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Abstract: Bilingual lexicon induction (BLI) has been a popular task for evaluating cross-lingual word embeddings
(CWEs). The prevalent metric employed in the evaluation is precision at k, where k represents the num-
ber of target words retrieved for each source word. However, establishing a fixed k for the entire evaluation
dataset proves challenging due to varying target word counts for each source word. This leads to limited re-
sults, compromising either precision or recall. In this paper, we present a novel classification-based approach
with dynamic k for bilingual lexicon induction that aims to identify all relevant target words for each source
word by exploiting the information derived from the aligned embeddings while offering a balanced trade-off
between precision and recall. On top of that, it enables the evaluation of the existing CWEs using dynamic k.
Compared to the standard baseline systems and evaluation procedures, it provides competitive results.

1 INTRODUCTION

Retrieving translations of individual words is an in-
trinsic evaluation task referred to as bilingual lexicon
induction (BLI). This task has been a commonly used
method for evaluating cross-lingual word embeddings
(CWEs), which aim to align two (or more) sets of
individually trained monolingual word embeddings
(MWEs) into a shared cross-lingual space where sim-
ilar words are represented by similar vectors (Ruder
et al., 2019).

Owing to this property, they have shown to be ben-
eficial in many NLP applications, e.g., machine trans-
lation (Artetxe et al., 2018c; Duan et al., 2020; Zhou
et al., 2021; Wang et al., 2022), cross-lingual infor-
mation retrieval (Vulić and Moens, 2015), language
acquisition and learning (Yuan et al., 2020).

In the BLI task, the method aims to generate a list
of target words for each source word, ranking them
based on the cosine similarities between their respec-
tive embeddings. Afterwards, top-k target words for
each source word are selected, and the word pairs
are compared to the evaluation dataset (Ruder et al.,
2019).

However, the k is not determined by the method
and often is set by the evaluation metrics or derived
from the evaluation data. This limitation makes the
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approach less reflective of real-world translation sce-
narios, where the number of target words correspond-
ing to a source word cannot be estimated and is vital
to be determined by the model to successfully fulfil
the BLI task’s objective.

In many papers, the preferred metric is precision
at k (P@k), where k is fixed, usually k = {1, 5, 10}
(e.g., (Mikolov et al., 2013; Conneau et al., 2017; Li
et al., 2022; Tian et al., 2022)). What the papers actu-
ally report is HitRatio@k, where HitRatio@1 = P@1
and P@k1 > P@k2 as long as k1>k2 (Conneau et al.,
2017). This is problematic for two reasons.

Firstly, the majority of the source words are likely
to have more than one target word, and the number of
target words differs for each source word. For exam-
ple, the most popular evaluation datasets MUSE (Con-
neau et al., 2017) consist of word-to-many lists:
the English-French evaluation dataset contains 2943
word pairs from which are only 1.5K unique En-
glish words. As Table 1 shows, the English source
words exhibit various numbers of target words (e.g.,
compact - compact, compacte, compactes, compacts,
compresser, pacte; admit - admet, admets, admettre;
subway - métro).

Secondly, since HitRatio@k assumes that every
source word has only one target word, in cases where
k > 1, the metric may yield results exceeding 100%,
which leads to distortions in the results.

While prior work suggested replacing P@k with
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Table 1: The number of target words (TGW) in four MUSE
evaluation datasets and the dynamic k values (NN k) that
were predicted by VM-S+NN model trained on English-
Spanish.

TGW en-fr en-cs en-ko en-es NN k
1 698 820 1085 663 801
2 409 398 310 435 465
3 210 207 63 211 175
4 123 61 7 146 52
5 55 13 0 45 6
6+ 5 1 0 0 1

Mean Average Precision (MAP) to address this is-
sue, they evaluated their models with one-to-one
datasets (Glavaš et al., 2019). We argue that in a
real-language scenario, the source word is improba-
ble to have only one target word, and even the less
frequent words bear multiple meanings. For exam-
ple, specific-domain-related words also occur in reg-
ular texts (string - sequence of characters vs a piece
of rope, series of events, etc.).

Another attempt to advocate the MAP metric ap-
peared at the BUCC 2022 conference (Adjali et al.,
2022; Laville et al., 2022). While MAP is a valuable
metric for assessing a model based on the ranking of
target words and the quality of the embeddings’ align-
ment, it fails to consider the parameter k, which is set
in advance according to the evaluation dataset.

