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Abstract: Reconstructing 3D models from a single 2D image is a complex yet fascinating challenge with applications
in areas like computer vision, robotics, and augmented reality. In this work, we propose a novel approach to
tackle this problem, focusing on creating accurate and detailed 3D representations from minimal input. Our
model combines advanced deep learning techniques with geometry-aware methods to extract and translate
meaningful features from 2D images into 3D shapes. By introducing a new framework for feature extraction
and a carefully designed decoding architecture, our method captures intricate details and improves the overall
reconstruction quality. We tested the model extensively on well-known datasets, and the results show signifi-
cant improvements compared to existing methods in terms of accuracy and reliability.

1 INTRODUCTION

The art of creating a digital representation of any
object, real or imagined in three dimensions, is the
fundamental component of 3D modeling. Vertices ,
edges and faces must be placed precisely during this
process. The end product is a flexible 3D model that
can be animated, modified, and generated to suit a va-
riety of purposes. 3D modeling has reshaped how in-
dustries create, visualize, and interact with digital and
physical spaces. In the entertainment world, it is at the
heart of storytelling, allowing studios such as Pixar
and DreamWorks to craft realistic characters and de-
tailed environments for animations and films (Whizzy
Studios, 2023). Similarly, the video game industry
depends on 3D models to design complex worlds and
dynamic characters, enhancing the overall gaming ex-
perience (Cutting Edge R, 2023). In architecture and
construction, 3D modeling provides architects and en-
gineers with tools to visualize designs, conduct virtual
walkthroughs, and efficiently plan projects. This ap-
proach helps to communicate ideas clearly and facil-
itates better decision-making during the design pro-
cess (Adobe, 2023). The integration of 3D model-
ing into virtual reality (VR) and augmented reality
(AR) has expanded its applications even further. VR
uses 3D models to create fully immersive digital envi-
ronments, while AR overlays virtual objects onto the
physical world, enhancing areas such as education,

training, and interactive experiences (Cutting Edge
R, 2023). In the medical field, 3D modeling is used
to generate highly detailed anatomical representations
that support medical education, surgical planning, and
prosthetic design. These models improve understand-
ing of complex biological structures and contribute
to better patient outcomes (Whizzy Studios, 2023).
Also, the product design and manufacturing indus-
tries leverage 3D modeling to speed up prototyping,
enable greater customization, and streamline produc-
tion. By visualizing and refining designs before man-
ufacturing, 3D modeling helps reduce costs and im-
prove efficiency (Adobe, 2023). Our solution uses
generative AI to create detailed 3D models from 2D
images, primarily optimized for electronics and gad-
gets while maintaining effectiveness across other ob-
ject types. This approach enhances reconstruction fi-
delity and realism while providing a more efficient
and accessible alternative to traditional 3D modeling
techniques.

2 RELATED WORK

This section will explore advanced techniques in
3D model generation, focusing on three main areas:
Score Distillation for 3D Generation, 3D Generation
with Sparse View Reconstruction, and Feed-forward
3D Generative Models.
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• Score Distillation for 3D Generation:
Score distillation leverages large-scale image diffu-
sion models to iteratively refine and produce high-
quality 3D models without requiring extensive 3D
datasets. DreamFusion (Poole et al., 2022) pio-
neered this approach with Score Distillation Sam-
pling (SDS), which uses feedback from image diffu-
sion models to align 3D models with target images
or descriptions. This iterative refinement process en-
ables highly detailed results without relying on pre-
existing 3D data. ProlificDreamer (Wang et al., 2023)
builds on this foundation by introducing Variational
Score Distillation (VSD), addressing over-saturation
issues and enhancing output diversity. However, these
techniques face significant computational challenges
- generating a single model on an NVIDIA RTX 4090
GPU can take several minutes with DreamFusion,
while complex objects may require hours of process-
ing time, limiting practical applications where speed
is crucial.

• 3D Generation with Sparse View Reconstruc-
tion:

Recent advancements in 3D reconstruction have in-
troduced methods that generate multi-view consistent
images from single-view inputs, which are then trans-
formed into detailed 3D models. SyncDreamer (Liu
et al., 2023c) employs a synchronized multi-view dif-
fusion model to produce images with consistent ge-
ometry and color across various perspectives, facil-
itating accurate 3D reconstruction without extensive
training data. Building upon this, Wonder3D (Long
et al., 2023) utilizes a cross-domain diffusion ap-
proach to generate multi-view normal maps and cor-
responding color images, ensuring coherence across
different views. This method effectively handles com-
plex scenes and textures, resulting in high-fidelity tex-
tured meshes from single-view images. Zero123++
(Shi et al., 2023) further enhances multi-view image
generation by leveraging refined diffusion techniques
to manage dynamic lighting and shadows, produc-
ing realistic and cohesive images from diverse view-
points. For the reconstruction phase, frameworks like
NeuS and Neuralangelo have demonstrated signifi-
cant capabilities. NeuS (Liu et al., 2023c) special-
izes in reconstruction of the neural surface using a
signed distance function to implicitly represent ge-
ometry, which is particularly beneficial in handling
sparse views and self-occlusions. Neuralangelo (Liu
et al., 2023a) advances 3D surface reconstruction by
employing multi-resolution 3D hash grids and neu-
ral surface rendering, achieving high fidelity through
coarse-to-fine optimization strategies.

Despite these advancements, challenges persist,
notably the computational intensity required for pro-

Figure 1: Wonder3D Multi-View Results.

Figure 2: Examples of 3D Models Reconstructed by NeuS.

cessing. For instance, NeuS requires approximately
two hours to process a single object on an NVIDIA
RTX 4090 GPU, while Neuralangelo takes around 40
minutes. Sparse view inputs can lead to incomplete
reconstructions, and ensuring geometric consistency
across different views remains critical.

• Feed-forward 3D Generative Models:
Feed-forward 3D generative models offer a faster and
more efficient alternative for generating 3D objects,
bypassing the iterative optimization processes typi-
cally used in traditional methods. By employing a di-
rect feed-forward approach, these models drastically
reduce the time required for 3D object generation,
making them particularly valuable for applications
where rapid results are essential. Recent advance-
ments in this domain have demonstrated significant
progress, aided by extensive datasets like Objaverse
(Deitke et al., 2023), which provides diverse and ro-
bust training data.

One notable example is One-2-3-45 (Liu et al.,
2023b), which transforms single images into de-
tailed textured 3D meshes using Zero123 diffusion
model for multi-view prediction and SparseNeuS for
neural surface reconstruction. It generates results
in 45 seconds without iterative optimization. The
Large Reconstruction Model (LRM) (Hong et al.,
2023) advances feed-forward 3D generation through
transformer-based architecture with refined attention
mechanisms, generating high-quality 3D objects in
10 seconds on an NVIDIA RTX 4090 GPU. While
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the official model is private . Building on LRM,
Triposr (Tochilkin et al., 2023) enhances its perfor-
mance through improved data preprocessing, model
optimization, and training strategies while maintain-
ing the core LRM architecture. These refinements al-
low it to achieve superior reconstruction quality in ap-
proximately the same inference time.

3 Image2Life MODEL
ARCHITECTURE

In this section, we present the detailed architecture
of our model, illustrated in figure 3, highlighting its
components and their functionalities.

3.1 Image Encoder

The DINO (Self-Distillation with No Labels) model
(Touvron et al., 2023) is utilized as the image encoder
within the architecture due to its ability to learn ro-
bust visual representations without requiring labeled
data. Specifically, the integration of DINOv2 (Tou-
vron et al., 2023), an enhanced version of DINO, ad-
dresses the demands of dense visual predictions and
fine-grained feature extraction. Object views are pro-
cessed through the encoder to extract feature vec-
tors that encapsulate critical visual details, forming
the foundation for subsequent stages in the 3D re-
construction pipeline. The DINOv2 model incorpo-
rates an optimized self-distillation process that signif-
icantly enhances its proficiency in capturing intricate
details and high-resolution features. Input images are
segmented into patches and passed through a multi-
layer transformer comprising 12 layers, each with a
dimensionality of 768 (Touvron et al., 2023). This
process generates detailed feature vectors that repre-
sent the visual properties of each patch while preserv-
ing a coherent understanding of the entire image. The
maintenance of spatial coherence is ensured through
the use of register tokens, which uphold spatial rela-
tionships within the image. This mechanism is criti-
cal for preserving structural integrity, allowing the re-
constructed 3D model to accurately reflect the input
image. The self-distillation approach employed by
DINOv2 provides interpretable attention over image
structures and textures, enabling detailed structural
information to guide the reconstruction of geometry
and color in 3D space.

