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Abstract: Diffusion mechanism design is one of the recent trends in the literature of mechanism design. Its purpose
is to incentivize agents to diffuse the information about the mechanism to as many followers as possible, as
well as reporting their preferences. This paper is the first attempt to consider diffusion mechanism design for
two-sided matching from the perspective of non-obvious manipulability. We focus on the top-trading-cycles
(TTC) mechanism for the many-to-one two-sided matching problem. We clarify the necessary and sufficient
condition for the mechanism to satisfy strategy-proofness and non-obvious manipulability, respectively. We
also propose a new TTC-based matching mechanism that violates strategy-proofness but satisfies non-obvious
manipulability, which illustrates how we can handle strategic information diffusion in two-sided matching.

1 INTRODUCTION

As one of the active fields in the area of artificial in-
telligence, multi-agent systems have been attracting
considerable attention of researchers and practition-
ers. In a multi-agent system, multiple agents inter-
act with each other and the society containing these
agents makes a joint decision. Such a process is called
a multi-agent decision-making.

For the research of multi-agent decision-making,
game theory has played an important role. More
specifically, mechanism design is considered as a
mathematical foundation of multi-agent decision-
making, especially when agents are self-interested
and not cooperative with each other. The main pur-
pose of mechanism design is to develop decision-
making rules, also known as mechanisms, which in-
centivize selfish agents to take desirable actions.

Strategy-proofness is a well-known incentive
property in the literature. It requires that for each
agent, reporting a true private information, which is
in many cases referred to a true type of an agent,
to a mechanism is a dominant strategy. While it is
quite appealing for achieving a socially-acceptable
outcome, there are a lot of negative results regarding
strategy-proofness, because requiring the existence of
dominant strategy equilibria is too demanding. Weak-
ening strategy-proofness and/or choosing other incen-
tive properties is then a natural direction.

In this paper we consider diffusion mechanism
design (Li et al., 2017), in which participation to a
decision-making is invitation-based. An agent can
participate in a decision-making only when other par-
ticipating agents invite her. In diffusion mechanism
design, strategy-proofness is rather demanding, since
it requires that telling a true preference and inviting
as many colleagues as possible is a dominant strat-
egy for every agent. Cho et al. (2022) showed several
impossibility theorems on strategy-proofness in diffu-
sion mechanism design for two-sided matching.

Given above impossibility theorems, in this paper
we consider non-obvious manipulability as a weaker
notion of incentive property, instead of strategy-
proofness. Non-obvious manipulability intuitively re-
quires that, for each agent, truth-telling is weakly bet-
ter than any manipulation in both the best- and worst-
cases. While several existing works have investigated
non-obvious manipulability in the literature of mech-
anism design for two-sided matching (please refer to
the next section for a survey), analysis of non-obvious
manipulability in diffusion mechanism design does
not exist, as far as the authors know.

To sum up, this paper is the first attempt to
consider non-obvious manipulability in the diffusion
mechanism design for two-sided matching. We first
show that, even if the incentive property is weak-
ened to non-obvious manipulability, known impos-
sibility results by Cho et al. (2022) come over. We
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then focus on the Top-Trading-Cycles (TTC) mecha-
nism (Abdulkadiroğlu and Sönmez, 2003), which is
known not to be manipulable in the standard settings
without strategic invitation, and provide two if-and-
only-if conditions for it to satisfy strategy-proofness
and non-obvious manipulability, respectively, in two-
sided matching with strategic invitation. We further
propose a new mechanism that violates SP but satis-
fies NOM.

1.1 Related Works

Gale and Shapley (1962) initiated the research of two-
sided matching and proposed the seminal Deferred-
Acceptance mechanism. Crawford (1991) studied the
effect of having more students/colleges in the two-
sided matching. In their model the set of students
varies as a result of exogenous events, while in our
model it is due to the strategic actions of students.
Various extensions of two-sided matching have also
been studied, including school choice with diversity
constraints (Kurata et al., 2017), matchings with bud-
get constraints (Aziz et al., 2020), and uncertain pref-
erences (Rastegari et al., 2013; Todo et al., 2021).

Several works investigated strategy-proof mech-
anisms with monetary compensations from the per-
spective of diffusion mechanism design (Kawasaki
et al., 2020; Li et al., 2024). On the other hand,
there is limited research on diffusion mechanism de-
sign without money. Recently, Kawasaki et al. (2021)
and You et al. (2022) considered house allocation
over social networks, without monetary compensa-
tions. Another recent work by Ando et al. (2025)
studied strategy-proof social choice over social net-
works. Cho et al. (2022) dealt with two-sided match-
ing with strategic information diffusion. However, all
these works focused on strategy-proofness, and never
considered non-obvious manipulability.

Given the difficulties of designing strategy-proof
mechanisms, analysis based on the non-obvious ma-
nipulability (Troyan and Morrill, 2020) is one of the
recent trends. Ortega and Klein (2023) proposed a
two-sided matching mechanism that violates strategy-
proofness but satisfies the non-obvious manipulabil-
ity, although their model is quite standard and not
dealing with strategic invitation.