To relax from the constraint of having a fixed
number of target words, dynamic translation was in-
troduced in the shared task of the BUCC 2020 con-
ference together with alternative evaluation metrics,
such as recall and F1 scores (Rapp et al., 2020). While
the participants advocated computing a threshold for
similarity scores between the source and target word
embeddings instead, they had to tailor it for each lan-
guage pair individually.

Another existing work proposes classification-
based approaches (Heyman et al., 2017; Severini
et al., 2020a). In line with the previous research,
framing the BLI task as a classification problem not
only allows for dynamic k but also leads to additional
improvements in the models’ performance (Irvine and
Callison-Burch, 2017; Karan et al., 2020). However,
these methods suffer from computational inefficien-
cies, applying deep neural network to each word pair
that is being classified.

Motivated by these insights, we implement a
novel, simple classification-based approach, allowing
for a dynamic k while exploiting various features de-
rived from the aligned embeddings. The aim is to
identify as many relevant target words as possible for
each source word and report P, recall, and F1 scores
not constrained by a predefined set of k nearest neigh-
bours while balancing P and recall and maintaining

high performance.
Different to previous endeavours introducing

classification-based approaches (Heyman et al., 2017;
Severini et al., 2020a) and similar approaches es-
tablishing dynamic k and alternative evaluation met-
rics (Rapp et al., 2020), our method is more straight-
forward to implement and more computationally ef-
ficient, as we demonstrate in this paper. It builds up
a solution for existing CWEs to relax the constraint
of having a fixed k, making them comparable with
methods using dynamic k and improving their perfor-
mance.

We evaluate our approach on the widely used eval-
uation datasets MUSE for various languages: English
(en) to German (de), French (fr), Spanish (es), Rus-
sian (ru), Czech (cs), Dutch (nl), Finnish (fi), and Ko-
rean (ko), and on manually annotated data for Esto-
nian (et) to Slovak (sk).

Our contribution is manifold.

1. We present a classification-based framework for
bilingual lexicon induction that dynamically de-
termines k, addressing the limitations of fixed k in
traditional methods.

2. We propose a new solution that enables a more
accurate evaluation of existing CWEs by balanc-
ing P and recall without predefining the number
of nearest neighbours.

3. We provide a rigorous evaluation across di-
verse language pairs, demonstrating consistent
improvements over state-of-the-art baselines.

4. To encourage reproducibility and further research,
we make our datasets, code, and models publicly
available. 1

2 RELATED WORK

The pioneering work introducing the embedding-
based method evaluated on the BLI task was proposed
by (Mikolov et al., 2013). In their work, the authors
reported results using metrics P@1 and P@5. Since
then, the BLI task has enjoyed popularity among re-
searchers as the mainstream task for the CWE eval-
uation and precision as the main reported metric,
including the most cited baseline methods such as
MUSE (Conneau et al., 2017) and VECMAP (Artetxe
et al., 2018a; Artetxe et al., 2018b).

The more comprehensive evaluation study sug-
gesting an alternative evaluation metric was proposed
in (Glavaš et al., 2019). They criticised the lack
of consistency and statistical significance testing in
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existing evaluations, hampering thorough compar-
isons. (Glavaš et al., 2019) recommended using MAP,
claiming this metric to be more informative since it
does not treat all models that rank the correct transla-
tion below k equally. The same argument was brought
up later at the BUCC 2022 conference (Adjali et al.,
2022; Laville et al., 2022), which employed MAP
metric in the shared task. In this paper, we concen-
trate on two submissions: CUNI (Požár et al., 2022)
and IJS (Repar et al., 2022).

In these papers, the CUNI team implemented
three approaches: static embeddings with posthoc
alignment (CUNImuse), unsupervised phrase-based
machine translation using the Monoses pipeline
(CUNImono), and contextualized multilingual embed-
dings from pre-trained models like BERT (Devlin
et al., 2019) and XLM (Conneau and Lample, 2019)
(CUNIcomb). In contrast, the IJS approach integrated
linguistic, neural, and sentence-transformer features
into an SVM binary classifier consisting of three set-
tings (IJS1, IJS2, IJS3). While CUNI focuses on mul-
tiple alignment techniques, IJS prioritizes compre-
hensive feature integration for precise term alignment.

Another attempt to bring different metrics into
BLI evaluation appeared in the shared task of the
BUCC 2020 conference (Rapp et al., 2020). The au-
thors were instructed to report on recall and F1 scores,
in addition to traditional precision, without setting
a fixed k. In this paper, we focus on two models:
LMU (Severini et al., 2020b) and LS2N (Laville et al.,
2020).

