tasks such as
software development (Hong et al., 2023), where the
system must manage multiple rounds of interaction,
maintain context throughout iterations, and often col-
laborate with other systems or agents to complete the
task.

We begin by defining a minimal task-oriented
LLM system (§ 2.1), with particular attention to how
such systems manage context across multiple interac-
tions. We then examine prompting techniques (§ 2.2),
focusing on how different approaches to prompting
lead to different patterns of context creation and man-
agement. These patterns form the basis for our novel
concepts of linear and non-linear contexts, which en-
able an agent-centric projection of prompting tech-
niques.

1In (Xi et al., 2023), the authors describe task-oriented
deployments of LLM-based agents, which we generalize to
simply task-oriented LLM systems

2.1 Minimal Task-Oriented LLM
System

A minimal task-oriented LLM system is a minimal
LLM system that can be instructed to solve tasks.
Thus, we start by defining a minimal LLM system.

Large Language Models are auto-regressive mod-
els that accept input tokens and use them as history
(often referred to as context), to compute probabili-
ties of all tokens in their vocabulary as the next token.
We can sample from this probability distribution us-
ing a sampling/decoding algorithm to generate text.
This process is then repeated until the LLM predicts
a special token, or a special sequence of tokens, that
marks the end of the text (Feuerriegel et al., 2023)2.

We call this a bare-bones LLM system (see Fig-
ure 1) as it contains the minimal components needed
for text generation, without additional components to
help with context management. Every time an LLM
is prompted with context Cn, it generates a response
Rn that would need to be stored in context Cn+1 for the
next prompt, assuming multiple rounds of instruction
and response generation are required.

Figure 1: A bare-bones LLM system.

For systems oriented towards solving even mod-
erately complex tasks, context management becomes
quickly cumbersome. For example, in (Saha et al.,
2023), the authors describe a system in which m
branches are created from a LLM response to a

2The Generative AI system description in (Feuerriegel
et al., 2023) includes any UI components as part of the Gen-
erative AI system, and we use a modified definition that
only includes the language model and sampling/decoding
procedure here.
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prompt Cn, producing a set of m responses r =
{Rn1 ,Rn2 , . . . ,Rnm}. Then, they take all of r, and
transform it into a prompt Cn+1, in which they instruct
the LLM to merge all responses in r into a single re-
sponse Rn+1, which potentially needs to be stored in
context Cn+2 for the next prompt. A similarly com-
plex system is described in (Ning et al., 2023), and
we will examine more examples in our discussion of
prompting techniques.

If we define a minimal LLM system without de-
scribing how context is managed, it would be too dif-
ficult to compare different systems and apply learn-
ings from one researched system to another. Because
of this, we include a description of a minimal con-
text management subsystem within our definition of a
minimal task-oriented LLM system.

Specifically, we include a context store CS. Ini-
tially, the context store CS is empty and the first time
an LLM is provided with context C1 to generate R1,
both the prompt and the response are permanently ap-
pended to CS. For all future requests, the LLM is first
provided with a sliding window of content from CS as
context, to which it appends the prompt Cn to gener-
ate Rn. Once the response Rn is generated, both the
prompt and the response are permanently appended
to CS. The model then closely matches messaging:
the context store CS acts as chat history, users send
messages, and the LLM responds.

Figure 2: A minimal LLM system that includes a context
store.

We discuss the implications of this composition of
a minimal LLM system in § 3.2.

2.2 Prompting Techniques

Prompting refers to the act of constructing and pro-
viding input text (a prompt) to an LLM. In the con-
text of task-oriented LLM systems, prompt engineer-
ing can be defined as iteratively creating and adapting
a prompt for a given LLM and task pair.

The way an LLM is prompted significantly affects
task performance (Nori et al., 2023; Savage et al.,
2023). There are many surprising results in this area,
such as letting an LLM know that solving a task “is

very important to my career” can improve task per-
formance (Li et al., 2023).

Such results can be explained by research such
as (Hendel et al., 2023), which shows that in-context
learning creates task vectors or representations within
the LLM that increase the probability of correct task
completion. Other research has shown that it is possi-
ble to “search” for prompts that are more likely to lead
to success, analogous to finding task vectors that are
more likely to lead to success. In (Zou et al., 2023),
the authors were able to procedurally find adversar-
ial prefixes, which, when added to prompts, result in
LLMs breaking their alignment and engaging in un-
safe behavior.

