C4D3: A View-Level Abstraction and Coordination Library for Building
Coordinated Multiple Views with D3

Omkar S. Chekuri

2 and Chris Weaver®®

The University of Oklahoma, Norman, Oklahoma, U.S.A.

Keywords:

Abstract:

Coordinated and Multiple Views, Visualization Systems and Tools, Visualization Toolkits.

D3 is a popular and effective library for the development and deployment of visualizations in web pages.

Numerous applications testify to its accessibility and expressiveness for representing and manipulating page
content. By eschewing toolkit-specific abstraction, D3 gains representational transparency, but at a cost of
modularity. Relatively few D3 applications compose multiple views or support coordinated interaction be-
yond basic navigation and brushing. Rather than relegate view composition to custom integration code, we
overlay D3 with a view-level abstraction that utilizes a general parameter sharing model to offer simple yet
flexible composition of coordinated multiple views (CMV) while preserving the expressiveness of individual
D3 components. Coupling of event handling to shared parameters recasts modeling of interactive state and
simplifies the declarative specification of interactive dependencies between views. We present an example of
an extensively coordinated visualization, illustrative code to show CMV construction in C4D3, and demon-
strate how view-level abstraction can reduce the code needed to compose complex D3 visualizations.

1 INTRODUCTION

Web-based interactive visualizations are increasingly
used for data exploration and analysis. While a sin-
gle interactive view is often sufficient to present one
perspective on a data set, coordinated multiple views
(CMV) with interactive capabilities are usually re-
quired to support multifaceted perspectives for com-
prehensive analysis. Yet, it remains challenging to
build CMV in popular low-level web-based libraries
due to their lack of coordination abstractions (Chen
et al., 2022). Higher-level design tools like Tableau
and Power BI are conversely limited to predefined sets
of relatively simple coordination templates.

Data-Driven Documents (D3) has emerged as a
widely adopted library for embedding visualizations
within web pages (Bostock et al., 2011). D3 offers an
accessible, expressive, declarative language for repre-
senting and transforming data in the Document Ob-
ject Model (DOM) of a web page. Furthermore, it en-
ables manipulation of that data by associating interac-
tion events with transformations, thereby supporting a
wide variety of interaction visualization designs.

The tendency in web-based visualization design

https://orcid.org/0009-0002-7197-7954
b nttps://orcid.org/0000-0002-6713-093X

Chekuri, O. S. and Weaver, C.

is to favor simpler designs suited for communica-
tion and explanation. Composite designs, like those
with CMV constructions commonly utilized in explo-
ration and analytical applications, are relatively rare.
This is not exclusive to visualizations built using D3.
Visualizations built using other libraries and toolk-
its (Fekete, 2004; Bostock and Heer, 2009; Satya-
narayan et al., 2014; Satyanarayan et al., 2017) ex-
hibit the same tendency. This scarcity can generally
be attributed to limitations in language and feature
support, as well as to the inherently more complex
nature of designs comprising multiple views.

The scarcity of complex CMV constructions us-
ing D3 may arise from its goal to avoid imposing
a toolkit-specific abstraction of visual representation.
Unlike many visualization libraries, D3 does not ex-
plicitly define the concept of a “view”; rather, it leaves
the definition of a view largely to developer discre-
tion. This flexibility allows D3 to transform page
structure and styling in ways that may not align with
commonly recognized view types. However, D3’s
constraints on interaction handling and encapsula-
tion of event processing make it challenging to com-
bine different interaction channels that rely on the
same events, especially when conflicting events oc-
cur (Satyanarayan et al., 2017) (such as how D3 re-
lies on mouse click and drag for both brushing and

955

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3.

DOI: 10.5220/0013322000003912
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 1: GRAPF, HUCAPP

and IVAPP, pages 955-966
ISBN: 978-989-758-728-3; ISSN: 2184-4321

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

panning). Composite visualizations typically involve
not only multiple views, but also multiple coordinated
interactions between those views to support diverse
manipulations of data and how it appears. As the
number of views and the complexity of interactions
increase, so does the challenge of managing depen-
dencies between D3 fragments corresponding to each
“view” and its associated portion of the DOM. Vega-
lite (Satyanarayan et al., 2017) and the interaction se-
mantics introduced in Reactive Vega (Satyanarayan
et al., 2014; Satyanarayan et al., 2016) seek to ad-
dress these concerns, but do not directly address the
issue of composability of CMV in visualization de-
signs. Selection parameters in Vega-Lite convert user
interactions into data queries that share state between
views. However, these selection interactions are re-
stricted to point and intervals, limiting expressiveness
when trying to design custom selection interactions,
such as selection of arbitrary data points in views,
or when implementing non-selection-based complex
data queries that depend on navigation.

C4D3 contributes a view encapsulation and inter-
action abstraction library implemented on top of D3.
It aims to support expressive design and elegant spec-
ification of coordinated multiple views by adopting
the three main design principles of the Live Proper-
ties architecture in the Improvise visualization sys-
tem (Weaver, 2004). First, modular view implemen-
tation facilitates the design and reuse of common and
custom view types in CMV constructions. Second,
clean separation of view implementation and coor-
dination design makes building and modifying com-
plex CMV constructions simpler and easier than with
monolithic approaches. Third, lifting the storage and
management of interaction state from view-local to
visualization-global, while keeping the interpretation
of state and changes to it view-centric, facilitates flex-
ible and meaningful sharing of state to implement
expressive and understandable coordination designs.
We followed these principles to develop C4D3 with
the objectives of increasing transparency, extensibil-
ity, modularity, composability, consistency, and con-
sonance of web-based CMV visualization design.

In this paper, we present C4D3’s coordination ar-
chitecture based on Live Properties, a JavaScript im-
plementation of that architecture, the design and im-
plementation of a view wrapper to adapt D3 rendering
and interaction handling code for coordination, and
several common view types implemented as D3 code
within the wrapper. We demonstrate C4D3’s capabili-
ties via a reproduction of a classic CMV visualization
with extensive navigation and selection coordinations,
illustrate the process of implementing a simple CMV
design with C4D3, and assess our progress toward

956

achieving our objectives for C4D3. We conclude that
C4D3 can support an incrementally expanding collec-
tion of D3 components as view modules that can be
quickly and easily instantiated and interconnected to
implement expressive CMV patterns. While imple-
menting particular views for use in a multiple view vi-
sualization design in C4D3 does usually require writ-
ing at least some custom D3 code for each view, the
effort is similar to writing different components in D3
without C4D3, and the modularity of the C4D3 view
wrapper amortizes the effort needed by allowing sub-
stantial code reuse between similar views, much like
how D3 designers often modify existing D3 examples
rather than start from scratch.