In both papers, distinct methodologies were em-
ployed to ascertain a dynamic k. (Severini et al.,
2020b) calculated a local threshold value for each
source word instead of using a global threshold. The
score of each candidate word T for a given source
word S is determined by a function that considers the
margin between the similarity of S and T and the av-
erage similarity of S with its most similar candidates.
Each target candidate is considered a translation if
its score exceeds the threshold value. The threshold
value is tuned individually for each language pair.

(Laville et al., 2020) exploited scores from co-
sine similarity-based measure CSLS (Conneau et al.,
2017). Then, they employed two criteria to limit the
scores: i) setting a maximum number of candidates
to retain for each source word and ii) establishing a
minimum CSLS value to validate candidates. Each
language pair had its specific threshold value.

A new line of the BLI research introduced
classification-based approaches (e.g., (Irvine and
Callison-Burch, 2017; Heyman et al., 2017; Severini
et al., 2020a)), which relax the constraint of having a
fixed k and offered an alternative evaluation metrics,

such as recall and F1 score demonstrating the balance
in the performance.

(Irvine and Callison-Burch, 2017) leveraged tem-
poral word variation, normalised edit distance, and
word burstiness, among other inputs, to train a lin-
ear classifier using a set of training translation pairs.
Contrarily, (Heyman et al., 2017) suggested incor-
porating word-level and character-level representa-
tions within a deep neural network architecture in-
stead. They provided experiments with various mod-
els. In this paper, we mention the models ex-
ploiting word-level representations (CLASS SGNS)
utilising word-level representations from the SGNS
model (Mikolov et al., 2013), character-level repre-
sentations (CHAR-LSTM joint ), and both in a com-
bined model.

Additionally, they set a threshold t for the classi-
fication scores instead of fixed k, which they further
fine-tuned on a validation set. This enabled them to
enhance the model’s performance evaluated with F1
scores.

Finally, (Severini et al., 2020a) proposed a novel
approach, enabling the languages with different
scripts to exploit orthographic features via translit-
eration. They integrated semantic and orthographic
information using a transliteration system, seq2seqTr
(m+BOEs). In contrast to (Heyman et al., 2017), the
reported metric was HitRatio@ with a fixed set of re-
trieved target words for each source word.

3 METHODOLOGY

We introduce a classification neural network, leverag-
ing its ability to enable dynamic k. Each source word
ws is processed by the network separately. Let Vs and
Vt be the sets of all source and target words, respec-
tively. Given a list of target candidates C, which is
a list of the top 10 most similar target words, where
C⊂Vt , it could also be denoted as C = {wt

i|i= 1...10}
and let wt

1 be the most similar top target candidate, the
aim is to learn a function:

0,1← f (C), (1)

where the input C is not a target candidate (or its em-
bedding) directly but a vector of features derived from
the similarity of the candidate vector and similarities
of other candidates, and it can be formulated as fol-
lows:

0,1← f (sim,Sd ,Sr,Rt ,Rs,Fs) (2)

The classification neural network produces the
output of either 0 or 1. When the neural network
identifies a target candidate wt

i as the corresponding
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translation, it assigns a value of 1. The count of 1 as-
sociated with a source word ws

n is equal to the value
of k.

The training of the classification neural network
requires sets of positive and negative examples to
make a correct prediction. For that purpose, we ex-
ploit the evaluation datasets MUSE and the baseline
CWEs. The data is described in Section 4.1 in fur-
ther detail. Then, the neural network is trained by
minimising the binary cross-entropy loss, defined as
follows:

− 1
N

N

∑
i=1

[yi · log(ŷi)+(1− yi) · log(1− ŷi)] , (3)

where N is the length of the training data, yi is the true
label for the i-th instance (either 0 or 1), and ŷi is the
predicted probability that the i-th instance belongs to
class 1.

The key component of the classification neural
network is the input layer, consisting of a vector of
features representing a target candidate. This vector
contains six features, i.e., cosine similarity score, ab-
solute difference score, ratio score, and normalised
target’s word position, source word’s rank and cor-
pus frequency log values. The first four are computed
from the CWEs using cosine similarity.

Let X s×X t be the aligned word embedding ma-
trices of the Vs×Vt . The cosine similarity score be-
tween the word embeddings (xs,xi) corresponding to
the word pair (ws,wi) is defined as:

simi = sim(xs,xi), (4)

where the sim() function represents the dot product
between the source and target word embeddings.

The absolute difference score Sd is then computed
as:

Sd
i = sim1− simi, (5)

where sim1 denotes the similarity between the closest
target word embedding and the source word embed-
ding.