3.2 Feature Aggregator

The Multi-Branch Attention Aggregator is a critical
module that we designed to integrate features from

multiple views into a unified representation, leverag-
ing the complementary information provided by each
view. This architecture is particularly effective in sce-
narios where different perspectives offer unique in-
sights, enhancing the quality of the aggregated fea-
tures for downstream tasks. Inspired by the patch-
based processing of the DINO encoder (Touvron
et al., 2023), the Feature Aggregator employs a multi-
branch attention mechanism to efficiently combine in-
formation from various views. Each view is processed
through a dedicated attention layer comprising se-
quential linear layers interspersed with ReLU activa-
tion functions, enabling each branch to independently
highlight important features. Attention weights are
dynamically calculated using a softmax layer, which
ensures that the most relevant features across all views
are emphasized. The aggregated features are subse-
quently refined through a final fully connected output
layer, which adjusts the dimensionality to suit specific
application requirements. This architecture offers en-
hanced feature representation by adaptively focusing
on the most informative aspects of each view, result-
ing in a richer, more robust output. Additionally, the
modular design of the aggregator allows for flexibil-
ity in the number of views and the dimensionality of
the features, making it highly adaptable across various
settings. This approach significantly improves the ef-
ficiency and effectiveness of multi-view feature inte-
gration, aligning well with modern 3D reconstruction
pipelines.

3.3 Image-to-Triplane Decoder

The Image-to-Triplane Decoder plays a critical
role in converting high-dimensional image features
into structured 3D representations. By utilizing a
transformer-based architecture, this decoder projects
image features onto learnable spatial-positional em-
beddings, effectively mapping them to a triplane
structure. This approach addresses the inherent chal-
lenges of single-image 3D reconstruction by pro-
viding a comprehensive representation of geomet-
ric and appearance information. The triplane rep-
resentation consists of three planes aligned with the
axes: TXY ,TY Z ,TXZ , each with a spatial resolution
of 64 × 64 and dT feature channels. Features for
any 3D point within the NeRF bounding box [−1,1]3

are derived through bilinear interpolation, followed
by processing with a multi-layer perceptron (MLP)
to generate NeRF color and density values (Milden-
hall et al., 2020). Learnable spatial-positional em-
beddings are integrated into the decoder, with dimen-
sions 3 × 32 × 32 × dD, to bridge the gap between
image and 3D space. These embeddings query im-

Image2Life: A Model for 3D Mesh Reconstruction from a Single-Image

1321



Figure 3: Image2Life Architecture.

Figure 4: Architecture of The Feature Aggregator.

age features via cross-attention mechanisms, enabling
the projection of image features to the triplane struc-
ture. Given the disparity in token counts between
the initial embeddings 3× 32× 32 and the final tri-
plane representation 3×64×64, the transformer out-

put is upsampled to complete the triplane represen-
tation. The decoder employs a transformer archi-
tecture beginning with a token sequence of dimen-
sions (3 × 32 × 32)× 1024, where the token count
3× 32× 32 corresponds to the number of spatial to-
kens and 1024 represents the hidden dimension of the
transformer. This configuration includes 1025 image
feature tokens for generating keys and values in the
cross-attention layers. The transformer consists of 16
layers, each with 16 attention heads of dimension 64.
In accordance with methods proposed by Touvron et
al. (Touvron et al., 2023), bias terms are omitted, and
a pre-normalization structure is employed, defined as:
x+ f ({LayerNorm}(x)). Each transformer layer con-
sists of a cross-attention sub-layer to integrate image
and triplane features, a self-attention sub-layer to cap-
ture internal triplane relationships, and an MLP sub-
layer for non-linear feature transformations. The op-
erations are defined as (Hong et al., 2023):

f j
cross = CrossAttn

(
ModLNcam(LayerNorm( f j

in));{hi}n
i=1

)
+ f j

in
(1)

f j
self = SelfAttn

(
ModLNcam(LayerNorm( f j

cross))
)

+ f j
cross

(2)

f j
out = MLPtfm(LayerNorm( f j

self))+ f j
self (3)
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This combination of components ensures a robust
and detailed 3D representation derived from high-
dimensional image features.

Then, camera features are constructed by flatten-
ing the 4× 4 extrinsic matrix E and concatenating it
with the focal length foc and principal point pp, cre-
ating a 20-dimensional vector c. This vector is nor-
malized and then transformed into a high-dimensional
embedding c̃ via an MLP. These camera features are
used to modulate the triplane tokens through adap-
tive layer normalization. The true camera parameters
c are incorporated into the Image-to-Triplane decoder
only during the training phase. In the inference phase,
these features are substituted with an encoding of the
standard, fixed camera parameters.

γ,β = MLPmod(c̃) (4)

ModLNc( f j) = LayerNorm( f j) · (1+ γ)+β (5)

After processing through all transformer layers,
the final triplane features fout are upsampled using a
learnable de-convolution layer to form the final tri-
plane representation T . This layer transforms the
transformer output from (3× 32× 32)× 1024 to 3×
(64×64)×80. The de-convolution layer has a kernel
size of 2, a stride of 2, and no padding.