Supplementary material and the code for the
C4D3 examples in this paper can be found online at
https://omkarchekuri.github.io/c4d3/.

2 RELATED WORK

C4D3 introduces a view abstraction and a general pur-
pose coordination layer adapted from the Improvise
architecture (Weaver, 2004) for specifying and build-
ing coordinated visualizations as data flow graphs. As
an implemented library, C4D3 provides coordination
capabilities that build on the existing visual represen-
tation capabilities of D3, thus applying a separation of
concerns between D3’s visualization rendering code
and C4D3’s coordination management. This separa-
tion allows for swapping out D3 code with other li-
braries or combining visual representations from mul-
tiple libraries to compose a CMV visualization.
Research on coupled interaction have been piv-
otal in the evolution of information visualization.
Constraint-based Uls like Garnet (Myers et al., 1990)
and Rendezvous (Hill et al., 1994), and seminal visu-
alization systems such as Tioga-2 (Aiken et al., 1996),
Visage (Roth et al., 1996) Spotfire (Ahlberg, 1996),
and XGobi (Buja et al., 1996), heavily influenced
work on CMV systems including IVEE (Ahlberg
and Wistrand, 1995), DEVise (Livny et al., 1997),
Snap-Together Visualization (North and Shneider-
man, 2000), GeoVISTA Studio (Takatsuka and Gahe-
gan, 2002), CViews (Boukhelifa and Rodgers, 2003),
and Improvise (Weaver, 2004). This long history un-
derscores the persistent challenge of balancing design
accessibility and expressiveness and bridging capabil-
ities of visualization systems (Fekete et al., 2011).
More recently, Nebula (Chen et al., 2022) pro-
vides an abstraction layer for constructing coordi-
nated visualizations using macros to abstract coordi-
nation specifications. It offers efficient CMV design
through textual specification of supported coordina-

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3

Figure 1: Reproduction of various coordinations in the Improvise cubic ion trap visualization (Weaver, 2004) with 12 C4D3
views: (A) three time series plots synchronize scrolling horizontally; (B) independent vertical scrolling in those plots; (C)
shared selection between scatter plots and the table; (D) overview SPLOM showing three sides of the cube; (E) detail SPLOM
zoomed to ranges selected in the overview; (F) a selected range in a color slider filters items in a parallel coordinate plot.

tion patterns. The extensibility of coordinations and
implementation of complex coordination patterns be-
comes challenging when users are restricted to the
existing natural language patterns backed by higher-
level language parsers. Text specification allows one-
way binding from the source visualization that ac-
cepts the interaction to the destination that shows the
result. This makes specification accessible and more
natural, but limits design expressiveness. The archi-
tecture is also limited to interactions that trigger up-
dates only upon completion. Nebula is similar to
C4D3 in how it separates coordination from visual
representation, despite their substantial differences in
coordination specification and expressiveness.

User interface frameworks like React offer a
component-based architecture in which UI elements
are treated as self-contained components organized in
a hierarchy. React uses a combination of strategies to
coordinate view components in the component hier-
archy. It uses props, callbacks, and context to coordi-
nate the parent component with the child component.
Additionally, libraries like Redux offer a pattern for
organizing global state and ensuring predictable state
management for JavaScript applications built on Re-
act. Although these libraries together support state
management for building views (as Ul components)
that can be coordinated using shared state, they do
not provide an abstraction layer for specifying coor-
dination between views. They rely on developers to
implement custom logic to manage complex view in-
teractions and state changes across coordinated views.

CViews (Boukhelifa and Rodgers, 2003) offers a
coordination model in which objects in a coordina-
tion space are directly linked to views through transla-
tion functions. Use-Coordination (Keller et al., 2024)
provides a reactive library based on this coordina-
tion model, implemented in the ReactJS library. One

shortcoming of the coordination abstraction layer in
this model is that views are directly dependent on
coordination objects; the translation functions tightly
couple coordination objects to view implementations.
In contrast, Live Properties (Weaver, 2004) provides a
level of indirection such that coordination objects are
not directly coupled to views but instead are linked
to properties of the views. Coordination objects can
provide information of any type for views to share and
translate for individual use. This indirection expands
coordination to allow sharing not only of interaction
characteristics, but also of behavior and appearance,
thereby providing an abstraction layer that is flexible
enough to express a wide variety of view couplings
far beyond those usually encountered.

C4D3 builds on D3’s capabilities to make coordi-
nation capabilities accessible to the wide community
of D3 users with implementation cost at or below that
of D3 on its own. It provides flexible coordination
between views by abstracting the coordination from
the visual representation and interaction with it, while
still maintaining the flexibility and expressiveness to
author open-ended coordination patterns. It also opti-
mizes view updates in response to interaction by only
updating the affected parts of the DOM, thereby al-
lowing intermediate updates during protracted inter-
actions and with it a sense of interactive immediacy
(depending on the latency of the updates themselves).

3 EXAMPLE

Figure 1 shows a reproduction of the Improvise cu-
bic ion trap visualization comprising 12 coordinated
views created with C4D3. The C4D3 library pro-
vides a variety of view modules, each tailored to ex-
hibit distinct behaviors and appearances using D3 in-

957

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

ternally for visual representation and interaction han-
dling. The example employs two types of scatter plot
module: one to provide an overview, and the other
to present a detailed view. It also employs a parallel
coordinate plot module, a table view module, and a
gradient plot module. A significant portion of a view
module consists of D3 code for constructing and up-
dating the view, while other code sections pertain to
methods for updating the view’s internal state stored
in the view wrapper. To create new types of views
as view modules in C4D3, one makes a copy of the
wrapper template and customizes it to include the de-
sired D3 code in the functions in those sections.

In C4D3, the code for CMVs is written in a
declarative manner by supplying input data and view-
specific parameters to the view modules and binding
coordination objects between them. Arbitrary sub-
sets of views can share appearances and behaviors by
binding different objects that store and manage the
desired appearance and behavior states of the visu-
alization as a whole. For instance, it is possible to
select a subset of views with similar or dissimilar ap-
pearances, such as scatter plots and a table view, to
highlight the same data point when hovered over with
a mouse in any of these views. In another scenario,
the same or different subsets of views can be selected
and coordinated by having selected items in one view
highlighted in other views. A more complex exam-
ple, shown in Figure 1, coordinates a range selection
in the gradient view with an item highlighting filter
applied in the parallel coordinate plot. Views can also
be instantiated from the same view module to be co-
ordinated through common design elements. For ex-
ample, scatter plots that share the same data can yoke
their individual axes to the visual extent of the data
as each one displays it. Mixing and matching coordi-
nation strategies allows for versatile and open-ended
ways to coordinate views, offering designers ample
flexibility in achieving their desired outcomes.