2 MODEL

Our model of two-sided matching over social net-
works is basically identical with Cho et al. (2022),
while we assume that every student is acceptable by
any college and the underlying social network among

students are restricted to be a tree. We will further de-
fine some additional notations to formalize the prop-
erty of non-obvious manipulability.

In our model, there are two sets of agents, students
and colleges. Let C = {c1,c2, . . . ,c|C|} be the set of
colleges, and let S = {s1,s2, . . . ,s|S|} be the set of stu-
dents. We usually use c ∈ C and s ∈ S to represent
a college and a student without specifying their iden-
tifiers. The symbol ∅ denotes an “unmatched” sta-
tus for students. Furthermore, special agent o, called
moderator, corresponds to a trusted third party.

Each college c has a priority ≻c, given as a strict
ordering over S, specifying its one-to-one comparison
over students. As Cho et al. (2022) assumed, we do
not care about how colleges compare two subsets of
students. Let ≻C= (≻c)c∈C represent a profile of the
priorities of colleges C. Each college c has its max-
imum quota qc ∈ Z>0, indicating the number of stu-
dents that college c can accept. Let qC := (qc)c∈C.

Each student s has a preference ≻s, given as a
strict ordering over C∪{∅}. A notation c ≻s c′ indi-
cates that s strictly prefers being assigned to c instead
of c′. Analogously, c ≻s ∅ indicates that s strictly
prefers being assigned to c to being unmatched. Sym-
bol ≿s indicates the “weak preference” associated
with ≻s; since we focus on strict preferences, c ≿s c′

indicates either c ≻s c′ or c = c′. Let ≻S= (≻s)s∈S
represent a preference profile of students S.

Students are distributed over a social network. Let
ro ⊆ S be the set of the neighbors of o, which are
also called the direct children of o. For each s, let
rs ⊆ S \ {s} denote s’s neighbors. The neighborhood
relation is asymmetric, i.e., s′ ∈ rs does not imply
s ∈ rs′ . Given rS := (rs)s∈S and ro, all the neighbor-
hood relations are defined, specifying social network
G(rS,ro) among students and the moderator. In this
paper we assume that social networks are tree-shaped,
where the moderator is located at the root.

Matching m specifies to which college each stu-
dent is assigned. Given matching m, let m(s) ∈
C∪{∅} denote the college (if any) to which student
s is assigned, and m(c) ⊆ S denote the set of stu-
dents (if any) with which college c is matched. We
abuse ≻s and write m ≻s m′ (or m ≿s m′) instead of
m(s)≻s m′(s) (or m(s)≿s m′(s)).

Let θs = (≻s,rs) denote the true type of student
s, and let θ = (θs)s∈S denote a profile of the stu-
dents’ true types. Let θ−s denote a profile of the types
owned by the students except s. Analogously, given
subset (also called as a coalition) T ⊆ S, let θT de-
note a profile of the types owned by T , and let θ−T
denote a profile of the types owned by the students
except T . Let R(θs) = {θ′s = (≻′

s,r
′
s) | r′s ⊆ rs} de-

note the set of reportable types by s with true type
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θs, assuming that each s cannot pretend to be con-
nected to any student to whom s is not really con-
nected. When s reports r′s as her neighbors, we say s
diffuses the information toward r′s, or s invites r′s. Let
θ′ = (θ′s)s∈S ∈ ×s∈SR(θs) = R(θ) denote a reportable
type profile. Analogously, given subset T ⊆ S, let θ′T
denote a profile of the types reported by T , and θ′−T a
profile of the types reported by the students except T .

Given type profile θ′, let Ŝ(θ′) ⊆ S denote the set
of connected students to whom a path exists from o in
G(r′S,ro). Given θ′, let M(θ′) denote a set of feasible
matchings m satisfying the followings:

1. consistency; for any s ∈ Ŝ(θ′) and any c ∈ C,
m(s) = c ⇔ s ∈ m(c)

2. max. quota constraint; for any c ∈C, |m(c)| ≤ qc

3. connectivity; for any s ∈ S, s ̸∈ Ŝ(θ′)⇒ m(s) =∅
Given true type profile θ (which is not observable),
mechanism µ maps a reported profile θ′ ∈ R(θ) into
feasible matching m ∈ M(θ′), while µ can use ≻C, qC,
and ro as parameters.

We further define some terms related to social
networks. Given θ′ and s ∈ Ŝ(θ′), let ds(θ

′) ∈ Z
be the distance (the number of edges in the shortest
path) from o to s in G(r′S,ro). For any s ̸∈ Ŝ(θ′), let
ds(θ

′) = ∞. Also, for any s ∈ S∪{o}, let δs(θ
′) be the

set of descendants of s in G(r′S,ro).