Similarly, the ratio score Sr is calculated by the
following formula:

Sr
i = simi/sim1 (6)

Furthermore, we can derive the nor-
malised target’s word position log value as
Rt

i = Norm(|{i|sim j < simi}|). Fs
i normalised

frequency of source word ws in a corpus and Rs
i

normalised rank of the source word ws in MWE,
while the Norm() function is defined as:

Norm(x,C) = (log(x)−minC)/(maxC−minC) (7)

These features are then combined as an input vec-
tor Z ∈ R6, which is fed into the neural network ch:

ch0 = tanh(Wh0 ·Z +bh0) (8)

chi = tanh(Whi · chi−1 +bhi) (9)

prediction = σ(Wp · chT +bp), (10)

where tanh and σ represent tanh and sigmoid activa-
tion functions, respectively, and T expresses the num-
ber of hidden layers implemented in the neural net-
work.

The weight matrices Whi ,Wp and bias terms bhi ,bp
are learned during the training process through back-
propagation. The activation functions tanh and σ are
applied after each transformation to introduce non-
linearity, which is essential for capturing complex re-
lationships in the data.

4 EXPERIMENTAL SETUP

In this section, we outline the key components of the
experiments that were conducted.

4.1 Data

To train the classification neural network for all lan-
guages in combination with English, we utilised
the widely used evaluation datasets MUSE (Conneau
et al., 2017) and treated them as positive examples, all
labelled as 1.

Afterwards, we generated negative examples by
retrieving the ten most similar target candidates C and
their vectors of features for each source word from the
evaluation dataset using different CWE models de-
scribed in Section 4.2. All retrieved word pairs that
did not occur in the evaluation dataset received label
0.

Each MUSE dataset consists of 1.5K source
words, meaning we obtained 15K word pairs for each
CWE model. We randomly sampled 8K word pairs
from each dataset and split them into 5K training data,
1.5K testing data, and 1.5K validation data. We train
our model using train and test data and report our re-
sults on validation data.

For the Estonian-Slovak language pair, we ex-
ploited the manually compiled and annotated data
from (Denisová, 2022). These datasets were much
smaller than the ones obtained from MUSE, resulting
in 600 training and 100 testing word pairs for each
model.
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4.2 Implementation Details

4.2.1 CWE

To retrieve aligned monolingual word embeddings we
utilised two state-of-the-art CWE frameworks, MUSE
and VECMAP (VM) in a supervised (MUSE-S, VM-
S), unsupervised (MUSE-U, VM-U) mode and mode
that relies on identical strings (MUSE-I, VM-I).

The default settings closely followed the MUSE
training described in (Conneau et al., 2017), and VM-
S and VM-I in (Artetxe et al., 2018a), and VM-U set-
tings in (Artetxe et al., 2018b). We used pre-trained
fastText (Grave et al., 2018) on Wikipedia with di-
mension 300. We induced the first 200K aligned
embeddings. To train supervised systems (MUSE-S;
VM-S), we utilise MUSE training datasets.

4.2.2 Classification Neural Network

The classification neural network was implemented in
Python using TensorFlow (Abadi et al., 2016). We
utilised three hidden layers with 24-12-8 nodes. We
used Adam optimizer for training with a 0.001 learn-
ing rate. The training for each language pair ran for
500 epochs.

4.3 Baselines

We compare our model with the results from
classification-based approaches presented in (Hey-
man et al., 2017) (CLASS SGNS, CHAR-LSTM joint ,
combined) and (Severini et al., 2020a) (m+BOEs), the
best outcomes submitted by CUNI (CUNImuse) (Požár
et al., 2022) and IJS (IJS2) (Repar et al., 2022) at the
BUCC 2022 conference in a shared task (Adjali et al.,
2022), and the results obtained by models LMU (Sev-
erini et al., 2020b) and LS2N (Laville et al., 2020) at
the BUCC 2020 conference in a shared task using dy-
namic k (Rapp et al., 2020).

Since the codes of these models are not publicly
available, we directly juxtapose our system’s perfor-
mance against the outcomes reported in the papers.

4.4 Metrics

Precision: at k (P@k) computes the ratio of true pos-
itives (TP) to the sum of true positives and false posi-
tives (FP). In other words, it is the ratio of the positive
target words to the number of all target words that
the model found (positive and negative). In this case,
k represents the number of the source word’s nearest
neighbours that were extracted.
Recall: (R) is calculated using the standard formula.

F1: score summarises the model’s performance by
capturing both metrics: P and R, showing the balance
between them, and it is computed in a standard way
as well.