4 VIEW ABSTRACTION AND
COORDINATION IN C4D3

Visualization designers create and use many dif-
ferent kinds of interactive data views. Although
the introduction of fundamentally new view types
is less and less frequent, the visualization commu-
nity continues to study known views, their variations,
how to implement them, and how to compose them
into larger structures including coordinated multiple
views. There is particular interest in helping users cre-
ate CMV designs themselves. Balancing expressive-
ness and accessibility of specification is a key chal-

958

lenge in this effort.

With C4D3, we approach this challenge by adopt-
ing a level of view abstraction based on the param-
eter set model of visual exploration (Jankun-Kelly
et al., 2007). This model treats visualization state
as a collection of parameters, some or all of which
can be modified through interaction. The Live Prop-
erties architecture in the Improvise visualization sys-
tem (Weaver, 2004) builds on the parameter set model
by adding a model for defining views in terms of
properties (slots), binding those properties to vari-
ables (parameters), and broadcasting update notifica-
tions between views whenever any of them changes a
variable interactively. Instead of coordinating views
through low-level interactions (too mechanical) or
high-level semantics (too abstract), Live Properties
coordinates views through a middle-level of concrete,
meaningful state objects. Navigation interactions
translate into ranges, angles, and distances. Selec-
tion interactions are captured as an array of brushing
hits indexed to data items. Inside view implementa-
tions, translating common visualization interactions
into such state objects is straightforward, as is pa-
rameterizing the visual encoding of data as a function
of the state objects. Coordination in Live Properties
is accessible because the state object data types, and
how they relate in a view, are easy to understand. It
is expressive because views can be interactively cou-
pled with each other in a myriad of ways well suited
to both standard and custom coordination design.

C4D3 combines a re-implementation of the Live
Property architecture in JavaScript with a wrapper for
encapsulating the JavaScript code of D3 visualiza-
tions as a Live Property view type. To implement
a new view type, a visualization developer makes a
copy of the wrapper. They then insert code to create
the properties of a view when it is instantiated. Next,
they insert the D3 code fragments that perform event
handling and visual encoding appropriate to that view
type. Finally, they modify the fragments to translate
interaction events into property changes and calculate
visual encodings from property values. Designers can
adapt existing C4D3 views or create view variations
by adding relevant Live Properties to support coordi-
nation in the widely available rich set of D3 examples.

The view wrapper also provides the functionality
needed to propagate interaction events and property
updates to keep the view updated. Figure 2 shows the
internal components of C4D3 views and how they are
connected through variables for coordination. Each
view has event listeners attached to the DOM cor-
responding to various mouse, keyboard, and touch
events. Each property of a view registers with relevant
listeners to receive notification of events. When it re-

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3

Figure 2: The internal structure of C4D3 views and
their external coordination through variables. Interaction
events propagate via properties to change variable values.
Changed variables broadcast update notifications though all
connected properties to trigger view updates.

ceives an event notification, it modifies the value of its
bound variable (if it has one). The variable broadcasts
the value change to all bound properties, including the
originating view itself. Each property that receives a
variable change notification triggers a draw event to
update its parent view. When a view updates itself,
it accesses current property values as needed. The
originating view does not necessarily trigger a draw
event directly in response to the interaction, but this
can be done to draw a visual side-effect of interac-
tion, such as to show the brushing shape itself. This
approach allows clean decoupling of event handling
code from property update code inside views. This
approach also allows variables to be initialized (and
even updated by other means) in a way that keeps all
views up to date at all times, including upon first dis-
play. A property can also be tagged as active or pas-
sive to indicate whether interaction in its parent view
can affect it or not.

This approach to view abstraction and coordina-
tion in C4D3 has several advantages. First, it makes
the implementation of individual views entirely inde-
pendent of each other. Views communicate only in-
directly through variables, and have no direct connec-
tion to or even knowledge of each other. Second, it
eliminates the need to write custom code inside views
to implement the coordinations themselves. Third, as
a consequence of the previous two, it substantially in-
creases the scalability of coordination constructions
in terms of the number of views, the number of shared
state objects, and the overall amount of interactive
interdependence that can be implemented with little
code. The specification of the structure of coordina-
tion between views is effectively externalized from
the views themselves. If one can implement a view
type in C4D3, then any number of instances of that
view type can be created and coordinated. One can
create new interactive designs in D3 and wrap each
in the C4D3 wrapper in a way that effectively sepa-

rates the concerns of visual representation design and
coordination specification.

C4D3 provides a variety of data types to define in-
teractive state values, such as plot ranges and item se-
lections. Views create, interpret, and utilize property
values based on their type. For instance, if a view uses
a bit array property to brush and highlight selected
items, the visualization designer can create a variable
of that type to bind to that view’s property, then bind
it to other properties of any views to coordinate them
through that typed value. Types helpfully communi-
cate each view as a property-based API to designers,
and constrain how property values can be expected to
effect visual representation and interaction handling
in different views. Views can use their property val-
ues for representation and/or interaction as they need
to, including to parameterize an internal data transfor-
mation pipeline. As a result, C4D3 supports flexible
coordination well beyond basic navigation and selec-
tion, through the addition of view variants that define
and utilize their properties in sophisticated ways.

S IMPLEMENTING CMYV IN C4D3

C4D3 is implemented as a JavaScript library that con-
sists of six distinct software layers to build CMVs: (1)
the D3 library handles DOM specification and inter-
action handling of views; (2) modules built on D3 set
up a view, render and update it, and update its prop-
erties upon a change in state of the view; (3) view
wrappers interface view modules to the coordination
library; (4) a coordination library manages coordina-
tions between the views; (5) an API layer provides
abstraction for interacting with individual view con-
trols to support creation of views and specification of
coordinations; and (6) CMV applications build on the
API layer. Figure 3 summarizes the general structure
of the code one needs to write to implement an ap-
plication using these layers. First, implement view
modules (Figure 3a—d). Next, implement the corre-
sponding view wrappers (Figure 3e—f). Finally, set up
and initialize the application itself (Figure 3g—j).

Figure 4 shows a simple example that visualizes
a taxonomy of food with three views: a treemap, a
radial tree, and a bar chart. Each view has an indica-
tion property that determines which item to highlight
when that item is hovered over by the mouse in any
of the views. The properties are bound to a common
variable to establish the coordination. In the rest of
this section, we present the complete code to specify
the example and explain its construction.