Definition 1 (Strategy-Proofness (SP)). Given mech-
anism µ, arbitrarily chosen student s∈ S, profile θ′−s ∈
R(θ−s), true type θs, and misreport θ′s ∈ R(θs), let
m := µ(θs,θ

′
−s) and m′ := µ(θ′s,θ

′
−s). Then, µ satis-

fies strategy-proofness (SP) if m(s)≿s m′(s) holds.

Strategy-proofness requires that, for each student
s, telling a true type θs is a dominant strategy, i.e., the
outcome under the truth-telling is weakly better than
the outcome under reporting a fake type θ′s.

Definition 2 (Non-Obvious Manipulability (NOM)).
Given mechanism µ, arbitrarily chosen student s ∈ S,
a true profile θ′−s ∈ R(θ−s), given preference ≻s, and
a type θ′s of student s,

• B≻s(θ
′
s) := c ∈C∪{∅} s.t. ∃θ′−s ∈ R(θ−s):

– µi(θ
′
s,θ

′
−s) = c, and

– ∀θ′′−s ∈ R(θ−s), c ≿s µs(θs,θ
′′
−s).

• W≻s(θs) := c ∈C∪{∅} s.t. ∃θ′−s ∈ R(θ−s):
– µs(θs,θ

′
−s) = c, and

– ∀θ′′−s ∈ R(θ−s), µs(θs,θ
′′
−s)≿s c.

Then, µ satisfies non-obvious manipulability if both

B≻s(θs)≿s B≻s(θ
′
s) and W≻s(θs)≿s W≻s(θ

′
s)

holds for any θs := (≻s,rs) and any θ′s ∈ R(θs).

The condition on B≻s(·) denotes the best-case in-
centive constraint, which requires that telling a true
type θs is better than telling any other type θ′s, under
the true preference ≻s, in the best-case. Here the best-
case is calculated by changing the reports of other stu-
dents S \ {s}. Analogously, the condition on W≻s(·)
denotes the worst-case incentive constraint.

We also define stability, efficiency, and fairness
properties, which are used in Cho et al. (2022), for
obtaining our impossibility theorems.

The mutually-best property intuitively require
that, if there is a pair of a student and a college who
ranks them at the top with each other, such a pair is
matched. Some weaker variants of the mutually-best
properties are also defined.

Definition 3 (Mutually-Best (MB)). Given θ′, we say
a pair of student s and college c is a mutually-best
pair (MB-pair) if c ≻s c′ for any c′ ̸= c and s ≻c s′

for any s′ ∈ Ŝ(θ′). Matching m is mutually-best if
any MB-pair (s,c) is matched as long as s ∈ Ŝ(θ′). A
mechanism is said to satisfy MB if it always returns a
mutually-best matching. Matching m is mutually-best
for direct children if any MB-pair (s,c) is matched as
long as s ∈ Ŝ(θ′) and s ∈ ro. A mechanism is said to
satisfy MB-D if it always returns a matching that is
mutually-best for direct children.

Non-wastefulness is a well-known notion of ef-
ficiency, which intuitively requires that, if a student
cannot enter a college that she strictly prefer to her
current assignment, it must be the case that the col-
lege is full. One of its weaker notions, introduced
here as weak non-wastefulness, only requires that, the
existence of such a student implies that either she is
already assigned to some college or the college she
prefers already have some student assigned.

Definition 4 (Weak Non-Wastefulness (WNW)). A
matching m is weakly non-wasteful (WNW) for given
θ′ if, for any s ∈ Ŝ(θ′) and any c ∈ C, c ≻s m(s) im-
plies either m(s) ̸=∅ or |m(c)|> 0.

Fairness is a condition related to students’ envies
toward other students. A pair of a college c and a stu-
dent s forms a blocking coalition for a given match-
ing m if both c ≻s m(s) and s ≻c s′ for some s′ ∈ m(c)
hold. In words, the blocking pair like them with each
other. Intuitively, a matching is fair if such a blocking
pair does not exist. In the definition below, a weaker
notion of fairness is also defined.

Definition 5 (Fairness). For student s and college c,
assume c ≻s m(s). Then, s has (i) justified envy with
respect to priority toward student s′ ∈ m(c) if s ≻c s′,
and (ii) justified envy with respect to network toward
s′ ∈ m(c) if both s ≻c s′ and s′ ̸∈ πs(θ

′). Matching m
is fair (FR) for given θ′ if, there is no student with jus-
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o s1 s2

Figure 1: An example showing the incompatibility between
NOM and MB, and the incompatibility among NOM, FR,
and MB-D. Each circle indicates students (or the modera-
tor), and each arrow indicates invitation.

os1 s2 s3

Figure 2: An example showing the incompatibility among
NOM, FRN, and WNW.

tified envy with respect to priority. Matching m is fair
with respect to network (FRN) for given θ′ if there is
no student with justified envy with respect to network.

