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Abstract: Gestures are a vital component of human expression, playing a pivotal role in conveying information and
emotions. Generating co-speech gestures remains challenging in human-computer interaction due to the intri-
cate relationship between speech and gestures. While recent advances in learning-based methodologies have
shown some progress, they still encounter limitations, as a lack of diversity and a mismatch between generated
gestures and the semantic and emotional context of speech, impacting the effectiveness of communication. In
this work, we propose a novel gesture generation framework that takes speech audio and a target style ges-
ture example as inputs, automatically synthesizing new gesture performances that align with the speech in the
desired style. Specifically, our framework comprises four main components: a dual-stream audio encoder,
a gesture-style encoder, a cross-attention modality fusion module, and a latent diffusion generation module.
The dual-stream audio encoder and gesture style encoder extract diverse modality embeddings from audio
and motion inputs; the cross-attention fusion module maps the multi-modal embeddings into a unified latent
space, and the diffusion module produces expressive and stylized gestures. The results demonstrate the excep-
tional performance of our method in generating natural and diversified gestures that accurately and coherently
convey the intended information, surpassing the benchmarks established by traditional methods. Finally, we
discuss future directions for our research.

1 INTRODUCTION

Gestures are integral components of human commu-
nication, functioning as co-expressive elements com-
plementing speech (David, 1992; McNeill, 2019).
They consist of non-verbal hand and arm movements
that enhance communication by synchronizing with
speech emphasis in time and matching speech con-
tent in semantics. Thus, gestures play a pivotal role in
conveying information, emotion and personality.

Co-speech gesture synthesis is crucial in devel-
oping lifelike conversational virtual characters, for
human-computer interaction, computer graphics, and
social robotics applications. However, the multi-
modal and multi-functional nature of gestures causes
great challenges in their automatic generation. Un-
like generic human motions, gesture performance is
not standalone, but part of multimodal conversational
behaviors dependent on speech and prosody. McNeill
(David, 1992) categorizes gestures into four types:
beat, iconic, metaphoric, and deictic, each of which

a https://orcid.org/0009-0006-3694-1453
b https://orcid.org/0009-0009-1684-0585
c https://orcid.org/0000-0002-5680-1929

correlates to different prosodic or semantic aspect
in speech. Thus automatically generating realistic
gestures of all categories that well synchronize with
speech emphasis and match the spoken content is a
hard multi-modal coordination problem to solve. An-
other challenge is that gesture motions are free form
expressive motions that do not follow a regular pat-
tern like locomotion, and identities, personalities and
emotions can all cast significant impact on gesture
performance styles. Recent research has utilized deep
learning approaches to predict and produce gestures,
however, the generated motion quality and diversity
is still restricted by the data and network design, due
to the spatiotemporal complexity of gesture perfor-
mance.

In this work, we propose an example-based
stylistic co-speech gesture generation framework that
solves the aforementioned challenges. Our frame-
work takes speech audio and an example of tar-
get style gesture as input, and outputs novel gesture
performance in the specified style that matches the
speech. The gesture synthesis task is achieved by
four major components: a dual-stream audio encoder,
a gesture style encoder, a multimodal cross-attention
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fusion module, and a diffusion-based gesture genera-
tor. First, the dual-stream audio encoder extracts ef-
fective acoustic embeddings from the speech input,
and the gesture style encoder extracts motion style
embeddings from the example gesture. The multi-
modal cross-attention module aligns the audio and
motion embeddings extracted from different modal-
ities through attention mechanisms, and fuses them to
a unified latent space. The diffusion model takes the
fused latent embedding and outputs diverse gesture
performance.