959

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

C4D3 Applications

Application 1:
Setup and Initialization

Load Data
Create Controls -
Create Variables

Variables to
Properties of Controls|

Application 1:
Setup and Initialization

Load Data
Create Controls

Create Variables

Bind Variables to
Properties of Controls|

.ii

C4D3 Views
View Control 1 View Control 2
() Creet Properies |
Bargraph Treemap
@I oo

Render Initial
D3 View
Update D3 View with
Property Values
Update Property
Values on Interaction

Mofify Views about
Changes to Properties|

©)

Update D3 View wi
Property Values
Update Property

Values on Interaction

Mofify Views about
Changes to Properties)

@) ()

)

Figure 3: Code organization in C4D3: (a)—(d) view mod-
ules; (e)—(f) view wrappers; (g)-(j) CMV applications. See
the main text for descriptions of the code for labels (a)—(j).

5.1 Coding View Modules

A CMV application can be built using existing view
modules, including several common examples pro-
vided by the C4D3 library, and by writing any
needed additional view modules and their correspond-
ing view wrappers. View modules are responsible for
setting up the initial view representation (Figure 3a—
b), updating the views (Figure 3c), and translating in-
teractions in views into property changes (Figure 3d).
The majority of code that needs to be written when
creating a new view module is the D3 code (Fig-
ure 3b—c).

Figure 6 shows the module code for the bar chart
view in Figure 4. The code in Figure 6a creates an
empty boolean array, initialized with false values, and
sized to match the input data, for storing the values of

4
.

Orange
15

Quantity

Goat Shrimp &
16 5

ug

Fish
10

Food item

Figure 4: A CMV visualization with three views: a treemap,
a radial tree, and a bar chart. The views are coordinated to
highlight the item hovered over in any of the views.

960

an indication property to track the mouse hover. Fig-
ure 6d shows the code to create the initial bar chart
view using the vanilla D3 code for a bar chart shown
in Figure 6e (hidden for brevity). The code shown
in Figure 6f updates the value of the property when
mouse interactions (onMouseOver and onMouseOut)
occur, changing the property value by altering the bit
values of appropriate DOM elements to true or false.
The property change also notifies the view wrapper
and triggers any needed updates to the view, as shown
in Figure 6¢c. View modules must separate the code
for each of their property types into distinct update
methods. The module code for the treemap and radial
tree views is structured the same way and was imple-
mented by copying the bar chart module code then
modifying the property update code as in Figure 6¢
and the D3-specific code as in Figure 6e.

// Control class for the BarGraph view module

export class ControlBargraph implements Control {
public CTAG Indication: string = "Indication":
public TYPE Indication: Prototype = new Prototype(

Array.prototype, this. CTAG_Indication, [false]);

public proxy: ControlProxy:
public bargraph: BargraphClass;
public live_property Indication: LiveProperty:
public ControlName: string;

// Constructor
constructor(
name: string,
data: Array<any=>,
xPos: number,
yPos: number,
horizontal: Array<String>,
vertical: Array<String>,
inputWidth: number,

inputHeight: number @
)

this.proxy = new ControlProxy(this); Create live
this.live_property_Indication = this.proxy.add(property for
)i

this.CTAG Indication, this. TYPE Indication,true indication
this.ControlName = name;

this.bargraph = new BargraphClass(

this, data, name, xPos, yPos,

horizontal, vertical, inputWidth.inputHeight):

i

Instantiate

the view with @
appropriate

parameters

// Public Methods (Properties)
public getProxy(): ControlProxy {
return this.proxy;}

// Method to update the view on live property change
public propertyChanged(e: LivePropertyEvent): void {
var tag: string = e.getLiveProperty().getTag(); @
if (tag == this.CTAG_Indication) {
this.bargraph.setIndication(
e.getLiveProperty().getVariable()
.getValue() as Array<any>

Update the view by
calling appropriate
method on detecting
change in the value
)i} of live property

)

Figure 5: Wrapper (control) code for the example bar chart,
showing: (a) initialization of properties, (b) initialization of
the view, and (c) notifying the view of property changes.

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3

import * as d3 from "d3";

import { Draggable | from "../utils/Draggable.js";

import { ControlBargraph } from ". /control/ControlBargraph js":
import { Utils | from "../utils/utils.js";

##+ Continued from previous column *##

/render the view
private render(

tControl: ControlB:
export class BargraphClass | zazen]ggnN ontrolBargraph,
ata: JSON,

ControlName: string;
Data: Array-<any=;
IndicationDictionary: Object;

xPos: string | number,
vPos: string | number,
xAf: String[] | (string | number)[].
vAtt: Sting[] | (string | number)[],
constructor(-
plotWidth: number,
control: ControlBargraph, lotHciaht: numb
data: Amray<any>, plotHeight: number

S). void | _
;me., strml;g. var divl; HTMLDivElement = document.createElement("div");
Pm: uumban div1.id = this.ControName:
:1 Ets' mmLIA‘e':‘ U div].className = "barg raph";
on.zm.m : Xis: Almy-‘strmg-r-. div1.style left = xPos + "px";
verticalAxis: Array<String=, divstketon =y + Ve
inputWidth: number, @ N 4 e
]llllpmH?lghL‘ number //create a div header for the scatterplot r (?o@e_ fo
N - [var div2 = document.createElement("div"); posion
this.ControlName = name; .(r.e.ate div2 id = div(l i P haaans (div') the view
this IndicationDictionary = Utils tnitial di\';.classNaﬁe - "bargmph‘hﬂder"' in the
.createBooleanDictionaryFromAumray(data[0]. "Indication")Z|> ;31‘;? for) - 3 layout
e hve
//make the div header a child to the div element
this.renden(control, data[0]. xPos, yPos, property div1.appendChild(div?):
) horizontalAxis, verticalAxis, inputWidth, inputHeight); var IndicationDictionary = this. IndicationDictionary:; -
] - function renderBargraphidata: any | ArrayLike<unknown=>) {
Make the view draggable across the layout @
makeDraggable() {
var D1 = new Draggable(): D3 js code
var temp = this.ControlName; // The core D3 js code to implement the bargraph view to c}eate
/{ would be about 70 lines ...
bargraph
try {
document Method to
.getElementByld(this.Contro[Name + "header™)! give the T
addEventListener("mousedown”, L abq"}' fo bars.on(" monseover”, onMouseOver).on(" monseout"”, onMouseOut);
function () { adjust the
D1.dragElement(document.getElementByld(temp)): View in s L A
t_‘ the layout function onMouseOver(d: any, event: Event) {
_ml“ Utils.setBooleansToFalse(IndicationDictionary, "Indication");
s IndicationDictionary[event.Id].Indication = true; @
| catch (error) |
throw Error(parentControl ‘.getP.roxy-().geerw’ePropcﬂy("hdication") Callback
“The Element by id * + this. ControlName + " do not exist" -setValue([IndicationDictionary]): functions
%t i L | toupdate
} - the value
@ // Event handler for mouseout of live
1 Setters for updating the view function onMouseOut(d: any) { property
setIndication(IndDats: Array<any>) | Method to Utils.setBooleansToFa lse(IndicationDictionary, "[nfiicu[iun"):
if (this.Data — undefined || IndData[0] == undefined) { update the parentControl. getProxy().getLiveProperty("Indication™)
.) View on .setValue([IndicationDictionary]);
i else |)) . change to }
d3.select(48 {this.ControlName} ") the value : §
selectAll("rect") of live
_style(:::stmke‘-.\v|drh"i 2) o = property renderBargraph(data):
.style("stroke", function (d, index) { document body.appendChild(divL);
return IndData[0][d["Id"]].Indication = true ? "black" : null; this. makeDraggable():