The Triplane-NeRF (Neural Radiance Fields)
component is designed to estimate RGB values and
density σ from point features derived from the tri-
plane representation T . This approach is based on
the triplane framework described by (Chan et al.,
2022), utilizing a multi-layer perceptron (MLP) to
process these point features effectively. The architec-
ture of the MLP consists of three main parts. First,
the input comprises point features extracted from the
triplane representation T . These features are then
passed through 10 hidden layers, each employing lin-
ear transformations interleaved with ReLU activation
functions and having a dimensionality of 64. Finally,
the output layer generates a 4-dimensional vector,
where the first three dimensions represent the RGB
color values, and the fourth corresponds to the density
σ. This structured design enables the MLP to process
the input features and produce precise estimations of
the color and density values.

In terms of the detailed process, querying point
features is a critical step. For each point within the
3D bounding box, the point is mapped onto the tri-
plane planes (TXY ,TY Z ,TXZ). Bilinear interpolation
is then applied to extract feature values from these
planes, ensuring accurate and efficient computation
for 3D representation tasks.

The features obtained from the three planes are
aggregated into a single feature vector that repre-
sents the 3D point. This combined feature vector is
then processed using the MLPNeRF, which consists
of a series of 10 linear layers with ReLU activation
functions. The output from the MLPNeRF is a 4-
dimensional vector, where the first three dimensions
correspond to the RGB color values, and the fourth
dimension represents the density σ. This structured
pipeline ensures the efficient transformation of the
triplane features into meaningful 3D representations
suitable for rendering.

The design of this framework offers several ad-
vantages. First, the triplane representation provides
a compact yet expressive encoding of 3D structures,
enabling efficient querying of point features. Second,
the use of MLPNeRF facilitates accurate predictions of
color and density, resulting in high-quality 3D recon-
structions and renderings. Finally, the modular nature
of the triplane and MLP components ensures scalabil-
ity to complex scenes and objects, making it a versa-
tile solution for diverse 3D tasks.

4 EXPERIMENTATIONS

4.1 Training

The training process for the proposed model is con-
ducted in two stages.
Stage 1: The first stage focuses on training the fea-
ture aggregator, a critical component of the model’s
architecture. This stage involves fine-tuning key train-
ing parameters to enhance the model’s efficiency and
ensure robust feature extraction and integration. The
training process incorporates techniques and param-
eters derived from the LRM framework, comple-
mented by improvements inspired by recent advance-
ments in Triposr.

To optimize the balance between computational
efficiency and reconstruction quality, instead of ren-
dering full-resolution images at a 512×512 resolu-
tion, the model processes smaller 128×128 patches,
prioritizing patches more likely to cover foreground
regions. This approach ensures that the model fo-
cuses on critical areas, enabling detailed surface re-
constructions while maintaining computational effi-
ciency. The rendering process was configured with
128 samples per ray, a radius of 0.87, an exponential
density activation function, and a density bias of -1.0.
The model was trained over 27 epochs .

Stage 2: In the second stage, we fine-tune the last
five layers of the Image-to-Triplane Decoder and the
Triplane-NeRF while freezing the rest of the model to
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Figure 5: Training and Validation Loss During Stage 1.

adapt it to specific tasks. This stage uses the same hy-
perparameters and renderer settings as the first stage,
ensuring consistency and stability during training.

4.2 Evaluation

4.2.1 Qualitative Results

We conducted qualitative comparisons to evaluate our
model’s performance against established benchmarks.

Figure 6 compares OpenLRM and our model with
only the feature aggregator trained, using images
sourced from OpenLRM and the MyTek website.
The results demonstrate that our model, leveraging
Zero123++ (Shi et al., 2023), generates more accu-
rate and superior views.

Figures 7 compare our fine-tuned model with
OpenLRM on electronic items from retailers like
Amazon and Orange Store. Our model consis-
tently delivers more realistic geometry and appear-
ance, significantly improving results on electronic
objects while generalizing well across various cate-
gories. In Figures 8 comparisons with baselines such
as CRM (Wang et al., 2024) and One-2-3-45 highlight
our model’s advantages.
TripoSR struggles with imaginative capabilities and
often produces degraded textures, while Image2Life
use of 80 channels in the Triplane-NeRF architecture
ensures detailed geometry and textures.
CRM, while recent, fails to generate smooth surfaces,
whereas our model, aided by mask loss during train-
ing, excels in smooth and realistic reconstructions.