Compared to existing gesture synthesis research,
our proposed framework has many advantages.
Single-shot example gesture is an efficient and fea-
sible way for specifying the desired style. Incorpo-
rating style features addresses the challenge of cap-
turing the vast combination of motion content and
stylistic variations in human movement. Our dual-
stream audio encoder extracts effective acoustic fea-
tures from speech, and the subsequent cross-attention
module is capable of capturing the corresponding be-
tween gesture style features and the speech audio fea-
tures from different modalities. Our diffusion-based
gesture generator ensures the stylistic diversity in the
synthesized gestures. Preliminary results demonstrate
that our framework outperforms existing gesture syn-
thesis work under similar training conditions, gener-
ating expressive and context-appropriate gestures that
align with the given speech. We summarize the con-
tribution of our work as follows:

• We propose a novel framework that takes single-
shot style example for synthesizing expressive
gestures in desired styles matching speech input;

• We introduce a dual-stream audio encoder that ef-
fectively extracts acoustic features from speech;

• We demonstrate the multi-modal cross-attention
module for fusing the correlated features between
speech and style;

• We present the latent diffusion-based gesture gen-
erator, capable of synthesizing diverse stylistic
gesture performances.

2 RELATED WORK

Rule-based Methods for Gesture Synthesis
Early gesture generation relied on rule-based
systems with manual speech-gesture mappings.
Cassell et al.’s Animated Conversation (Cassell
et al., 1994) pioneered the automatic production of
context-appropriate gestures, facial expressions, and
intonation by integrating dialogue generation, text-
to-speech, and symbolic representations. Thórrison’s

Ymir (Wei et al., 2022) enhanced this approach by
incorporating multimodal inputs—speech, gaze, ges-
ture, and intonation—through perception, dialogue,
decision-making, and action scheduling modules,
enabling more interactive animations. Further
advancements included Cassell et al.’s Behaviour
Expression Animation Toolkit (BEAT) (Cassell
et al., 2001), which synthesized nonverbal cues with
customizable personalities; Kopp et al.’s Max (Kopp
and Wachsmuth, 2002; Kopp et al., 2003), generating
complex gestures from XML specifications using
non-uniform cubic B-Splines; and Pelachaud et al.’s
Greta (Pelachaud et al., 2002), a 3D virtual agent ex-
pressing emotions through a Belief-Desire-Intention
framework. The development of domain-specific
languages (DSLs) such as MURML (Kopp et al.,
2003), APML (De Carolis et al., 2004), and RRL
(Piwek et al., 2004) followed, although they were
primarily XML-based and incompatible. To resolve
this, the Behavior Markup Language (BML) (Kopp
et al., 2006; Vilhjálmsson et al., 2007) was created as
a comprehensive framework for intent and behavior
planning, becoming the standard for rule-based sys-
tems and integrating into platforms like SmartBody
and humanoid robots. Despite their ability to produce
synchronized gestures, rule-based systems are limited
by finite handcrafted rules and pre-recorded motions,
resulting in restricted motion diversity, scalability
challenges due to manual effort, and reliance on
explicit speech-gesture mappings based on text or
acoustic features.

Data-driven Statistical Gesture Generation
Researchers developed data-driven statistical models
for gesture synthesis to address the limitations
of rule-based methods, but these often relied on
curated gesture libraries and manual annotations,
limiting scalability and adaptability. Kipp used
ANVIL (Kipp, 2001) to annotate co-speech gestures,
modeling them based on features like handedness,
timing, and communicative function. Neff et al.
(Neff et al., 2008) created an animation lexicon to
generate gestures from text. Bergmann and Kopp
introduced Bayesian networks for transforming
speech into gestures (Bergmann and Kopp, 2009),
enhancing them with probabilistic and rule-based
components. Levine et al. employed hidden Markov
model (HMM) and conditional random field (CRF)
(Levine et al., 2009) to select motion clips based
on prosodic features and reduce overfitting. Chiu
et al. developed Hierarchical Factored Conditional
Restricted Boltzmann Machine (HFCRBM) for
audio-based smooth gesture generation, and Yang et
al. (Yang et al., 2020) implemented statistical motion
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Figure 1: Framework overview, where four major components are illustrated, i.e. dual-stream audio encoder, gesture style
encoder, multi-modal cross-attention module and diffusion-based gesture generator.

graphs for synchronized body motions, enhancing
diversity with stochastic search algorithms.