Cho et al. (2022) showed the following theorems,
all of which requires SP as an incentive property.
Theorem 1 (Cho et al. (2022)). There exists no mech-
anism that simultaneously satisfy SP and MB.
Theorem 2 (Cho et al. (2022)). There exists no mech-
anism that simultaneously satisfy SP, FR, and MB-D.
Theorem 3 (Cho et al. (2022)). There exists no mech-
anism that simultaneously satisfy SP, FRN, and WNW.

Finally, we define the Top-Trading-Cycles (TTC)
mechanism for the classical two-sided matching prob-
lem (Abdulkadiroğlu and Sönmez, 2003).
Definition 6. In Round t = 1,2, . . ., each student s∈ S
points to her most preferred college, if any, among
those who still have a non-zero capacity. Each col-
lege c ∈ C points to the student who has the highest
priority at that college. For each cycle, each belong-
ing student is assigned to the college that she is point-
ing to. Remove that student, and reduce the quota of
the college by one. The algorithm terminates when all
the students are assigned or all the colleges have zero
capacity; otherwise, it proceeds to Round t +1.

3 IMPOSSIBILITIES

We first show three impossibility theorems, each of
which strengthens an existing result (Theorems 1, 2,
and 3) by replacing SP with NOM. The examples in
their proofs are almost identical with the original ones
in Cho et al. (2022), while our proofs are a bit more
complicated due to the weakened incentive property.
Theorem 4. There exists no mechanism that simulta-
neously satisfy NOM and MB.

Proof. Consider the social network shown in Fig. 1,
with two students, s1 and s2, both of whom have pref-
erence c ≻ ∅. Note that θs1 is defined here as tuple
θs1 = (c1 ≻s1 ∅,{s2}). There is one college c1 with
priority s2 ≻c1 s1 and quota qc1 = 1.

When s1 sincerely reports θs1 , implying that stu-
dent s2 is invited, there is at least a case where s2 re-
ports a preference c1 ≻s2 ∅. In such a case, any mech-
anism satisfying MB must match s2 to c1 and leave s1
unmatched. This is clearly the worst possible case for
s1. Thus, W≻s1

(θs1) =∅ holds.
On the other hand, when s1 reports θ′s1

= (c1 ≻s1
∅, /0), i.e., decides not to invite student s2, MB implies
that s1 is matched to c1. Therefore, W≻s1

(θ′s1
) = c1

holds. Since her true preference assumes c1 ≻s1 ∅,
W≻s1

(θ′s1
)≻s1 W≻s1

(θs1) holds, violating NOM.

Theorem 5. There exists no mechanism that simulta-
neously satisfy NOM, FR, and MB-D.

Proof. Consider the social network shown in Fig. 1,
with two students, s1 and s2, both of whom have pref-
erence c ≻ ∅. There is one college c1 with priority
s2 ≻c1 s1 and quota qc1 = 1.

When student s1 does not invite student s2, the
MB-D condition requires that s1 is matched to c1.
Thus, the worst-case outcome when s1 does not in-
vite s2 is c1. To guarantee NOM, it must be the case
that the worst-case outcome when s1 sincerely reports
her true type, i.e., invites s1, must be also c1. How-
ever, if s1 is assigned to college c1, student s2 has a
justified envy with respect to priority toward s1, since
we have s2 ≻c1 s1. This is a violation to FR.

Theorem 6. There exists no mechanism that simulta-
neously satisfy NOM, FRN, and WNW.

Proof. Consider three students s1,s2,s3 and two col-
leges c1 and c2. The social network among students
are given as Fig. 2, and their preferences are given as
c1 ≻ c2 ≻ ∅. Colleges have capacity qc1 = qc2 = 1,
and their priorities are given as s3 ≻ s1 ≻ s2. Assume
that all the three students report their types truthfully.
To guarantee WNW, two students must be assigned to
two colleges, one-by-one. In other words, exactly one
student is unmatched.

If student s1 is unmatched, she has a justified envy
with respect to network toward s2, since both colleges
prefer s1 to s2. Thus it violates FRN. If student s3
is unmatched, s3 has a justified envy with respect to
network toward s1, which violates FRN.

Finally, if student s2 is unmatched, consider the
worst-case outcomes. When s2 invites s3, s2 is un-
matched in the worst-case outcome. On the other
hand, if s2 does not invite s3, s2 is matched to c2 in
the worst-case outcome, to guarantee FRN. Thus, the
worst-case condition of NOM is violated for s2.

These impossibility results have a quite negative
implication. Given original impossibility theorems
presented by Cho et al. (2022), it is quite natural to

Strategy-Proofness and Non-Obvious Manipulability of Top-Trading-Cycles with Strategic Invitations

619



consider designing new two-sided matching mecha-
nisms satisfying all the requirements in the theorems
except for SP, and guaranteeing NOM instead. Our
impossibility results therefore show that such a natu-
ral direction never provides any positive finding.