5 EVALUATION

This section reports the main results obtained with
our classification neural network. It is split into two
parts to distinguish when our model is being used as
a novel approach for BLI and as an extension for ex-
isting baseline CWE models, enabling the dynamic k.
In the first one, we assess the outcomes concerning
our model and discuss them against baseline models
stated in Section 4.3.

In the second one, we compare the results of the
state-of-the-art CWE models described in Section 4.2,
evaluated using fixed k and classification neural net-
work with dynamic k.

5.1 Classification Neural Network

5.1.1 Efficiency

We implemented a minimalist 3-hidden-layer classi-
fication neural network. This network efficiently pre-
dicts 1.5K source words within a short span of ap-
proximately 1.01 seconds. According to the (Heyman
et al., 2017), their method has a time complexity of
O(|VS| × |VT |) multiplied by the complexity of g 2,
making it a computationally intensive process, espe-
cially for extensive vocabularies, where it becomes
impractically costly. Our approach offers greater ef-
ficiency when compared to the RNN neural network
presented in (Heyman et al., 2017).

5.1.2 Overall Results

The results across four language pairs (English to
French, Spanish, Russian, and German) compared
to the baselines CUNImuse, IJS2, LMU, LS2N, and
m+BOEs are provided in Table 2. The comparison of
the F1 scores with the models presented in (Heyman
et al., 2017) trained on the English-Dutch language
pair is displayed in Table 3.

Tables 2 and 3 indicate that our classification ap-
proach outperforms almost all baselines within a mar-
gin of approximately 1% to 20%. In particular, the
model MUSE-S+NN stands out, achieving the high-
est results for English-Russian and English-Dutch and

2Where VS and VT denote source and target words and
g denotes classifier.
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Table 2: P, R, and F1 score using dynamic k (CWE+NN) compared to the baselines CUNImuse (Požár et al., 2022), IJS2 (Repar
et al., 2022), LMU (Severini et al., 2020b), LS2N (Laville et al., 2020), and m+BOEs (Severini et al., 2020a).
*In the article, the authors present their findings on HitRatio@k, which cannot be directly compared to our results. Conse-
quently, we only make comparisons using the reported HitRatio@1, equivalent to P@1.

en-de en-fr en-es en-ru
P R F1 P R F1 P R F1 P R F1

CUNImuse - - - 39.8 31.7 35.3 - - - - - -
IJS2 - - - 2.87 80.0 5.55 - - - - - -
LMU 40.2 59.8 48.1 - - - - - - 33.9 37.8 35.8
LS2N 54.3 54.8 54.5 61.2 69.7 65.1 63.8 61.4 62.6 32.6 38.7 35.4
m+BOEs - - - - - - - - - 36.0∗ - -
MUSE-S+NN 56.8 73.8 64.2 63.4 61.1 62.2 77.6 59.0 67.0 66.4 75.8 70.8
MUSE-I+NN 49.3 58.1 53.3 62.7 61.3 62.0 67.6 63.6 65.5 43.2 56.4 48.9
MUSE-U+NN 57.8 56.8 57.3 52.7 63.1 57.4 73.9 63.5 68.3 37.3 40.7 39.0
VM-S+NN 60.7 67.1 63.7 64.7 64.7 64.7 72.5 62.2 67.0 42.3 63.9 50.9
VM-I+NN 54.5 63.7 58.8 66.4 70.3 68.3 57.3 71.1 63.5 39.3 59.7 47.4
VM-U+NN 55.3 62.1 58.5 68.8 68.5 68.6 71.8 61.3 66.1 41.6 50.0 45.4

performing well across English-Spanish and English-
German. The only exception is the English-French
language pair, where the baseline IJS2 surpassed our
best model VM-I+NN by almost 10 %.

Table 3: Comparison of F1 using dynamic k (CWE+NN) to
the three models presented in (Heyman et al., 2017) evalu-
ated on English-Dutch.

F1
CLASS SGNS 19.8
CHAR-LSTM joint 34.9
combined 36.6
MUSE-S+NN 71.5
MUSE-I+NN 58.4
MUSE-U+NN 62.4
VM-S+NN 61.6
VM-I+NN 67.3
VM-U+NN 63.1

5.1.3 Setting the Dynamic K

Table 4 provides a sample of analysed source word
admit along with target candidates and their vectors
of features derived from the VM-S model trained us-
ing English-Spanish. Fig. 1 visualises the correla-
tion between the features sim and Rt derived from the
same model across the entire English-Spanish valida-
tion data and assigned values of 1 or 0.

