
VITAMIN: A Compositional Framework for
Model Checking of Multi-Agent Systems

Angelo Ferrando1 a and Vadim Malvone2 b

1University of Modena and Reggio Emilia, Italy
2Telecom Paris, Institut Polytechnique de Paris, France

Keywords: Formal Verification, Model Checking, Multi-Agent Systems, Software Engineering.

Abstract: The verification of Multi-Agent Systems (MAS) poses a significant challenge. Various approaches and
methodologies exist to address this challenge; however, tools that support them are not always readily avail-
able. Even when such tools are accessible, they tend to be hard-coded, lacking in compositionality, and
challenging to use due to a steep learning curve. In this paper, we introduce a methodology designed for the
formal verification of MAS in a modular and versatile manner, along with an initial prototype, that we named
VITAMIN. Unlike existing verification methodologies and frameworks for MAS, VITAMIN is constructed for
easy extension to accommodate various logics (for specifying the properties to verify) and models (for deter-
mining on what to verify such properties).

1 INTRODUCTION

Software and hardware systems are notoriously chal-
lenging to verify. This difficulty generally arises from
their complexity, making formalisation and proper
analysis arduous. At times, it is due to their size,
rendering exhaustive verification impractical unless
appropriately abstracted or optimised (e.g., through
symbolic techniques). Regardless of the cause, for-
mally verifying software and hardware systems is a
complex task demanding deep expertise in formal
methods. Given that such expertise is often scarce,
formal verification techniques find limited usability in
real-world software and hardware development.

Moving from monolithic systems to Multi-Agent
Systems (MAS), formal verification becomes even
more complex to achieve. In fact, the process of
testing (Nguyen et al., 2009), debugging (Winikoff,
2017), and verifying (Dennis et al., 2012) such sys-
tems can be quite complex. Solutions which make
the development more reliable are of uttermost im-
portance. Similar to the challenges mentioned for
monolithic systems, MASs encounter the same is-
sues in verification. Moreover, as distributed systems
comprising intelligent and independent components
(the agents), their verification becomes even more de-

a https://orcid.org/0000-0002-8711-4670
b https://orcid.org/0000-0001-6138-4229

manding. This is due to the fact that MAS properties
may rely on the rationality of the agents and on how
they interact with each other.

One significant development in formal verifica-
tion is Alternating-Time Temporal Logic (ATL) (Alur
et al., 2002), enabling reasoning about agents’ strate-
gies with temporal goals as payoff. However, ATL’s
implicit treatment of strategies limits its suitability for
certain concepts, leading to the introduction of more
powerful formalisms like Strategy Logic (SL) (Mo-
gavero et al., 2014). SL treats strategies as first-order
objects, providing a richer framework for strategic
reasoning. While SL’s expressivity is high, it comes at
the cost of non-elementary complete model-checking
and undecidable satisfiability (Mogavero et al., 2014).
To address this, fragments like Strategy Logic with
Simple-Goals (Belardinelli et al., 2019) have been
proposed, offering better computational properties
while still subsuming ATL. In the context of MAS,
considering agents’ visibility is crucial. The dis-
tinction between perfect and imperfect information
MAS impacts model-checking complexity, with im-
perfect information scenarios often modelled using
indistinguishability relations over MAS states (Reif,
1984). This distinction becomes particularly rele-
vant, for instance, in rendering ATL undecidable in
the context of imperfect information and memory-
ful strategies (Dima and Tiplea, 2011). To overcome
this problem, some works have either focused on

648
Ferrando, A. and Malvone, V.
VITAMIN: A Compositional Framework for Model Checking of Multi-Agent Systems.
DOI: 10.5220/0013349600003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 648-655
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

an approximation to perfect information (Belardinelli
et al., 2023), developed notions of bounded memory
(Belardinelli et al., 2022), or developed hybrid tech-
niques (Ferrando and Malvone, 2022; Ferrando and
Malvone, 2023).

Even with strong theoretical foundations, the for-
mal verification of MAS heavily depends on tools that
support such techniques. Notably, some tools stand
out as pillars in this field, including MCMAS (Lomus-
cio et al., 2017) and STV (Kurpiewski et al., 2019).

MCMAS is recognized as one of the most widely
used model checkers for the strategic verification of
multi-agent systems, primarily due to being one of
the earliest tools developed, which served as a foun-
dational proof-of-concept for researchers. Despite the
widespread use of MCMAS in the academic commu-
nity, it exhibits issues that hinder its broader adop-
tion, particularly outside the MAS research commu-
nity itself. Specifically, its verification process is in-
herently hard-coded. In fact, even though MCMAS
has been extended in various ways, it lacks modular-
ity and does not allow a clear separation between dif-
ferent logics and models that causes maintainability
issues. That is, MCMAS lacks the capability of be-
ing transparently extended with new logics and mod-
els for the verification of MASs. Furthermore, while
it does offer a graphical interface, users may find its
execution challenging, as it requires additional tools,
such as Eclipse, for installation. Moreover, the tool
lacks comprehensive external documentation to assist
developers, and its internal documentation may prove
helpful only to those familiar with its original devel-
opment. It is important to acknowledge that the ob-
served limitations in MCMAS arise from its primary
function as a research tool dedicated to proving theo-
retical contributions. Regarding STV, it is designed to
address specific verification goals in a predetermined
way. Consequently, the resulting tool lacks composi-
tional nature and only supports certain types of logics
and models for the MAS verification. If users wish
to verify the MAS against different logics or mod-
els, such flexibility is unavailable to them. Moreover,
the tool lacks comprehensive documentation to assist
users and developers. Additionally, both MCMAS
and STV require a strong background in formal meth-
ods, making them challenging for non-expert users to
employ them. In summary, although widely used and
with a history of successes, both MCMAS and STV
tend to lack modularity and usability.