4 ACHIEVING
STRATEGY-PROOFNESS

We now consider restricting the target instances.
More precisely, we will give a necessary and suffi-
cient conditions on parameters (e.g., colleges’ prior-
ities, quotas, and the underlying social network) for
TTC to satisfy SP and/or NOM. This section focuses
on SP, and the next section focuses on NOM.
Theorem 7. TTC satisfies SP if and only if
∀s ∈ S, ∀c s.t. qc ≤ #νc,s, ∀s′ ∈ δs(θ

′), s ≻c s′

holds, where νc,s := {s′′ ∈ S | s′′ ̸= s,s′′ ≻c s}.
The notation νc,s denotes the set of students s′′ that

is more prioritized than student s at college c. The
condition intuitively requires that any student s has
a higher priority than any of her descendants at any
college c. Only the exception is where college c has
an enough capacity so that c can still accept student s
after accepting some of s’s descendants.

Proof. We first show the sufficiency. When the con-
dition holds, we can guarantee that s is matched to
such a college c before any of her descendants s′ ∈ δs.
Thus, s’s invitation strategy r′s never affects the as-
signment of s. Also, if c has enough capacity, s can
be assigned to c under truth-telling. Thus, strategy-
proofness is guaranteed.

We then show the necessity. Assume that ∃s ∈ S,
∃c s.t. qc ≤ #νc,s, and ∃s′ ∈ δs(θ

′), it holds that s′ ≻c
s. Now consider the case where student s′ is a de-
scendant of student s, both s and s′ have preference
c ≻∅≻ ·· · , arbitrarily chosen qc −1 students among
νc,s \ {s′} have preference c ≻ ·· · , and all the other
students have preference ∅≻ ·· · . In such a case, stu-
dent s is assigned to college c when she choose not to
invite s′ (more precisely, the unique child of s who is
an ancestor of s′), but left unmatched when she invites
s′. This is a violation to SP.

5 ACHIEVING NON-OBVIOUS
MANIPULABILITY

We then consider achieving NOM by the TTC mech-
anism. The following theorem provides the necessary
and sufficient condition for TTC to satisfy NOM.

Theorem 8. TTC satisfies NOM if and only if either

∀s ∈ S, ∀c s.t. qc ≤ #νc,s, ∀s′ ∈ δs(θ
′), s ≻c s′

or

∀s ∈ S, ∀βs ⊆ αs := {c ∈C | c ≻s ∅}, ∑
c∈βs

qc ≤ #
⋃

χc,s

holds, where νc,s := {s′′ ∈ S | s′′ ̸= s,s′′ ≻c s} and
χc,s := {s′′ ∈ S\δs(θ

′) | s′′ ̸= s,s′′ ≻c s}.

The first condition is exactly identical with The-
orem 7, since SP implies NOM. On the other hand,
the second condition requires that, for any subset βs
of colleges that student s is willing to go, the sum
of their quotas must not exceed the number of stu-
dents that are more prioritized than s in at lease one
of these colleges. This condition resembles the well-
known Hall’s marriage theorem (Hall, 1935). Indeed,
our proof strategy for sufficiency essentially searches
a perfect matching between students and colleges.

Proof Sketch. First of all, it is obvious that the best-
case condition of NOM holds for every student s ∈ S;
consider the case where all the students except s re-
ports ∅ ≻ c for every c, and invites all their neigh-
bors. Then, every student except s points to herself,
and thus s is matched to the college that she ranks the
best, by definition of TTC. In other words, the LHS
of the best-case condition of NOM is the most pre-
ferred college of s. Therefore, the best-case condition
holds regardless of what the RHS is. Furthermore,
from Proposition 1 and the fact that TTC is resilient
to preference misreport, we can restrict our attention
to showing NOM only for the diffusion strategy.

Therefore, it suffices to show that the worst-case
condition of NOM, restricted only for the diffusion
strategy, is satisfied if and only if the given conditions
are satisfied. From now on we will show both the
sufficiency and the necessity.

About the sufficiency, it is obvious that TTC sat-
isfies NOM, and even SP, if the first condition is sat-
isfied, as we have already shown in Theorem 7. Here
we show that, the second condition is also sufficient
to guarantee the worst-case condition of NOM, re-
stricted only for the diffusion strategy. As lemma 9
shows, not inviting any student achieves the best-
possible worst case. However, if the second condition
holds, we can find a profile of reports θ′−s under which
all the remaining sheets in αs are filled. Thus, the
RHS of the worst-case condition of NOM is ∅. Since
TTC never assigns students to any college that they
are not willing to go, the RHS of the worst-case con-
dition of NOM is weakly better than ∅, which com-
plete the proof for the sufficiency.

We then show the necessity. Due to its complexity,
we will show an example and explain the intuition.
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See Fig. 3, where there are four students s1, . . . ,s4. We
assume that there are two colleges c1 and c2, whose
quotas are set as qc1 = 2 and qc2 = 1. Now consider
student s1’s strategic invitation.