All of these are examples of modifying the prompt
without changing the actual task/problem definition,
to make the successful completion of the intended
task more likely. However, researchers are prone to
modifying the prompts in a manner that changes the
task, rather than modifying the prompts in a manner
that improves task performance.

For example, when using Chain-of-Thought
prompting (Wei et al., 2023)3, or when asking LLMs
to think step-by-step (Kojima et al., 2023) – the task
meaningfully changes. It goes from instructing LLMs
to give me an answer now to asking it to first plan out
a solution, and then share an answer. This is a differ-
ent task being solved, even though the final deliver-
able (the answer) is the same. It should be a given that
LLMs have different capabilities for different tasks.

This is not to say that we shouldn’t instead solve
equivalent tasks that LLMs are more suitable to, but
that it is problematic to have prompt modification
(that leaves instructions/task definition intact) to in-
struction modification in the same category. Thus, we
make the distinction between prompt engineering and
instruction engineering:

• PROMPT ENGINEERING: The act of modify-
ing the prompt without changing the actual
task/problem definition or adding relevant knowl-
edge/information, to make the successful comple-
tion of the intended task more likely. We restrict
the addition of relevant knowledge/information to
LLM augmentation to avoid an overlap.

• INSTRUCTION ENGINEERING: The act of mod-
ifying the prompt in a manner that changes the
task/problem to an equivalent task/problem that
the LLMs are more suitable for, such that the final
deliverable (the answer) is the same.

3As described in the paper, one is to also provide in-
context examples, but this is unnecessary, as shown in (Ko-
jima et al., 2023)
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In (Besta et al., 2023), the authors describe a tax-
onomy of techniques to improve reliability in task-
oriented text generation:

• INPUT-OUTPUT. The LLM is directly being in-
structed to respond with the result of a prompted
task.

• INPUT-OUTPUT WITH ADDITIONAL STEPS. The
LLM is instructed to perform additional steps be-
fore or after generating a result for a prompted
task, such as reflecting on its response and refin-
ing it, or creating a plan (Madaan et al., 2023; Wei
et al., 2023).

• SINGLE INPUT-MANY OUTPUT.4 The LLM is
passed the same input prompt multiple times, and
elaborate mechanisms are used to choose the final
answer (Wang et al., 2022).

• INPUT WITH NON-LINEAR INTERMEDIARY
STEPS.5 LLM branches into multiple paths
(through variations of an input prompt), gener-
ating multiple responses as additional steps, and
then merges them into a single response (Saha
et al., 2023; Ning et al., 2023).

• TREE OF THOUGHTS. An elaborate method de-
scribed in (Yao et al., 2023), where many interme-
diate thought branches are explored, backtracked,
and pruned until a final answer is settled on.

• GRAPH OF THOUGHTS. An elaborate method de-
scribed in (Besta et al., 2023), where intermediate
thoughts are modeled as a connected graph, and
the LLM traverses the graph to settle on a final
answer.

The way these techniques manage context dif-
fers significantly, from linear interactions to branch-
ing paths of thought. In the next section, we intro-
duce the concepts of Linear and Non-Linear contexts
to formalize these differences, and show how this
formalization enables an Agent-centric projection of
prompting techniques with potential implications for
synthetic training data generation.

3 FRAMEWORK AND
CONJECTURES

In research and practice, LLM systems exhibit differ-
ent patterns in how they manage context and generate
responses. We argue that these patterns can be under-
stood through a theoretical framework that connects

4Referred to as Multiple CoTs in (Besta et al., 2023)
5This is not described in (Besta et al., 2023)

prompting techniques with multi-agent systems, re-
vealing opportunities for improving both system de-
sign and training. In this section, we first introduce a
formal categorization of context management patterns
in LLM systems (§ 3.1). Building on this foundation,
we develop an agent-centric projection of prompt-
ing techniques (§ 3.2) that reveals deep connections
between seemingly disparate areas. Finally, we ex-
plore how this unified perspective suggests novel ap-
proaches to synthetic training data generation (§ 3.3),
with potentially far-reaching implications for improv-
ing LLM capabilities.