4.2.2 Quantitative Results

To evaluate the quantitative performance of our
model, we conducted an extensive analysis using 50
unseen objects from our curated dataset and an ad-
ditional 50 objects from the High-Quality Alignment
Subset of Objaverse-XL. For each object, 15 refer-
ence views were processed, and five of these views

Figure 6: Comparison between OpenLRM and our model
with only the feature aggregator trained.

were individually used as input for our model to re-
construct the corresponding 3D object. The ren-
dered images were then evaluated against all 15 ref-
erence views to assess the quality and accuracy of
the reconstruction. This evaluation methodology, in-
spired by the approach utilized in the LRM frame-
work, provides a robust assessment of our model’s
reconstruction precision and robustness. Notably,
our model demonstrates significant computational
efficiency, achieving high-quality object generation
within just 10 seconds. The rendered images were
captured from the following angles:

As shown in Table 2, Image2Life surpasses base-
line models in 2D novel view synthesis metrics,
achieving higher SSIM and LPIPS scores, which
highlight its superior perceptual quality. It also leads
in FID and CLIP-Similarity, demonstrating its ability
to produce visually appealing and contextually accu-
rate images. While its PSNR is slightly lower than
the best-performing baseline, this is attributed to the
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Figure 7: Comparison of fine-tuned model and OpenLRM
on electronic objects.

Table 1: Rendered View Angles (Az: Azimuth, El: Eleva-
tion).

View Az El View Az El
Back 180° 0° Right 270° 0°

Back Left 135° 0° Top 0° 90°
Back Right 225° 0° Top Back 180° 45°

Front 0° 0° Top Front 0° 45°
Front Left 45° 0° Top Left 90° 45°

Front Right 315° 0° Top Right 270° 45°
Left 90° 0°

multi-view diffusion model (Zero123++) generating
less pixel-perfect but perceptually richer views. We
argue that perceptual quality outweighs pixel-level ac-
curacy for novel view synthesis, given the inherent
variability of such views.

Figure 8: Comparison of Our Model with One-2-3-45 and
CRM.

For 3D geometric metrics, Image2Life markedly
outperforms baselines in both Chamfer Distance (CD)
and F-Score (FS), demonstrating superior shape fi-
delity. The addition of mask loss during training ef-
fectively minimizes ’floater’ artifacts, resulting in a
significant improvement in CD.

5 CONCLUSION

In conclusion, our model consistently demonstrates
exceptional performance in generating realistic ge-
ometry and visually appealing appearances, particu-
larly for electronic objects sourced from various on-
line retailers such as Amazon and Orange Store. Its
robust generalization capabilities extend beyond elec-
tronic items, achieving superior results across a di-
verse range of object categories. Qualitative com-
parisons have shown that our fine-tuned model out-
performs baseline approaches by producing smoother
and more accurate reconstructions.

Comprehensive quantitative evaluations further
validate the effectiveness of our approach. Our model
excels in key perceptual quality metrics such as SSIM,
LPIPS, FID, and CLIP-Similarity, while also achiev-
ing state-of-the-art performance in geometric fidelity
metrics like Chamfer Distance (CD) and F-Score
(FS).

Despite these achievements, there is room for im-
provement. Addressing challenges such as textural in-
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Table 2: Quantitative comparison of our method with baseline models across multiple metrics. ↑ indicates that higher values
are better, while ↓ indicates that lower values are better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ FS ↑ FID ↓ CLIP-Similarity ↑
TripoSR 23.681 0.872 0.204 0.246 0.879 25.459 0.812
DreamGaussian 19.204 0.789 0.277 0.382 0.635 57.257 0.815
CRM 22.790 0.891 0.137 0.201 0.802 23.846 0.880
One-2-3-45 18.558 0.726 0.296 0.421 0.633 98.261 0.720
Ours 23.297 0.901 0.124 0.179 0.892 22.547 0.930

Table 3: Comparison of our model with only the feature
aggregator trained against OpenLRM using CD and LPIPS
metrics.

Method CD ↓ LPIPS ↓
OpenLRM 0.271 0.209
Our Model (Only Feature Aggregator Trained) 0.194 0.153

distinctness in occluded regions and reducing the de-
pendency on the quality of multi-view images gener-
ated by Zero123++ are crucial next steps. Enhancing
the initial stages of multi-view image generation or
developing alternative strategies could further boost
the performance and reliability of the 3D reconstruc-
tion process. These advancements will pave the way
for even more robust and precise 3D reconstruction
capabilities in future work.
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