Assume that student s1’s preference is given as
c1 ≻ c2 ≻∅, and colleges’ priorities are given as

c1 : s4 ≻ s2 ≻ s1 ≻ s3 c2 : s4 ≻ s1 ≻ s2 ≻ s3

Here, s2 ≻c1 s1 violates the first condition of NOM,
and the second condition for NOM is also vio-
lated for s1 and βs1 := {c1,c2}; ∑c∈βs1

qc = 3 and
#
⋃

c∈βs1
χc,s1 = 2.

In this example, the worst-case outcome when s1
sincerely invites s2 is that both s4 and s2 are assigned
to college c1 and s1 is assigned to c2. On the other
hand, the worst-case outcome when s1 does not invite
s2 is that both s4 and s1 are assigned to c1 and s3 is
assigned to c2. In other words, the LHS of the worst-
case condition of NOM is c2, and the RHS is c1. Since
c1 ≻s1 c2 holds, NOM is violated, which concludes
the sketch of the proof.

The following proposition and lemma are used in
the proof of Theorem 8.

Proposition 1. Assume a mechanism µ is resistant to
preference misreport for every student s, i.e., telling a
true preference dominates telling a false preference,
when s’s invitation strategy and all the other students’
reports are fixed. Then, µ satisfies NOM if and only if
µ satisfies NOM only for the diffusion strategies.

Proof. The only-if direction is obvious, since we re-
strict possible manipulations by student s. We then
show the if direction. For the sake of contradiction,
assume that, under such a mechanism µ, there exists
student s, s’s true type θs := (≻s,rs), and s’s misreport
θ′s := (≻′

s,r
′
s) ∈ R(θs) such that either

B≻s(θ
′
s)≻s B≻s(θs) or W≻s(θ

′
s)≻s W≻s(θs).

Note that µ is resistant to preference misreport.
Therefore, for a type θ′′s := (≻s,r′s), both

B≻s(θ
′′
s )≿s B≻s(θ

′
s) and W≻s(θ

′′
s )≿s W≻s(θ

′
s)

holds; even for any fixed θ′−s, it holds that
µs(θ

′′
s ,θ

′
−s)≿s µs(θ

′
s,θ

′
−s). Thus, either

B≻s(θ
′′
s )≿s B≻s(θ

′
s)≻s B≻s(θs)

or
W≻s(θ

′′
s )≿s W≻s(θ

′
s)≻s W≻s(θs)

holds, which contradicts the assumption that µ satis-
fies NOM for the diffusion strategies.

o s1 s2

s3

s4

Figure 3: Example with Four Students.

Lemma 9. Given type θs := (≻s,rs) of student s ∈ S,
consider a type misreport θ′s := (≻s,r′s) ∈ R(θs) in
which student s is not misreporting her preference
and just consider changing her invitation strategy r′s.
Then, under the TTC mechanism, the worst-case out-
come W≻s(θ

′
s) becomes the most preferred by student

s when s does not invite any student.

Proof Sketch. To consider the worst-case for student
s, we can arbitrarily change the preference of all the
other invited students. Therefore, from the defini-
tion of TTC, when student s invites some students
s′, we can imitate the case where s does not invite
s′ by just setting the preference ≻s′ such that ∅≻ ·· · .
In other words, there are weakly more possible out-
comes when s invites s′, implying that the worst-case
outcome is weakly worse when s invites s′.

The following example explains what the neces-
sary and sufficient condition requires, and shows that
how TTC violates SP and satisfies NOM.

Example 1. Assume there are four students,
s1, . . . ,s4, and two colleges, c1 and c2. The social net-
work among students are given as Fig. 3, and student
s1 has a preference c1 ≻ c2 ≻ ∅. Colleges have ca-
pacity qc1 = qc2 = 1, and their priorities are:

c1 : s4 ≻ s2 ≻ s3 ≻ s1 c2 : s4 ≻ s1 ≻ s2 ≻ s3

Note that s2 ≻c1 s1 violates the condition in Theo-
rem 7, but satisfies the other condition in Theorem 8
for every s ∈ S. For example, if we choose βs1 :=
{c1,c2}, both ∑c∈βs1

qc = 2 and #
⋃

c∈βs1
χc,s1 = 2

hold, which do not violate the other condition.
Here, a profile of preferences of s2, . . . ,s4 exists,

under which s1 has an incentive not to invite s2, say,

s2 : c1 ≻ c2 ≻∅ s3 : c2 ≻∅≻ c1 s4 : c2 ≻ c1 ≻∅

Student s1 is unmatched under truth-telling, but would
be matched to c1 if she does not invite s2.

However, student s1 cannot get a better outcome in
both of the best- and worst-cases; s1 is assigned to c1
in the best-case under her sincere preference report,
and s1 is left unmatched in the worst-case even if she
does not invite s2, e.g., consider the case where s3 is
still willing to go to college c1.
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s1 s2

s3

s4

s5

Figure 4: An Example Showing that IBSI-TTC Violates SP.

6 NEW MECHANISM
SATISFYING NOM

As we have already shown in Section 3, just achiev-
ing NOM with other desirable properties is difficult.
Therefore, in this section we ignore other properties
and focus on achieving NOM.