The English word admit has in the English-
Spanish MUSE evaluation dataset four target words,
i.e., admita, admite, admiten, admitir. The classifi-
cation neural network assigned to three of them the
value of 1 but found an additional target word admi-
tirlo and did not include admiten that was found at
rank 1326. Thus, the k was set to 4 for the source
word admit.

Figure 1: Correlation between sim (cosine similarity score)
and Rt (target candidate rank) features across the VM-
S+NN model trained using English-Spanish labelled as 0
or 1.

The analysis of the feature vectors of target can-
didates displayed in Table 4 suggests a strong corre-
lation between the scores’ magnitudes, various ranks,
and assigned labels, i.e., the higher sim value and the
lower Rt value increase the probability of a target can-
didate being labelled as 1. Since the classification
neural network learns patterns using information de-
rived from CWEs and ranks from MWEs and corpus
data, it plays a more crucial role than the linguistic
aspects of the language, highlighting the significance
of the quality of the MWEs and CWEs’ alignment
method.

Additionally, Table 1 compares the number of tar-
get words in the evaluation dataset and the values of k
set by the classification neural network. For example,
in the evaluation dataset, 435 source words have 2 tar-
get words and the classification neural network set k
= 2 for 465 source words.

5.2 Extension

In the second part of the evaluation, we evaluated the
performance of the CWE models MUSE-S, MUSE-I,
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Table 4: Example from the VM-S+NN model trained on the English-Spanish language pair. SRC = source word, TGT =
target word, ED = evaluation dataset, C = correct.

SRC rank TGT NN ED C sim Sd Sr Rt Rs F s

admit 0 admitir 1 ✓ ✓ 0.799 0.0 1.0 0.0 0.922 0.692
k = 4 1 admitirlo 1 × ✓ 0.724 0.074 0.906 0.758 0.922 0.692

2 admita 1 ✓ ✓ 0.720 0.078 0.901 0.834 0.922 0.692
3 admite 1 ✓ ✓ 0.710 0.089 0.888 0.879 0.922 0.692
4 admito 0 × ✓ 0.709 0.090 0.886 0.910 0.922 0.692
5 admitiendo 0 × ✓ 0.703 0.096 0.879 0.935 0.922 0.692
6 entenderla 0 × × 0.688 0.110 0.861 0.955 0.922 0.692
7 creer 0 × × 0.683 0.115 0.855 0.972 0.922 0.692
8 admitan 0 × ✓ 0.668 0.131 0.835 0.987 0.922 0.692
9 ignorarla 0 × × 0.666 0.133 0.833 1.0 0.922 0.692
1326 admiten - ✓ ✓ - - - - - -

MUSE-U, VM-S, VM-I, and VM-U by employing
the P and F1 scores with fixed and dynamic k. 3

For the fixed k, we chose values in {1, 3, 5}. The
dynamic k is set by the classification neural network
acting as an extension for the CWEs 4, and we de-
note P and F1 scores using dynamic k as P@NN and
F1@NN, respectively.

The overall results across all language pairs dis-
playing F1 scores are provided in Table 7, and P met-
rics in Table 8, both placed in Appendix. We can ob-
serve that although in nearly all cases, the P@1 eval-
uation yields better results, almost all models offer a
significantly better balance between P and R when dy-
namic k is employed, improving F1 scores by a mar-
gin rising up to almost 58%.

Table 5: F1 score of the best model when evaluated with
fixed k (F1@1) vs. the best model when evaluated with
dynamic k (F1@NN).

Best F1@1 Best F1@NN
en-cs VM-S 39.0 VM-I 51.4
en-fi VM-I 32.8 VM-U 48.3
et-sk VM-S 26.7 VM-U 68.0

On top of that, Table 5 shows how the models’
ranking changes when evaluated using fixed and dy-
namic k across three language pairs. For example,
when evaluating models on the Estonian-Slovak lan-
guage pair with a fixed k, the VM-S model achieves
the highest performance. However, when using a dy-
namic k metric, the VM-U model outperforms all oth-
ers by more than 41%. This can be illustrated using
the example of the Estonian word sõdur (soldier) in
Table 6. Using k = 1 for the evaluation would yield
poorer performance, as the top-1 induced target word

3While HitRatio@k is often favoured, in this paper, we
opt to utilise P@k for the reasons outlined in the Introduc-
tion.

4Model-X+NN means that the classification neural net-
work was trained and evaluated on the output from model-X.

is absent from the evaluation dataset despite its cor-
rectness. In contrast, the classification neural net-
work identified the correct target word from the eval-
uation dataset, as well as an additional correct word
not present in the dataset. This approach not only en-
ables efficient selection of the optimal model but also
accurately identifies target words despite biases in the
evaluation datasets (see Section 6).