s |
##+ Continued on next column *+*

Figure 6: Module code for the example bar chart, showing: (a) initialization of properties, (b) a utility method to enable
interactive positioning of the view, (c) a method to update the view upon property changes, (d) code to position the view in
the layout, (e) D3 code to render the view, and (f) callback functions to update the property upon interaction in the view.

5.2 Coding View Wrappers termining which properties a view needs to have for

coordination with other views. The wrapper defines
Each view module has a corresponding view wrapper and maintains the properties that encapsulate the ap-
(also referred to in the API as a view control). Creat- pearance and behavior of the view (Figure 3e) and
ing a wrapper for a new view module focuses on de- acts as an interface between the view module and

961

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

import C4D3 from "./c4d3";
import * as d3 from "d3";

% Continued from previous column *

import { Utils } from " /utils/utils"; /fereate control for the bargraph I
let bargraph = C4D3.createControl({
/fload the data @ controlName: C4D3.controlTypes.Bargraph,
d3.json("./data/test json") data: [parsedData], uniqueLabel: "BG-01",
‘then(function (data) { Loe.ld and_ xPos: layout.left + 2 * (layout.width + layout.padding),
const dataWithId = JSON.parse(JSON.stringify(data)); gsmgf\ unique yPos: layout.top,
//Assign uinque id's to each item identifiers to viewWidth: layout.width, viewHeight: layout height,
Utils.assignldsBreadthFirst(data Withld): the items in horizontalAxes: ["Node", "Food item"], @
Jfcall the fuucum‘l to create visualization the JSON data vertical Axes: ["Value", "Quantity"], }):
Example(dataWithId); }) Create
'catCh(f“nd"?‘u (error) { = & /fcreate control for the treemap controls for
console.log("Error loading data:", error); }); let Tree = C4D3 createControl({ bargraph,
J/ function to create example controlName: (‘,4.1D3.comroll'ypes.Treemap B lree.map,
function Example(Data: any) { data: [Data], uniqueLabel: "TM-01", radial -
7) 1
/variables that define the size and position of the view x“Pos: l?}youl.lefl. yPo_s: lay(‘)ul.lopq‘) npdc link
comst layout = { width: 300, height: 300, left: 10, top: 50, viewWidth: layout.width, viewHeight: layout height, }); views
padding: 0 };
/fcreate control for the nodelink tree
Create en empty array to store the json data as array let Tree2 = C4D3.createControl({
comst parsedData: { Id: any; Node: any; ParentNode: any: controlName: C4D3.controlTypes RadialNodelink,
Value: number; Level: number; }[]1=[]; data: [Data], uniqueLabel: "TM-02",
//create a hierarchical root node object from the json data Create xPos: layout.left + layout.width + layout.padding,
const root = d3.hierarchy(Data) hierarchical yPos: layout.top,
_sum(function (d) { return d.value;}) data from viewWidth: layout.width, viewHeight: layout.height, });
_sort((a, b) => b.value - a.value); JSON data - @
J/ function to parse the iterate over the hierarchy and create an array //create a variable to store and coordinate the indication
function CreateArray(node: d3.HierarchyNode<any>, depth = 0) { let Indication 1 = C4D3.createVariable({ roperty Cre.ate a
parsedData.push({ variableName: "Indication 1", value: [], variable to
1d: node.data id, @ classType: Array. prototype, }): store Fhe state
Node: node.data.name, of Indication
ParentNode: node.parent ? node.parent.data.name : node. parent, Create an array /Mink the variable to the bargraph
Value: node.value, | from the C4D3 bindVariable({ control: bargraph,] @
Level: node.depth}); hierarchical data liveProperty: "Indication", variable: Indication_1, });
//link the variable to treemap Bind the
if (node.children != undefined) { C4D3.bindVariable({ control: Tree, variable to
node.children.forEach((child) => CreateArray(child, depth + 1)): } || liveProperty: "Indication" variable: Indication 1,}); F| “Indication”
//link the variable to nodelink tree live property
CreateAmay(toot); = C4D3.bindVariable({control: Tree2, of view
liveProperty: "Indication", variable: Indication 1});} controls

% Continued on next column *

Figure 7: Application code for the example, showing: (a)—(c) loading and preparing data, (d) instantiating views, (e) instanti-
ating variables for the hover coordination, (f) binding the variable to the properties of views to establish the coordination.

the coordination layer by updating the view when a
change is detected in any of its properties, either by
the result of interaction with the view itself or by the
result of coordination with other views (Figure 3f).
Figure 5 shows the wrapper code for the ex-
ample bar chart view in Figure 4. The code in
Figures Sa—c creates the indication property (called
“live_property_indication”), instantiates the view for
that property, and notifies the view of incoming
changes to that property from outside the view, re-
spectively. In Figure 5a, the property is tagged as an
active property (“true” on the third line) that can be
changed by the view itself, as opposed to a passive
property (which would be “false” on that line) to indi-
cate that the property can change due to coordination
with other views but is not affected by interaction in
its own view. The wrapper code for the treemap and
radial tree views is structured the same way and was
implemented by copying the bar chart wrapper code
then modifying the code in Figure 5b to instantiate
each respective view with its needed parameters.