Deep Learning for Gesture Synthesis
Deep learning has significantly advanced co-speech
gesture generation by enabling the synthesis of
natural and diverse gestures from large datasets,
eliminating the need for manually designed lexi-
cons and mapping rules. Early approaches utilized
deterministic models such as Convolutional Neural
Networks (CNNs) (Habibie et al., 2021) and Re-
current Neural Networks (RNNs) (Liu et al., 2022;
Yoon et al., 2019; Yoon et al., 2020) to map speech
inputs directly to gesture sequences. While these
models improved the perceived naturalness and
appropriateness of generated gestures, they often
produced more averaged and less diverse outputs.

Generative models have emerged as a superior
alternative by introducing stochasticity into the
generation process, leading to more diverse and
human-like gestures. These approaches include Nor-
malizing Flows, Generative Adversarial Networks
(GANs), and diffusion-based models. Generative
models, such as Normalizing Flows, Variational
Autoencoders (VAEs), and Vector Quantized VAEs
(VQ-VAEs), have been employed to learn diverse and
realistic gesture distributions. For instance, Ahuja
et al. (Ahuja et al., 2020) developed a Temporal
Convolutional Network (TCN) to create stylized
gestures, enhancing motion expressiveness, Yoon et
al. (Yoon et al., 2020) utilized adversarial networks
with multimodal information for gesture generation,
and Li et al. (Li et al., 2021) employed VAEs to
train generators with shared and motion-specific
latent spaces for coherent gesture sequences. Despite
these advancements, generative models often suffer
from low semantic alignment with speech input due
to the inherent many-to-many relationship between
speech and gestures. Recent approaches aim to
improve intent alignment with gesture prediction and
incorporate gesture styles for personalized synthesis.

Diffusion Models for Gesture Generation
Recently, diffusion-based models have advanced
gesture generation by leveraging stochastic diffusion
processes to learn data distributions, enhancing
flexibility and diversity. These models produce
gestures that are semantically or emotionally aligned
with input speech. Notable approaches include
DiffGesture, which employs a transformer-based
diffusion pipeline with annealed noise sampling for
temporal consistency (Zhu et al., 2023); GestureD-
iffuCLIP, which integrates latent-diffusion models
and CLIP-based conditioning for better control (Ao
et al., 2023); TalkSHOW, utilizing VQ-VAEs for
body and hand motions (Yi et al., 2023); and LDA,
which provides style control using classifier-free
guidance for diffusion models in both music-to-dance
(Alexanderson et al., 2023). Additionally, models
have been developed for predicting the movement
of multiple speakers in social settings (Tanke et al.,
2023), multi-modal diffusion for video and audio
generation (Ruan et al., 2023), and efficient omni-
modal representation learning paradigms (Lei et al.,
2023).

Despite these advancements, diffusion-based gen-
erative models still struggle to maintain semantic
alignment with speech due to the many-to-many re-
lationship between speech and gestures. Recent re-
search aims to improve intent alignment and incorpo-
rate personalized gesture styles.

3 METHOD

In this work, we propose a novel framework for gener-
ating diverse and stylized co-speech gestures through
diffusion. As illustrated in Figure 1, our frame-
work mainly consists of four components: a dual-
stream audio encoder (Sec. 3.1), a gesture style en-
coder (Sec. 3.2), a multi-modal cross-attention fusion
module (Sec. 3.3) and a diffusion-based gesture gen-
erator (Sec. 3.4). Given a speech input, the frame-
work allows users to provide a one-short gesture ex-
ample to specify their desired target style. The dual-
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stream audio encoder and the gesture style encoder
take the speech and the style example as input, and
project them to audio embeddings and style embed-
dings respectively. Instead of naively piecewising the
audio and style embeddings together, our multimodal
cross-attention module correlates the audio emphasis
and speech elements with the salient gesture style fea-
tures, and aligns embeddings from the two modalities
in one unified latent space. Lastly, the unified embed-
dings are passed to diffusion-based gesture generator,
which synthesizes co-speech gesture performance in
the target style frame by frame in an auto-regressive
fashion. We discuss the details of each component
of our gesture generation framework in the following
sections.