Table 6: Example sõdur - soldier from the VM-U+NN
model trained on the Estonian-Slovak language pair. SRC =
source word, TGT = target word, ED = evaluation dataset,
C = correct.

SRC rank TGT NN ED C
sõdur 0 vojaka 1 × ✓
k = 2 1 vojak 1 ✓ ✓

2 bojovnı́k 0 × ×
3 voj 0 × ×
4 bojovnı́ka 0 × ×
5 lukostrelec 0 × ×
6 civilista 0 × ×
7 voják 0 × ×
8 delostrelec 0 × ×
9 pechota 0 × ×

6 LIMITATIONS

Over the years, the MUSE datasets have been fre-
quently used for the BLI evaluation. Despite their
popularity, several concerns have emerged. (Ke-
mentchedjhieva et al., 2019) revealed that a signifi-
cant portion of the word pairs are comprised of proper
nouns, which do not reflect the performance reliably.
Later, (Laville et al., 2022) pointed out more serious
issues, such as the fact that the datasets contain over
30% identical word pairs and around 40% graphically
close word pairs.

Another problem is the bias that occurs when cre-
ating positive and negative examples for the evalua-
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tion. For example, the Spanish word admitir can have
over 40 valid translations for the English word ad-
mit, depending on the context. Moreover, the verb
admit could also be translated by reconocer or confe-
sar, which convey similar meanings. As a result, the
top 10 words identified by the proposed method might
include some of these over 100 suitable translations,
which are classified as negative pairs. This has a neg-
ative impact on the accuracy of the labels.

When demonstrated using our model, Table 4
shows that there were only four forms of the verb
admitir in the evaluation dataset, whereas the model
generated 7 viable word forms, four of them miss-
ing in the evaluation dataset (admitirlo, admito, admi-
tiendo, admitan). Moreover, alternative translations
like reconocer or confesar were not captured, indicat-
ing areas for improvement in contextual understand-
ing.

7 CONCLUSION

In this paper, we have presented a novel classification-
based approach to BLI, addressing the limitations of
traditional evaluation metrics by introducing dynamic
k for enhanced P, R, and F1 scores. We evaluated our
approach across diverse language pairs, showing its
benefits as a new approach for the BLI task and as
an extension for existing CWE approaches, enabling
dynamic k.

To summarise, the evaluation of CWE models us-
ing P@1 yields seemingly impressive results. How-
ever, it only assesses a small part of the evaluation
dataset. Therefore, employing dynamic k provides
a more accurate picture of the model’s performance
while balancing P and R. Additionally, the results
suggest that for determining the correct target candi-
dates, not only the absolute numbers are important,
but also the ranks and the scores relative to the high-
est score achieved.

Moreover, we have demonstrated that our ap-
proach is computationally efficient and produces
competitive results when compared to the current
baseline systems.
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APPENDIX
Tables 7 and 8 present the outcomes of the models
MUSE-S+NN, MUSE-I+NN, MUSE-U+NN, VM-
S+NN, VM-I+NN, and VM-U+NN evaluated using
F1 scores (F@5, 3, 1, NN), and P metrics (P@5, 3, 1,
NN) across all language pairs, respectively.

Table 7: Reported F1 score (F1@5, F1@3, F1@1, and F1@NN (k selected by the classification neural network)) for the
MUSE-S, MUSE-I, MUSE-U, VM-S, VM-I, and VM-U models evaluated with the MUSE evaluation datasets.

MUSE-S MUSE-I MUSE-U
F1@ 5 3 1 NN 5 3 1 NN 5 3 1 NN
en-de 42.1 50.4 48.8 64.2 34.5 40.7 41.1 53.3 34.8 40.8 41.6 57.3
en-fr 37.2 46.5 52.9 62.2 37.1 46.5 52.9 62.0 37.1 46.2 53.0 57.4
en-es 37.7 47.5 53.0 67.0 37.6 47.3 53.2 65.5 37.8 47.8 53.1 68.3
en-ru 39.7 51.9 60.2 70.8 25.5 30.4 31.8 48.9 23.7 28.1 27.2 39.0
en-cs 27.5 33.2 34.8 45.2 26.1 31.7 34.2 41.9 25.1 30.1 32.3 46.8
en-nl 33.2 40.6 42.9 71.5 24.7 30.4 32.4 58.4 31.2 40.5 51.0 64.6
en-fi 24.3 29.5 29.3 38.8 21.2 25.7 27.7 41.6 19.2 23.0 23.5 31.7
en-ko 12.1 14.3 15.1 22.9 11.4 13.6 15.2 20.0 9.6 11.3 12.2 17.7
et-sk 9.8 11.2 12.4 66.0 9.2 10.4 11.6 50.0 7.3 8.7 9.5 61.0