962

5.3 Coding CMV Applications

Creating a CMV application involves initializing the
constituent views and specifying coordination using
the C4D3 API layer, broken down into the four steps
shown in Figure 3g—j. First, load the data and cre-
ate parameters that define the size and position of the
views, such as width, height, and position. Second,
instantiate the view controls with this data and the pa-
rameters. (Alternatively, the layout of the CMV can
be managed using a CSS library like Bootstrap to sup-
port a responsive grid system for arranging individ-
ual views, further simplifying the code for individual
view setup.) Third, create variables to store the state
of the views as property values. Fourth, bind the vari-
ables to the appropriate properties of the view controls
to specify coordination.

For the example shown in Figure 4, we first load
and prepare the data (Figure 7a—c), then create layout
parameters and instantiate the view wrappers for the
bar chart, treemap, and radial tree views (Figure 7d).
Next, we create a variable called Indication to store

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3

the coordinated interaction state of hovering shared
by the views (Figure 7e¢). We use a simple array as
the property type to represent the shared hover inter-
action state, with True and False in the array to repre-
sent whether a given data item is being hovered over.
Finally, we coordinate the views by binding the Indi-
cation variable to the Indication property of all three
view wrappers (Figure 7f).

Evolving a CMV application to include additional
views and/or coordinations is a straightforward matter
of instantiating more view wrappers (adding blocks
to Figure 7d), creating more variables (adding blocks
to Figure 7e), and/or binding variables to more view
properties (adding blocks to Figure 7e). A coordi-
nation design can be rapidly and incrementally re-
vised by mixing and matching variables to views
through their properties. Incremental creation of new
view types or modification of existing ones can be
performed by copying and editing view module and
wrapper code before returning to the application code
to incorporate those view types and coordinate them.

6 COORDINATION PATTERNS

With multiple views in a visualization, users can
see and interact with data from multiple perspec-
tives simultaneously. Coordination allows users to
combine the interactions of different views to com-
pose more complex queries than would be possible
in any single view. To support common data explo-
ration strategies (Shneiderman, 1994), many visual-
izations employ basic navigation and selection co-
ordinations (North and Shneiderman, 1997), such as
brushing (Becker and Cleveland, 1987). Techniques
like compound brushing (Chen, 2003) and cross-
filtering (Weaver, 2010; Square, 2012) employ co-
ordination constructions that interplay with data pro-
cessing and querying in more complex ways.

While our current view abstraction focuses on
supporting basic forms of coordination, it is suf-
ficient to realize many common coordination pat-
terns (Weaver, 2007b), and visualization designers
can vary and synthesize them to suit specific appli-
cation needs. Transparency of D3 code in views also
leaves the door open for designers to implement di-
rect view dependencies if they so desire. Here we de-
scribe a few of the general coordination patterns that
were readily designed into the above C4D3 examples
of ion motion (Figure 1) and food types (Figure 4).

*» Synchronized scrolling in Figure 1A coordinates
the horizontal range of time visible in three time
series plots. Each plot has a pair of live proper-
ties to represent its visible horizontal and verti-

cal ranges, each corresponding to a translated axis
value in D3. Changes to either range are applied
to the corresponding axis and the points in the plot
are repositioned accordingly.

* A scatterplot matrix (SPLOM) shown in Fig-
ure 1D is a more complex construction of range
bindings. Three data dimensions are laid out in
a traditional stair-step arrangement of plots. X, Y,
and Z range variables are bound to the range prop-
erties of the plots so as to create the expected syn-
chronization of scrolling across all three views.

* Figure 1F shows a custom example of a percep-
tual slider coordination between a color slider and
a parallel coordinate plot. The two views share a
range variable for a selected range of color in a
color gradient. The two views also share a color
gradient for sake of visual consistency. In this
case, we implemented both as general-purpose
views but tweaked their respective D3 code to use
the same gradient by coincidence.

» Shared selection in Figure 1 supports brushing
between the three time series plots and the table
view. The three plots in the SPLOM are similarly
coordinated, but via a second selection variable.

» Shared indication in Figure 4 similarly coor-
dinates hover interactions across several of the
views, in this case of a food item. As in shared
selection, data items hovered over in any of the
coordinated views is highlighted in all views.

7 DISCUSSION

We developed a specialized coordination library that
integrates well with the popular data and visual rep-
resentation capabilities of D3, enabling flexible com-
bination of views and coordination to build simple or
complex CMYV visualizations. In the following sec-
tion, we discuss the design choices we made for C4D3
and assess achievement of development objectives.

7.1 Modular View Support

Building CMVs using C4D3 can take advantage of
substantial code reuse. A large fraction of the code in
view wrappers is shared between views with a small
portion needed to add new properties for coordina-
tion. Implementation of new views nevertheless re-
quires structuring D3 code in a different, modular way
to support coordination, as discussed in Section 5.1.
The complexity of code in a view depends mainly
on how expressive we want the view to be to present

963

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

itself as a collection of properties available for co-
ordination with other views. New C4D3 designers
should start with CMV examples that support sim-
ple coordination patterns, such as shared selection and
shared navigation, and incrementally develop support
for more complex coordination patterns.

Despite its name and concentration on D3, the
implementation of C4D3 does not inherently restrict
designers from substituting an alternative charting li-
brary for D3. However, the alternatives would likely
vary widely in how they can be used to manipulate the
DOM to express interaction state and visual appear-
ance as a function of coordinated property values.

CMV view initialization in C4D3 is abstracted
from the low-level details of view creation, giving de-
signers the ability to build complex CMVs in a declar-
ative manner without getting embroiled by the low-
level implementation details of views. The separation
of concerns and abstraction offered by properties and
shared interaction state appears to provide a strong
correspondence between what users want for visual
data querying and how designers can specify suitable
view inter-dependencies in CMV constructions.

A major challenge in developing support for com-
plex coordination on top of visualization libraries like
D3 is their limited range of interactions available
to modify DOM elements (brush, drag, zoom, pan,
lasso) and the ways they can conflict. This limitation
makes it much harder to implement multiple interac-
tions in D3 to support multiple properties in a C4D3
view, either by supporting a coordination pattern by
spreading out needed interactions across extra views,
or forcing developers to write custom code to process
low-level mouse and keyboard events to sufficiently
distinguish interaction forms and map them into par-
ticular facets of coordinated interaction state.

7.2 Modular View Update Mechanism

In general, D3 views are constructed such that mouse
events trigger callbacks that update the DOM, mak-
ing code look clean and simple. This is true for sim-
ple and direct interactions. However, when changes
are complex and indirectly triggered by coordinated
views, updating in this manner makes the code mono-
lithic and adds complexity to the already lengthy code
for some D3 views. To manage this complexity, C4D3
decouples the code responsible for re-rendering views
into separate callback functions, simplifying the D3
code and making it more modular. This delegates the
responsibility of mouse events to only update proper-
ties, allowing each view to interpret changes to prop-
erties and modify themselves accordingly.