Definition 7 (Invitation-Based Stepwise-Improving
TTC (IBSI-TTC)). Let τ be an empty matching un-
der which no student is assigned to any college. Then,
in each Phase p = 1,2, . . ., apply TTC for all the stu-
dents with distance less than or equal to p, except for
those who are at distance one and do not invite any
student. Let τp be the outcome of Phase p. If all the
students who invite at least one student weakly prefers
τp to τ, then let τ := τp; otherwise keep the current τ.
If all the students are at distance less than or equal to
p, the algorithm terminates and returns τ; otherwise
go to Phase p+1.

The following example demonstrates how the new
algorithm works, and shows that it violates SP.

Example 2. There are six students, s1, . . . ,s6, and
three colleges, c1, . . . ,c3. The social network are
given as Fig. 4, and preferences are:

s1 : c3 ≻∅≻ c1 ≻ c2 s2 : c1 ≻ c2 ≻∅≻ c3
s3 : c1 ≻ c2 ≻∅≻ c3 s4 : c2 ≻ c1 ≻∅≻ c3
s5 : c1 ≻ c2 ≻∅≻ c3 s6 : · · ·

Colleges have capacity qc1 = qc2 = qc3 = 1, and their
priorities are given as follows:

c1 : s5 ≻ s4 ≻ s3 ≻ s2 ≻ s1 ≻ s6
c2 : s2 ≻ s3 ≻ s5 ≻ s4 ≻ s1 ≻ s6
c3 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6

Note that s6 is a direct child of o and does not
invite any student. Such a student is ignored at all in
IBSI-TTC, and thus left unmatched in any case.

In Phase 1, IBSI-TTC applies TTC for s1. In the
tentative matching τ1, s1 is matched to c1. Since this
is better than ∅ for s1, let τ := τ1.

In Phase 2, IBSI-TTC applies TTC for s1, s2, and
s3. Under the tentative outcome τ2, s1 is matched to
c3, s3 is matched to c1, and s2 is matched to c2. Since
τ2 is weakly better than τ for both s1 and s2, who in-
vited at least one student, let τ := τ2.

In Phase 3, IBSI-TTC applies TTC for all the stu-
dents. Under the tentative outcome τ3, s1 is matched
to c3, s5 is matched to c1 and s2 is matched to c2.
Since this outcome τ3 is weakly better than (more pre-
cisely, identical to) the current τ for s1 and s2, let
τ := τ3. We then get the final outcome τ which assigns
s1 to c3, s2 to c2, and s5 to c1.

Now consider the case where s2 decides not to in-
vite s5. Then, Phase 3 differs from the above; under
the tentative outcome τ3 in this case, s1 is matched to
c3, s4 is matched to c2 and s2 is matched to c1. This
is weakly better than the current τ for both s1 and
s2. Thus, the final outcome assigns s2 to c1, which is
strictly better for s2 than the above case. violating SP.

Intuitively, this mechanism keeps updating the
outcome by increasing the number of participating
students, based on the agreement of those who invited
at least one student. Thus, the candidate of final out-
come, which is represented as τ in the description, is
weakly monotonically increasing for them. As a re-
sult, the following lemma holds. Due to the space
limitations, we omit the proof.

Lemma 10. For any direct child s ∈ ro who invites
at least one student, the final outcome of IBSI-TTC is
weakly better than the first tentative outcome τ1.

Indeed, the following theorem shows that IBSI-
TTC satisfies NOM, while it violates SP. As far as the
authors know, this is the first example of mechanisms
that satisfy NOM but violate SP under the two-sided
matching model with information diffusion; the three
mechanisms proposed by Cho et al. (2022) satisfies
SP (or even stronger incentive properties), which im-
plies that they also satisfy NOM.

Theorem 11. IBSI-TTC satisfies NOM.

Proof. There are three categories of students; (i) stu-
dents who are not direct children of o (corresponding
to students s2, . . . ,s5 in Example 2), (ii) students who
are direct children of o and have at least one child (s1
in Example 2), and (iii) students who are direct chil-
dren of o but do not have children (s6 in Example 2).

First of all, for those students in the category (iii),
both the best- and worst-case conditions clearly hold,
since such a student is always unmatched, regardless
of what the other students report. In other words, both
LHS and RHS are ∅, in both of the conditions.

It is also obvious that the best-case condition of
NOM holds for every student s ∈ S in the categories
(i) and (ii); consider the case where all the students
except s reports ∅ ≻s c for every college c, and in-
vites all their neighbors. In this case, s is matched to
the college that she most prefers. In other words, the
LHS of the best-case condition of NOM is the most
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preferred college of s. Therefore, the best-case condi-
tion holds regardless of what the RHS is.

We now show that the worst-case condition holds
for every s ∈ S in the categories (i) and (ii). For (i)
students s ̸∈ ro, when the parent of s does not invite s,
s is unmatched. Since IBSI-TTC never matches any
student to a college that she is not willing to go, this
is a worst-case, regardless of what s reports. Thus,
both LHS and RHS of the worst-case condition is ∅,
implying that the worst-case condition holds.