3.1 Speech Encoding

Given a speech input, our framework employs a dual-
stream audio encoder to project the speech audio into
latent embeddings. Specifically, the audio input is
a sequence of T -frame total length. At each frame,
a window of N neighboring frames is cut into an
audio segment and fed to the audio encoder to ex-
tract its features. We propose to extract the audio
features from two streams: raw audio input in time
domain, and mel-spectrogram in frequency domain.
Outputs from the two streams are then fused into
the sequence of audio embedding vectors denoted by
A = [a0,a1, . . . ,aT−1] where A ∈ RT×Da , and Da de-
notes the dimension of the audio embedding vector
for each frame.

Time Domain Stream: A convolutional neural net-
work (CNN) designed to process raw audio features.
It consists of four 1D convolutional layers with pro-
gressively increasing channel sizes (64, 128, 256,
512) and kernel sizes (1, 3, 5, 7). Each convolutional
layer is followed by a GELU activation function and
dropout layers for regularization. The convolutional
layers are succeeded by three fully connected layers,
reducing the dimensionality to the target embedding
size.

Frequency Domain Stream: Based on the Audio
Spectrogram Transformer (AST) architecture (Gong
et al., 2021), this encoder transforms the input spec-
trogram into embedded patches using a patch em-
bedding layer. Positional embeddings are added to
provide spatial context. The patches are processed
through multiple self-attention layers and feedfor-
ward networks, producing a refined spectrogram en-
coding.

Stream Fusion Block: The Fusion block inte-
grates the outputs from the Speech Encoder and Au-
dio Spectrogram Encoder by concatenating their out-

Figure 2: Dual-stream Audio Encoder.

puts. The combined vector is then normalized using
layer normalization and processed through a multi-
layer perceptron network (MLP) with SiLU activa-
tion. This fusion allows the model to jointly learn
from both time-domain (raw audio) and frequency-
domain (spectrogram) representations, resulting in a
comprehensive audio embedding.

3.2 Style Encoding

The style input processing module encodes desired
gesture characteristics, including motion type, pos-
ture, and expressiveness. It utilizes detailed animation
and joint data, encompassing joint local translations
and rotations, translational and rotational velocities,
and joint movements relative to the character’s root
transform (Ghorbani et al., 2023). These features cap-
ture both static and dynamic properties of gestures,
ensuring that the generated gestures are realistic and
stylistically accurate.

Each frame of the animation clip is represented
by a feature vector a = [ρp,ρr, ρ̇p, ρ̇r, ṙp, ṙr], where
ρp ∈ R3 j and ρr ∈ R6 j represent the joint local trans-
lations and rotations, ρ̇p and ρ̇r represent the joint lo-
cal translational and rotational velocities, and ṙp and
ṙr represent the character root translational and rota-
tional velocity local to the character root transform. j
corresponds to the number of joints in the kinematic
tree.

Inspired by attention mechanisms and variational
autoencoder (VAE) (Vaswani, 2017; Kingma, 2013),
the Style Encoder transforms a reference style ani-
mation clip into a low-dimensional embedding vec-
tor that encodes the stylistic properties of the ges-
tures. A Variational Auto-Encoder (VAE) samples
the style embeddings from multivariate Gaussian dis-
tribution. The extracted style sequence is then pro-
cessed through convolutional layers and an Attention-
based Feed Forward Transformer network to produce
the style embedding vector e.

3.3 Multimodal Cross-Attention Fusion

The Cross-Attention Fusion Network integrates the
audio and style embeddings to enable the generator to
generate semantically and stylistically coherent ges-
tures. Leveraging multi-head attention mechanisms,
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Figure 3: Multimodal Cross-Attention Fusion Network.

the cross-attention network captures the intricate re-
lationships between speech and style. The audio and
style embeddings are first concatenated. Multi-head
attention layers are then applied to capture interac-
tions between these modalities as shown in Figure 3.
A feedforward network further processes the fused
embeddings to the target embedding size, enabling
the model to produce high-quality, context-aware la-
tent embeddings for gesture generation.

Let FA represent the deep features extracted from
the speech encoder, and FS represent the deep fea-
tures from the style encoder. The joint feature rep-
resentation is obtained by concatenating FS and FA,
followed by a transformer encoder with self-attention
mechanisms. Cross-attention layers are subsequently
applied to share context between audio and style fea-
tures, producing a mixed encoding that informs the
final gesture output.