This approach also allows views to support coor-

964

dinations that span multiple properties in an easily un-
derstandable manner. For example, if a view receives
shared selection state in its properties from multiple
views via multiple variables, it can adjust its appear-
ance based on the combined values of any or all vari-
ables. Achieving this level of coordination without
C4D3 would be highly complex in D3 alone.

C4D3 can also support sharing data as a coordi-
nation parameter, allowing it to be loaded once in-
stead of multiple times across views. This approach
not only improves data handling, but also enables the
development of views that support data annotations
through interactions and share the same modified data
across views, ensuring consistency of annotated data
across coordinated views.

7.3 Assessment of Objectives

Our first objective is to preserve transparency of D3
code in view implementations. Parameterizing views
via minimal sets of properties needed to share co-
ordination state provides accessibility. Giving each
view responsibility over how to use property values to
determine appearance and behavior provides expres-
siveness. A visualization designer can choose a visual
encoding appropriate to the data and application, and
implement interaction as needed to accomplish many
common visual querying tasks. Item selection in a
view can involve clicks, rubber bands, lassos, or other
selection gestures. Indication by drawing or hovering
is similarly flexible. In both cases, the view simply
performs the usual hit tests on data to populate a bit
array to share via a selection variable.

Specifying views without connecting them di-
rectly offers both extensibility and modularity in
view development. D3 practitioners can take advan-
tage of the view abstraction to create new view types,
view variants, and coordinate them incrementally as
needed to realize their designs. Design variations can
be explored by quickly changing the set of available
variables and their bindings to views being consid-
ered, often with little or no modification to the D3
code itself. Doing so depends on how well the as-
pects of appearance and behavior needed for varia-
tion are exposed as properties in available view types.
Overall, C4D3 provides a sharp separation of con-
cerns for view design. Starting from available view
types, new view types can readily exploit redundancy
in C4D3 code, and often in D3 code as well. The
view types in the examples all share code that is es-
sentially the same except for D3 fragments that handle
visual encoding specifics. Event handling code, such
as for panning, can be reused in the same way as in
the world of D3 examples. View variants can offer

C4D3: A View-Level Abstraction and Coordination Library for Building Coordinated Multiple Views with D3

custom combinations of interactions for use in spe-
cial design cases. Curating collections of view types
is likely to be an integral activity of C4D3 designers,
much like in the D3 community.

View designers specify how property values affect
a view’s appearance and behavior, and how interac-
tions in a view affect property values. The choice of
properties to design into a view type is flexible, yet of-
ten calls for only a small set of obvious and sensible
value types. Properties tend to be compatible (and of-
ten identical) across views, even quite different ones.
Consequently, the composability of views is high.

When an interaction occurs in a view, it could
update itself by responding directly to the interac-
tion, indirectly to a property notification, or both. In
C4D3, views translate most interactions into one or
more property changes. Updates happen indirectly
via propagation of variable changes, including in the
view in which an interaction originated. By updating
themselves independently of where interactive mod-
ifications originate, views effectively track the cur-
rent coordination state of the visualization, and thus
maintain visual consistency within themselves and
between each other. The asynchronous propagation
of events in C4D3 makes visual consistency between
views eventual, but on current systems updates appear
immediate for data sizes and view counts like in the
examples. It also avoids cycles in view updates.

The main objective of C4D3 is consonance in
CMV design; that is, to support harmonious mixing
and matching of multiple coordinations between di-
verse views. The two examples represent different
C4D3 design cases. The first recreates an existing
CMV visualization with many, but basic views. The
second creates a new CMV visualization with fewer,
but mixed, views. Together, they show off a variety
of navigation and selection coordination patterns. To
build a C4D3 visualization, the designer creates vari-
ables to model interactive state, creates views to ac-
cess and modify that state, then binds variables to
views to coordinate them. These steps are simple,
flexible, and easy to write as C4D3 code. The num-
ber of variables and views, and more importantly the
number of bindings, is typically quite small—tens of
each—even in complex CMV constructions like the
ions example. Even so, there is still much practical
work to be done, particularly to expand beyond the
small set of essential view and property value types
currently included in the library. It also remains un-
clear how to adapt certain D3 event handling, notably
for drag interactions, to the properties model.

Overall, C4D3 lets designers focus on expressing
the state, behavior, and appearance of views as share-
able parameters at an abstraction level that provides

a closeness of mapping between desired view inter-
dependencies and the code needed to express them,
leaving most of the complexity of handling coordina-
tion proper to the library itself.

8 CONCLUSION

We present a working prototype of a view-level ab-
straction for coordinating multiple views. We adapted
the Live Properties architecture as a thin coordination
layer for use with the D3 web-based visualization li-
brary, and applied it to create examples that demon-
strate its effectiveness to create complex CMV visu-
alizations. Thinking about views as collections of ab-
stract shareable properties, rather than directly share-
able values, may encourage general thinking of coor-
dination on a more abstract level. This middle-level
abstraction appears to allow designers to think about
coordination at a higher level of abstraction like Neb-
ula (Chen et al., 2022), while keeping the flexibility
benefits of a lower level of mechanism (Keller et al.,
2024). Moving forward, we will explore migration of
the view abstraction to serve as a CMV abstraction
layer for other visualization libraries such as Vega-
Lite (Satyanarayan et al., 2017) and Plotly.js. More
broadly, we aim to support access to the full visualiza-
tion data processing pipeline, starting with dynamic
queries (Ahlberg et al., 1992) and extending C4D3
capabilities to include a functional reactive language
for visualization pipelines like in Improvise (Weaver,
2004). Another possibility is to extend C4D3 into
a client-server architecture for desktop, mobile, and
web clients using the coordination architecture as the
basis for remote interaction including collaborative
interaction via coordination (Weaver, 2007a).

ACKNOWLEDGEMENTS

We thank Remco Chang and Wenbo Tao for their in-
sights and feedback. This work was supported by Na-
tional Science Foundation Award #1351055.

REFERENCES

Ahlberg, C. (1996). Spotfire: An information exploration
environment. ACM SIGMOD Record, 25(4):25-29.

Ahlberg, C., Williamson, C., and Shneiderman, B. (1992).
Dynamic queries for information exploration: An im-
plementation and evaluation. In Proceedings of the
SIGCHI Conference on Human Factors in Comput-

965

IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications

ing Systems, CHI *92, pages 619-626, New York, NY,
USA. Association for Computing Machinery.