3.1 Linear and Non-Linear Context in
LLM Systems

To formally characterize how task-oriented LLM sys-
tems manage context and generate responses, we de-
velop a framework based on message flow patterns.
Building on the minimal task-oriented LLM system
concept (§ 2.1), we analyze how the context store
maintains sequences of messages M = {(Cn,Rn)}N

n=1,
where each response Rn is generated using all previ-
ous context-response pairs.

Using this foundation, we propose a method for
classifying prompting techniques and their resulting
task-oriented LLM systems into two categories based
on their context management patterns.

PROMPTING TECHNIQUES WITH LINEAR CON-
TEXT – where there exists exactly one continuous se-
quence of messages M = {(Cn,Rn)}N

n=1 that contains
all generated messages and input contexts in the cor-
rect chronological order.

All Input-Output and Input-Output with additional
steps techniques (as described in § 2.2) can be classi-
fied as having a linear context, as they all involve a
single continuous sequence of messages.

For example, consider Self-Refine (Madaan et al.,
2023), where each response is iteratively refined using
all previous context-response pairs until a stop condi-
tion is met.

PROMPTING TECHNIQUES WITH NON-LINEAR
CONTEXT – where there cannot always be one con-
tinuous sequence of messages that contains all input
context and generated messages in the correct chrono-
logical order. Instead, there can be multiple branches
of conversation possible, each with its own continu-
ous sequence of messages {M1,M2, . . . ,Mn}.

All single input-many output, input with non-
linear intermediary steps, tree of thought, and graph
of thought techniques, (as described in § 2.2) can be
classified as having a non-linear context, as they all
potentially involve sequences of conversation M.

For example, consider a simplified version of
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Figure 3: An example of a prompting technique with non-
linear context.

BRANCH-SOLVE-MERGE, first described in (Saha
et al., 2023), and as visualized in Figure 3. The fig-
ure depicts a task-oriented LLM system that helps the
user (the human) make decisions. First, the human
first instructs the system to make a decision. The sys-
tem uses the instructions to create an input context
for an LLM (context C1) and uses it to generate a re-
sponse R1. R1 is then used to create two new prompts
(via an algorithmic transformation depicted in the fig-
ure as 7→

1 ), one in which the LLM is tasked with re-
flecting on the drawbacks of this decision (in context
C2) and another where the LLM is tasked with reflect-
ing on the benefits of this decision (in context C3).
Finally, another prompt is created where both reflec-
tions (responses R2 and R3) are considered (using an-
other algorithmic transformation 7→

2 ) to create a new
prompt (context C4) which is used to generate a final
decision within response R4. R4 is then reported to
the user as the final decision.

As long as any task-oriented system is using
LLMs, it will always have one or more continuous
streams of messages M as described. This means
that all task-oriented LLM systems and all prompting
techniques can be classified as having either linear or
non-linear contexts.

This fundamental dichotomy between linear and
non-linear contexts provides a powerful lens through
which to analyze LLM systems. As we will show in
the next section, it reveals surprising connections be-
tween prompting techniques and multi-agent systems
that can inform both system design and training ap-
proaches.

3.2 Agent-Centric Projection of
Prompting Techniques

In the previous section (§ 3.1), we classify all prompt-
ing techniques and all resulting task-oriented LLM
systems they bore into either having a linear or non-
linear context. This decision and the overall definition
have the following implications:

• Research on techniques for reliable, task-oriented
text generation that involve linear context can be
modeled as a kind of two-agent system (the hu-
man instructing the LLM being the second agent,
as we also see in (Xi et al., 2023; Wu et al., 2023)).

• Research on techniques for reliable, task-oriented
text generation that involves non-linear context
can be modeled to be a kind of multi-agent sys-
tem, where each “branch” of conversation M can
be considered to have occurred with a different
agent.

Figure 4: The prompting technique from Figure 3 is mod-
eled as a multi-agent system.