3.4 Gesture Diffusion

Our gesture generation method leverages a diffusion
transformer model operating within a pose feature
space to synthesize realistic and contextually appro-
priate gestures. During training, we employ a forward
diffusion process that incrementally adds Gaussian
noise to the initial pose sequence representation x0,
resulting in a sequence of progressively noisier pose
representations {xt}T

t=1 that approximate a standard
normal distribution N (0, I). This process is defined
by eq.(1), where βt is a predefined variance schedule.

q(xt |xt−1) = N
(

xt ;
√

1−βt xt−1,βt I
)
, (1)

The cumulative effect over t timesteps can be ex-
pressed directly in terms of x0 in eq.2 with ᾱt =
∏

t
s=1(1−βs).

q(xt |x0) = N
(
xt ;

√
ᾱt x0,(1− ᾱt) I

)
, (2)

In the reverse diffusion process, our model learns to
recover the original pose sequence from the noisy in-
put by estimating the noise added at each timestep.
The denoising model εθ predicts the noise given the

Figure 4: Our Diffusion Transformer architecture based on
the adaLN-Zero architecture introduced by (Peebles and
Xie, 2023).

noisy pose xt , the timestep t, and the conditioning in-
formation c:

x0 = εθ(xt , t,c). (3)
The conditioning information c is represented by the
output embedding of our miltomodal corss-attention
fusion network. The model is trained by minimizing
the mean squared error between the predicted noise
and the actual noise added during the forward process:

LLD = Ex0,t,ε

[
∥ε− εθ(xt , t,c)∥2

]
, (4)

where ε ∼ N (0, I) and xt =
√

ᾱt x0 +
√

1− ᾱt ε.
During inference, we generate gestures by starting

from random noise xT ∼ N (0, I) and iteratively ap-
plying the reverse diffusion steps using the Denoising
Diffusion Probabilistic Model (DDPM) sampling al-
gorithm (Ho et al., 2020) to obtain the denoised pose
sequence x0. At each timestep t, the model predicts
the noise to be removed, guided by the conditioning
information c.

4 IMPLEMENTATION

4.1 Dataset and Data Preprocessing

We train and evaluate our system using the Ze-
roEGGS dataset (Ghorbani et al., 2023), which com-
prises full-body motion capture and synchronized au-
dio recordings from a single English-speaking fe-
male actor performing 67 monologues across 19 dis-
tinct gesture styles. These styles range from posture-
focused categories like ”Tired” and ”Oration” to intri-
cate hand and head movements, ensuring a wide vari-
ety of gesture types for training context-appropriate
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Figure 5: Visual result comparison.

models. The dataset includes 135 minutes of data
recorded at 60 frames per second, represented by a
75-joint skeletal model that captures detailed hand
and finger movements, providing high fidelity for ges-
ture generation tasks.

To augment the data, we mirrored all anima-
tion sequences, effectively doubling the training data.
Head orientation was processed by projecting the
head z-axis direction onto the ground plane and com-
puting the median to establish a global target facing
direction for each sequence, which is set to the global
z-axis during runtime. The style labels, based on actor
instructions, may differ from external annotations, in-
troducing subjectivity that is considered during train-
ing and analysis. Preprocessing steps include nor-
malizing skeleton data to ensure consistent joint po-
sitioning, downsampling audio to 16kHz for compat-
ibility with the speech encoder, and extracting Mel-
frequency cepstral coefficients (MFCCs) and energy
per frame to represent speech content.

4.2 Implementation Details

Our gesture generation model is implemented using
PyTorch and trained on an NVIDIA RTX 3060 GPU
with a batch size of 32 and an initial learning rate of
0.0001. We utilize the RAdam optimizer for its adap-
tive learning rate properties and an exponential learn-
ing rate scheduler to promote faster convergence and
better generalization.