VM-S VM-I VM-U
F1@ 5 3 1 NN 5 3 1 NN 5 3 1 NN
en-de 36.9 43.4 42.6 63.7 36.3 42.6 42.9 58.8 36.3 42.5 42.8 58.5
en-fr 38.9 48.4 53.7 64.7 38.7 48.0 54.4 68.3 38.5 48.1 54.4 68.6
en-es 39.8 49.7 53.3 67.0 38.9 48.9 54.0 63.5 38.8 49.0 54.1 66.1
en-ru 29.8 37.3 38.4 50.9 28.4 34.8 34.8 47.4 25.0 30.5 29.2 45.4
en-cs 31.3 38.7 39.0 47.0 29.5 36.4 36.7 51.4 29.2 35.7 36.6 46.4
en-nl 34.1 44.1 54.2 61.6 33.6 43.7 55.5 67.3 33.6 43.6 55.5 63.1
en-fi 28.2 34.4 32.6 45.0 26.0 31.6 32.8 46.2 25.7 31.6 32.6 48.3
en-ko 19.8 24.7 30.4 42.2 13.6 16.2 18.8 22.6 11.1 13.3 14.2 9.3
et-sk 13.4 15.2 26.7 67.5 10.8 12.6 14.9 53.0 6.3 7.7 10.4 68.0

Table 8: Reported P (@5, @3, @1, and @NN (k selected by the classification neural network)) for the MUSE-S, MUSE-I,
MUSE-U, VM-S, VM-I, and VM-U models evaluated with the MUSE evaluation dataset.

MUSE-S MUSE-I MUSE-U
P@ 5 3 1 NN 5 3 1 NN 5 3 1 NN
en-de 31.3 45.7 83.9 56.8 25.7 36.9 70.7 49.3 25.9 37.0 71.5 57.8
en-fr 25.9 38.5 78.4 63.4 25.9 38.5 78.3 62.7 25.8 38.2 78.5 52.7
en-es 26.4 39.4 79.1 77.6 26.3 39.3 79.3 67.6 26.6 39.7 79.1 73.9
en-ru 26.3 40.1 79.2 66.4 16.9 23.5 41.9 43.2 15.7 21.7 35.8 37.3
en-cs 18.5 26.0 47.1 41.3 17.5 24.9 46.1 34.8 16.8 23.6 43.6 46.8
en-nl 26.8 41.0 87.1 70.3 19.8 31.3 68.4 63.0 21.2 31.4 67.7 62.4
en-fi 16.2 23.0 39.2 32.6 14.18 20.0 37.1 42.2 12.9 18.0 31.5 31.4
en-ko 7.6 10.3 17.5 28.9 7.2 9.8 17.6 50.0 6.0 8.1 14.1 28
et-sk 6.1 9.3 14.1 52.4 5.2 7.9 13.9 36.5 5.2 7.8 12.2 47.8

VM-S VM-I VM-U
P@ 5 3 1 NN 5 3 1 NN 5 3 1 NN
en-de 27.5 39.4 73.3 60.7 27.0 38.6 73.7 54.5 27.0 38.5 73.7 55.3
en-fr 27.1 40.0 79.5 64.7 27.0 39.7 80.6 66.4 26.8 39.8 80.5 68.8
en-es 27.8 41.3 79.5 72.5 27.2 40.6 80.6 57.3 27.1 40.7 80.7 71.8
en-ru 19.8 28.8 50.5 42.3 18.8 26.8 45.8 39.3 16.6 23.6 38.5 41.6
en-cs 21.0 30.3 52.7 44.4 19.8 28.5 49.6 46.3 19.6 28.0 49.5 36.8
en-nl 22.7 34.2 71.9 57.5 22.8 33.9 73.6 61.6 22.4 33.8 73.6 62.8
en-fi 18.8 26.8 43.7 39.5 17.4 24.6 43.9 42.6 17.2 24.6 43.7 43.5
en-ko 12.5 17.8 35.2 46.2 8.6 11.7 21.8 24.6 7.0 9.6 16.5 13.9
et-sk 8.0 11.7 24.3 73.0 7.7 9.9 18.2 48.9 7.2 9.4 12.7 53.2
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