For example, In Figure 4, we show how the
prompting technique from Figure 3 can be mod-
eled as a multi-agent system. Each continuous
linear sequence of messages M1 = {C1,R1}, M2 =
{C2,R2}, M3 = {C3,R3}, and M4 = {C4,R4} can
be considered to have occurred with a different
agent. Using this approach, we can model any
prompting technique with non-linear context as a
multi-agent system.
It would also help to note that each continuous
sequence of messages Mn in Figure 4 is essen-
tially a minimal task-oriented LLM system, as de-
scribed in § 2.1. This means that we can substitute
each such minimal system with a more compli-
cated task-oriented system if needed.
In Figure 5, we show a more realistic example
of a multi-agent system, designed to replicate the
behavior of the prompting technique in Figure 3.
Here, the major changes are that the agents com-
municate with each other using tools, meaning all
communication is bidirectional (say, if an agent
wants to ask a clarifying question) and that the
algorithmic transformations 7→

1 and 7→
2 are now

present each as a tool available to Agents A1 and
A4 respectively. This system may behave exactly
like the system in Figure 3 most of the time, but
may prove to be more resilient to unexpected cir-
cumstances, as each component is more “intelli-
gent”.
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Figure 5: A more realistic projection of the prompting tech-
nique from Figure 3 as a multi-agent system.

As all prompting techniques can be projected to such
multi-agent systems, we can conjecture that:

Conjecture 1. Results from prompting techniques in-
volving non-linear context can predict similar results
from multi-agent systems designed to replicate the
same behavior.

This projection or view allows us to generalize all
such techniques and apply learnings from one tech-
nique to another, and even learnings from multi-agent
systems. For example, if new LLM-based multi-agent
collaboration research shows that “A Process Super-
vising Agent is all you Need”, then we can imme-
diately apply that result to the prompting technique
described in BRANCH-SOLVE-MERGE from (Saha
et al., 2023) – by viewing the “process supervising
agent” work via a non-linear context lens as illustrated
in Figure 3, and then adding the BRANCH-SOLVE-
MERGE “nodes and connections”.

But it does not end there – because of how flex-
ible natural language is, all non-linear contexts can
also be projected to linear contexts. For example, say
four agents engage in adversarial interaction as de-
scribed in (Xi et al., 2023) (§ 4.2.2), where they argue
about a decision until they reach a consensus. The
benefit of this interaction paradigm is that each agent
can be instructed to look at the problem from various
perspectives.

This interaction can be elicited within a lin-
ear context, where the LLM is prompted with the
same decision-making problem but with additional
instructions to share a turn-by-turn dialogue where
four individuals argue about the decision until they
reach a consensus. This has been demonstrated
in (Wang et al., 2024), where a single LLM in-
stance is prompted to produce a transcript of mul-
tiple personas (agents) interacting with each other
to solve a task. The authors call this “Solo Per-

formance Prompting”. Their results show that this
technique—essentially converting non-linear context
(multiple agents collaborating) into linear context (a
dialogue transcript)—shows performance gains com-
parable to those achieved by multi-agent systems on
other tasks ((Wang et al., 2024) does not directly com-
pare to multi-agent systems).

In (Dong et al., 2024) the authors describe a sim-
ilar approach minus the “dialogue”, where multiple
roles (analyst, coder, tester, etc.) are simulated by a
single LLM with linear context (Dong et al., 2024)
(§2.2, Eq. 1). The paper shows how this approach
outperforms baseline and advanced prompting tech-
niques (such as CoT).

Conjecture 2. Performance improvements achieved
through multi-agent system architectures can be at
least partially replicated using single-LLM prompt-
ing techniques6 that simulate equivalent multi-agent
interaction patterns within a linear context.

3.3 Implications for Synthetic Training
Data

Recent work has demonstrated that synthetic data
can effectively enhance model capabilities in various
applications, from structured information extraction
(Josifoski et al., 2023) to visual question answering
(Su et al., 2024).

A key insight stems from an apparent paradox
in LLM systems: while all LLMs are trained on
“linear context” (sequential text), research and prac-
tice show that “non-linear context” approaches—such
as advanced prompting techniques and multi-agent
interactions—are of significant interest and demon-
strate superior task performance (Saha et al., 2023;
Ning et al., 2023; Wei et al., 2023; Hong et al., 2023;
Wu et al., 2023).

The previous subsection presents an argument for
how techniques involving non-linear context can be
projected to an equivalent technique utilizing linear
context. This can have profound implications when
you consider that all LLMs are trained on “linear
context”, i.e., trained on continuous sequences of
text. If intermediate steps from advanced prompting
techniques like BRANCH-SOLVE-MERGE are pro-
jected to linear contexts similar to Solo Performance
Prompting (Wang et al., 2024) and Self-Collaboration
(Dong et al., 2024) – then they can also be used as
synthetic training data.