For audio feature extraction, our speech en-
coder comprises a custom CNN-based encoder that
processes the energy and log-amplitude of mel-

spectrograms, alongside a pretrained Audio Spectro-
gram Transformer (AST) that extracts additional mel-
spectrogram features. These features are fused to
form a single feature vector representing each speech
segment. Gesture style data is encoded using an
attention-based style encoder, which captures general
features from a reference animation style sample clip
with a dynamic window length between 256 and 512
frames, sampled from the same animation clip as the
target sequence. Our diffusion-based gesture gener-
ator employs 1000 diffusion timesteps with a linear
variance schedule ranging from β1 = 1×10−4 to 0.1,
and the hidden dimension of all transformer layers in
the Diffusion Transformer (DiT) is set to 1024.

5 RESULTS

5.1 Training Loss

The training process maximizes the Evidence Lower
Bound (ELBO) of the gesture motion’s log-likelihood
given a speech sequence by minimizing the negative
ELBO, which serves as the training loss. The total
loss is defined as:

L = Eq(z|e) [− log p(Y | S,z)]+DKL(q(z | e) ∥ p(z))

= Lrecon +DKL(q(z | e) ∥ p(z))+LLD (5)

Reconstruction Loss. Lrecon evaluates how ac-
curately the model reconstructs the target gesture se-
quence from speech and style embeddings. It is com-
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posed of:

Lrecon = λpLp +λrLr +λvpLvp +λvrLvr

+λd pLd p +λdrLdr +λ f L f
(6)

where:
• Lp and Lr: Mean Absolute Error (MAE) for joint

positions and rotations, ensuring pose accuracy.

• Lvp and Lvr: MAE for joint translational and rota-
tional velocities, promoting smooth motion.

• Ld p and Ldr: MAE of velocities computed via fi-
nite differences, enhancing motion smoothness.

• L f : MAE for the facing direction in world space,
preventing rotational drift.

The weights λp, λr, λvp, λvr, λd p, λdr, and λ f balance
each loss component and are empirically determined
during training.

Regularization Term. DKL(q(z | e) ∥ p(z)) mea-
sures the Kullback–Leibler divergence between the
posterior distribution q(z | e) from the style encoder
and the prior p(z), a standard Gaussian. This encour-
ages the latent space to resemble the prior, preventing
overfitting and enhancing generalization.

Cost Annealing. gradually increases the weight
of the regularization term during training, stabilizing
the learning process and promoting a meaningful la-
tent space.

Diffusion Loss. LLD is the standard noise estima-
tion loss used in diffusion models (Ho et al., 2020):

LLD = Ex0,t,ε

[
∥ε− εθ(xt , t,c)∥2

]
(7)

5.2 Qualitative Results

Figure 5 displays the gesture generation results for
a sample from the ZeroEGGS dataset. The top fig-
ures illustrate gestures produced by our framework,
while the bottom figure shows those generated by
the ZeroEGGS (Ghorbani et al., 2023) model. Our
model effectively captures emotional and semantic
cues, demonstrating the desired style with consistent
motion and appropriate emphasis in threatening ges-
tures. In contrast, ZeroEGGS fails to accurately cap-
ture the style, resulting in average gestures with no-
ticeable repetitiveness. More qualitative results are
available in the video submission for our approach
with different styles.

6 CONCLUSIONS

In this study, we introduced an example-based stylis-
tic co-speech gesture generation framework that ef-
fectively produces expressive gestures aligned with

speech and desired styles. The framework com-
bines a dual-stream audio encoder, a gesture style
encoder, a multimodal cross-attention fusion mod-
ule, and a diffusion-based gesture generator to create
high-quality and diverse gesture performances. Qual-
itative results show that the model outperforms bench-
mark systems by generating gestures that are both
contextually appropriate, coherent, and realistic. Fu-
ture work aims to enhance the framework’s robust-
ness and scalability by evaluating it on larger, more
diverse datasets and benchmarking against state-of-
the-art methods. We also plan to address limitations
in generating specific styles—such as laughter and el-
derly gestures—to improve the model’s generaliza-
tion capabilities, conduct user studies to validate the
naturalness of the gestures, and optimize the infer-
ence process by reducing the number of required seed
frames for faster, near real-time gesture generation.
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