Ahlberg, C. and Wistrand, E. (1995). IVEE: An information
visualization & exploration environment. In Proceed-
ings of the IEEE Symposium on Information Visual-
ization (InfoVis), pages 66-73, 142-143, Atlanta, GA.
IEEE.

Aiken, A., Chen, J., Stonebraker, M., and Woodruff, A.
(1996). Tioga-2: A direct manipulation database visu-
alization environment. In Proceedings of the Twelfth
International Conference on Data Engineering, pages
208-217, New Orleans, LA, USA. IEEE Comput.
Soc. Press.

Becker, R. A. and Cleveland, W. S. (1987). Brushing Scat-
terplots. Technometrics, 29(2):127-142.

Bostock, M. and Heer, J. (2009). Protovis: A Graphical
Toolkit for Visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 15(6):1121-1128.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 Data-
Driven Documents. IEEE Transactions on Visualiza-
tion and Computer Graphics, 17(12):2301-2309.

Boukhelifa, N. and Rodgers, P. J. (2003). A Model and
Software System for Coordinated and Multiple Views
in Exploratory Visualization. Information Visualiza-
tion, 2(4):258-269.

Buja, A., Cook, D., and Swayne, D. F. (1996). Interac-
tive High-Dimensional Data Visualization. Journal of
Computational and Graphical Statistics, 5(1):78-99.

Chen, H. (2003). Compound brushing. In Proceedings
of the IEEE Symposium on Information Visualization
(InfoVis), pages 181-188, Seattle, WA. IEEE Com-
puter Society.

Chen, R., Shu, X., Chen, J., Weng, D., Tang, J., Fu, S.,
and Wu, Y. (2022). Nebula: A Coordinating Grammar
of Graphics. IEEE Transactions on Visualization and
Computer Graphics, 28(12):4127-4140.

Fekete, J.-D. (2004). The InfoVis Toolkit. In IEEE Sym-
posium on Information Visualization, pages 167-174,
Austin, TX, USA. IEEE.

Fekete, J.-D., Hémery, P-L., Baudel, T., and Wood, J.
(2011). Obvious: A meta-toolkit to encapsulate in-
formation visualization toolkits — One toolkit to bind
them all. In 2011 IEEE Conference on Visual Analyt-
ics Science and Technology (VAST), pages 91-100.

Hill, R. D., Brinck, T., Rohall, S. L., Patterson, J. F,
and Wilner, W. (1994). The Rendezvous architecture
and language for constructing multiuser applications.
ACM Transactions on Computer-Human Interaction,
1(2):81-125.

Jankun-Kelly, T., Ma, K.-1., and Gertz, M. (2007). A Model
and Framework for Visualization Exploration. IEEE
Transactions on Visualization and Computer Graph-
ics, 13(2):357-369.

Keller, M. S., Manz, T., and Gehlenborg, N. (2024). Use-
Coordination: Model, Grammar, and Library for Im-
plementation of Coordinated Multiple Views.

Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Don-
jerkovic, D., Lawande, S., Myllymaki, J., and Wenger,
K. (1997). DEVise: Integrated querying and visual ex-
ploration of large datasets. In Proceedings of the 1997

966

ACM SIGMOD International Conference on Manage-
ment of Data - SIGMOD 97, pages 301-312, Tucson,
Arizona, United States. ACM Press.

Myers, B., Giuse, D., Dannenberg, R., Zanden, B., Kosbie,
D., Pervin, E., Mickish, A., and Marchal, P. (1990).
Garnet: Comprehensive support for graphical, highly
interactive user interfaces. Computer, 23(11):71-85.

North, C. and Shneiderman, B. (1997). A taxonomy of mul-
tiple window coordinations. Technical Report CS-TR-
3854, University of Maryland Department of Com-
puter Science.

North, C. and Shneiderman, B. (2000). Snap-together vi-
sualization: A user interface for coordinating visual-
izations via relational schemata. In Proceedings of the
Working Conference on Advanced Visual Interfaces,
AVI 00, pages 128-135, New York, NY, USA. Asso-
ciation for Computing Machinery.

Roth, S., Lucas, P,, Senn, J., Gomberg, C., Burks, M., Strof-
folino, P., Kolojechick, A., and Dunmire, C. (1996).
Visage: A user interface environment for exploring in-
formation. In Proceedings IEEE Symposium on Infor-
mation Visualization "96, pages 3—12,, San Francisco,
CA, USA. IEEE Comput. Soc. Press.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and
Heer, J. (2017). Vega-Lite: A Grammar of Interac-
tive Graphics. [EEE Transactions on Visualization
and Computer Graphics, 23(1):341-350.

Satyanarayan, A., Russell, R., Hoffswell, J., and Heer, J.
(2016). Reactive Vega: A Streaming Dataflow Archi-
tecture for Declarative Interactive Visualization. /[EEE
Transactions on Visualization and Computer Graph-
ics, 22(1):659-668.

Satyanarayan, A., Wongsuphasawat, K., and Heer, J.
(2014). Declarative interaction design for data visual-
ization. In Proceedings of the 27th Annual ACM Sym-
posium on User Interface Software and Technology,
pages 669—678, Honolulu Hawaii USA. ACM.

Shneiderman, B. (1994). Dynamic queries for visual infor-
mation seeking. /[EEE Software, 11(6):70-77.

Square (2012). Crossfilter: Fast multidimensional filtering
for coordinated views.

Takatsuka, M. and Gahegan, M. (2002). GeoVISTA Studio:
A codeless visual programming environment for geo-
scientific data analysis and visualization. Computers
& Geosciences, 28(10):1131-1144.

Weaver, C. (2004). Building Highly-Coordinated Visualiza-
tions in Improvise. In IEEE Symposium on Informa-
tion Visualization, pages 159-166, Austin, TX, USA.
IEEE.

Weaver, C. (2007a). Is Coordination a Means to Collabo-
ration? In Fifth International Conference on Coor-
dinated and Multiple Views in Exploratory Visualiza-
tion (CMV 2007), pages 80—-84, Zurich, Switzerland.
IEEE.

Weaver, C. (2007b). Patterns of coordination in Impro-
vise visualizations. In Visualization and Data Anal-
ysis 2007, volume 6495, pages 188—199. SPIE.

Weaver, C. (2010). Cross-Filtered Views for Multidimen-
sional Visual Analysis. IEEE Transactions on Visual-
ization and Computer Graphics, 16(2):192-204.