For (ii) students s ∈ ro who have at least one child,
let θs := (≻s,rs) be the true preference of s. Phase 1
of IBSI-TTC is resistant to preference misreport, from
the known property of TTC in the traditional setting.
Thus, when s arbitrarily misreports her preference, τ1
gets weakly worse. Also, the tentative outcome at
Phase 1 is identical, regardless to s’s invitation strat-
egy r′s. Let τ′1 be the tentative outcome at Phase 1 un-
der s’s arbitrary misreport θ′s. We then have τ1 ≿s τ′1.

Furthermore, there is a possible profile of reports
θ′−s ∈ R(θ−s) by the other students so that students
in distance larger than one prefer to be unmatched.
Under such a profile, the final outcome coincides with
the Phase 1 outcome. That is, τ1 is an upper bound of
the worst-case outcome, even from the viewpoint of
true preference ≻s of s, implying both

τ1 ≿s W≻s(θs) and τ
′
1 ≿s W≻s(θ

′
s).

Also, Lemma 10 implies W≻s(θs) ≿s τ1. Thus,
W≻s(θs)∼s τ1 ≿s τ′1 ≿s W≻s(θ

′
s) holds, which guaran-

tees that the worst-case condition of NOM holds.

IBSI-TTC violates FR, FRN, WNW, MB, and
MB-D. This is mainly due to two facts. First, it is
based on TTC, which violates FRN (and thus FR).
Second, it ignores direct children of o if they do not
invite any students, which is totally wasteful and re-
sults in an unstable outcome. However, we believe
that the idea behind the IBSI-TTC mechanism, guar-
anteeing NOM only and not paying too much atten-
tion to achieve SP, will be a useful building block for
designing better NOM mechanisms in the future.

7 CONCLUDING REMARKS

Our model of two-sided matching with strategic invi-
tation is limited in the sense that the social network
among students are restricted as a tree-shaped. Han-
dling more general structures would be a promising
future direction. For each impossibility theorem, it
would also be required to show the independence of
the properties by providing mechanisms satisfying all
except one properties, though we strongly believe that

they are independent. Diffusion mechanism design
is still a new and developing model of mechanism
design. We believe there are further various exten-
sions to achieve relatively positive results, including
restricting preferences and allowing randomization.
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ternship matching with funding constraints. In Proc. AA-
MAS ’20, pages 97–104.

Cho, S.-H., Todo, T., and Yokoo, M. (2022). Two-sided
matching over social networks. In Proc. IJCAI-ECAI ’22,
pages 186–193.

Crawford, V. P. (1991). Comparative statics in matching
markets. J. Econ. Theory, 54(2):389–400.

Gale, D. and Shapley, L. S. (1962). College admissions and
the stability of marriage. The American Mathematical
Monthly, 69(1):9–15.

Hall, P. (1935). On representatives of subsets. J. the London
Mathematical Society, s1-10(1):26–30.

Kawasaki, T., Barrot, N., Takanashi, S., Todo, T., and
Yokoo, M. (2020). Strategy-proof and non-wasteful
multi-unit auction via social network. In Proc. AAAI ’20,
pages 2062–2069.

Kawasaki, T., Wada, R., Todo, T., and Yokoo, M. (2021).
Mechanism design for housing markets over social net-
works. In Proc. AAMAS ’21, pages 692–700.

Kurata, R., Hamada, N., Iwasaki, A., and Yokoo, M. (2017).
Controlled school choice with soft bounds and overlap-
ping types. J. Artif. Intell. Res., 58:153–184.

Li, B., Hao, D., Zhao, D., and Zhou, T. (2017). Mechanism
design in social networks. In Proc. AAAI ’17, pages 586–
592.

Li, M., Cao, Y., and Zhao, D. (2024). Double auction on
diffusion network. In Proc. AAAI ’24, pages 9848–9855.

Ortega, J. and Klein, T. (2023). The cost of strategy-
proofness in school choice. Games and Economic Be-
havior, 141:515–528.

Rastegari, B., Condon, A., Immorlica, N., and Leyton-
Brown, K. (2013). Two-sided matching with partial in-
formation. In Proc. ACM-EC ’13, pages 733–750.

Todo, T., Wada, R., Yahiro, K., and Yokoo, M. (2021). Lazy
gale-shapley for many-to-one matching with partial in-
formation. In Proc. ADT ’21, pages 390–405.

Troyan, P. and Morrill, T. (2020). Obvious manipulations.
J. Econ. Theory, 185:104970.

You, B., Dierks, L., Todo, T., Li, M., and Yokoo, M.
(2022). Strategy-proof house allocation with existing
tenants over social networks. In Proc. AAMAS ’22, pages
1446–1454.

Strategy-Proofness and Non-Obvious Manipulability of Top-Trading-Cycles with Strategic Invitations

623