Interestingly, a recent approach called Stream of

6prompting techniques such as Solo Performance
Prompting (Wang et al., 2024) and Self-Collaboration
(Dong et al., 2024)
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Search (SoS) (Gandhi et al., 2024) further under-
scores our perspective on using non-linear or subop-
timal reasoning traces for training. SoS demonstrates
that when LLMs are trained on branching, backtrack-
ing search trajectories—serialized into a linear textual
format—they acquire stronger problem-solving capa-
bilities and can even discover new strategies. These
findings support Conjecture 3 below, illustrating how
self-generated, “messy” intermediate steps can serve
as valuable synthetic data to improve the performance
of an LLM.

Conjecture 3. Synthetically generated “self-
collaboration” transcripts of successful task-solving
attempts—whether derived from non-linear prompt-
ing techniques or multi-agent collaboration—when
used as training data, improve LLM performance in
both multi-agent systems and advanced prompting
techniques targeting similar tasks.

This idea can be extended further by using ex-
isting problems and their real-world deliverables,
both intermediate and final, and generating simu-
lated interactions between collaborators as synthetic
data. Consider taking the requirements of a com-
pleted software project on GitHub, along with pull
requests/issue commentary, commit messages, com-
mit diffs in chronological order, and using LLMs
to fabricate communication between collaborators –
wouldn’t the resulting manuscript, perhaps made to
resemble a theater play script, be effective training
data?

Thus, our proposed framework of linear and non-
linear context (§ 3.1) along with the agent-centric pro-
jection of prompting techniques (§ 3.2) presents a lens
that could lead to significant advancements in syn-
thetic data generation.

4 CONCLUSIONS

4.1 Core Arguments

• PROMPT ENGINEERING AND INSTRUCTION
ENGINEERING: Clearly differentiating the adjust-
ment of the prompt without altering the actual task
or the definition of the problem (prompt engineer-
ing) and modifying the task to an equivalent task7

more suitable for LLM systems (instruction en-
gineering) is essential to precise communication
and understanding of research in this area.

• LINEAR AND NON-LINEAR CONTEXT: Prompt-
ing techniques and resulting task-oriented LLM

7one with the same final deliverable

systems can be classified into having either linear
or non-linear context.

• AGENT-CENTRIC PROJECTION OF PROMPTING
TECHNIQUES: We demonstrate approaches that
allow prompting techniques with non-linear con-
text to be understood as multi-agent systems and
vice versa. This projection provides a frame-
work for analyzing, comparing, and improving
both prompting techniques and multi-agent sys-
tem architectures.

4.2 Implications for Future Research

• CROSS-POLLINATION IN PROMPTING AND
LLM-BASED MULTI-AGENT SYSTEMS: The
agent-centric projection of prompting techniques
may allow us to cross-pollinate research findings
in these areas.

• SYNTHETIC TRAINING DATA GENERATION:
Our core arguments suggest two novel approaches
for generating high-quality synthetic training data
for LLMs: (1) converting successful non-linear
prompting traces into linear training data and (2)
augmenting real-world task traces with synthetic
agent collaboration artifacts. These approaches
could provide structured, high-quality data specif-
ically suited for training LLMs in multi-agent and
complex reasoning tasks.

• REAL-WORLD APPLICATIONS AND ETHICAL
CONSIDERATIONS: As these systems become
more capable, their deployment in real-world sce-
narios becomes more feasible. With this comes
the need for rigorous ethical considerations, es-
pecially concerning autonomy, decision making,
and human-AI interaction.

By establishing the fundamental distinction be-
tween linear and non-linear contexts in prompting
techniques, and using this to develop an agent-centric
projection that reveals deep connections between
prompting techniques and multi-agent systems. This
framework leads to three key conjectures about the re-
lationship between prompting techniques and multi-
agent systems, suggesting that results from one do-
main can inform the other. Furthermore, we demon-
strate how this unified perspective opens up novel ap-
proaches to synthetic training data generation, both
through the conversion of non-linear prompting traces
and through the augmentation of real-world task
traces. Our position highlights the untapped potential
in viewing prompting techniques through an agent-
centric lens, providing concrete directions for improv-
ing both the design and training of future LLM sys-
tems.
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