These two aspects are the ones we decided
to tackle by engineering and developing a formal
verification framework for MAS, called VITAMIN
(VerIficaTion of A MultI-ageNt system), which aims
at being both highly compositional, in terms of the

Model Logic

Model Checker
Interface

User

High-Level
Developer

High and
Low-Level
Developers

Expert

GUI

Non-Expert

GUI

High-Level
Developer

Figure 1: Architecture’s overview.

logic and model formalisms that can be employed,
and highly usable, in terms of the user experience
(from a developer and end-user side). The concept
behind our methodology is to generalise MAS ver-
ification without being tied to any specific logic or
model formalism. VITAMIN, even though still under
development, achieves compositionality through its
design, minimising assumptions about the types of
logics and models that can be employed. Its end-
user’s usability is enhanced through a user experi-
ence that guides the entire verification process. It is
worth noting that, VITAMIN’s compositionality facili-
tates straightforward extension of its components by
external developers. We refrain from presenting ex-
perimental results for two primary reasons. Firstly,
an empirical evaluation would be beyond the scope
of our work, which focuses on the engineering of
VITAMIN and its foundational aspects. Secondly, due
to VITAMIN’s inherent compositionality, it can read-
ily accommodate the integration of both new and ex-
isting verification techniques. Consequently, compar-
ing VITAMIN with existing verification tools for MAS
would not be meaningful, as each tool would essen-
tially be compared, in theory, with itself.

2 VITAMIN: ARCHITECTURE

In this section, we focus on the engineering of our ap-
proach. To do so, we present an overview of the tool,
named VITAMIN, in Figure 1, showcasing its main
components. First and foremost, there is a clear sepa-
ration between the logics and models used in our ver-
ification methodology. This separation of concerns
is of paramount importance as it enables the tool to
evolve independently in both directions. The logics
and models should not be tied to each other, provid-
ing a more flexible environment where different log-
ics can be verified on distinct models.

Another noteworthy aspect in Figure 1 is the pres-

VITAMIN: A Compositional Framework for Model Checking of Multi-Agent Systems

649

ence of an interface dedicated to handling the actual
formal verification. Further details on this aspect are
discussed in the subsequent sections. It is crucial to
emphasise that, similar to the logics and models, the
verification component foreseen in our methodology
is independent and highly compositional. As an il-
lustration, we can choose to verify ATL properties
on a Concurrent Game Structure (CGS) (Alur et al.,
2002), and such verification can be executed in differ-
ent ways. For instance, we may opt for an explicit
verification based on fix-point (similar to what is done
in the case of CTL properties), or alternatively, sym-
bolically encode the model as a Binary Decision Di-
agram (BDD) and perform symbolic (i.e., implicit)
model checking, or finally, abstract the model to
cope with its complexity and perform the verifica-
tion on the resulting abstracted model. These exam-
ples underscore how the actual verification, consider-
ing a logic and a model, can be achieved in various
ways. Importantly, this aspect is kept separate from
the tool’s ecosystem to avoid hard-coding within it.

One additional aspect to note in Figure 1 is the
type of users envisioned in our approach. Rather
than the standard end-user, we assume the presence
of three user categories. The first one corresponds to
what we commonly refer to as an end-user: a user
who utilises the verification approach solely for ver-
ifying a MAS, without the intention or objective of
extending or modifying the tool itself. In addition to
the standard User, we envisage the access to two lev-
els of developer users: the High-Level Developer,
who concentrates on formal verification aspects, and
the Low-Level Developer, who focuses on optimi-
sation and low-level implementation.

High-Level Developer users possess experi-
ence in model checking within MAS and are responsi-
ble for developing the Model and Logic components
and can develop the explicit verification via Model
Checker Interface. They can achieve this by ex-
tending existing models and logics or by introducing
entirely new ones into the architecture. Importantly,
as each model in the Model component, each logic in
the Logic component, and each explicit verification
algorithm in the Model Checker Interface com-
ponent is developed as an independent module, the
enrichment of these components with new modules
does not introduce errors into previously validated
modules. These developers are concerned with prop-
erly defining and verifying the models and logics in
the system, without delving into the intricacies of cre-
ating high-performance software solutions.

The task of optimising such implementations is
undertaken by Low-Level Developer users who
possess expertise not only in model checking within

MAS but also in software engineering. They are re-
sponsible for enhancing the implementation provided
by High-Level Developers by leveraging optimi-
sation techniques, which can encompass both algo-
rithmic and data structure improvements. For ex-
ample, a High-Level Developer may propose a
logic and its verification on an explicit model, and a
Low-Level Developer, starting from such an imple-
mentation, may offer an optimised solution based on
the verification of an implicit model, such as BDDs.

To bridge the gap between these two types of
developers, we have introduced the Model Checker
Interface component in our methodology. This
component, developed by low-level developers, is in-
tended to be utilised by end-users and high-level de-
velopers to seamlessly use the optimisations.

Thanks to the presented architecture, the strengths
of our approach include: (Modularity) it allows
transparent extension without the need for core engine
modifications. (User-Friendlyness) it enables end-
users to use the software without requiring expertise
in formal verification. (Distribution) the composi-
tionality of the verification components enables their
distribution on different machines. (Documentation)
we prioritise the development of internal and external
documentation to assist users and developers in effec-
tively utilising and extending the tool.

3 VITAMIN: DETAIL ON THE
ARCHITECTURE MODULES

We now delve more into the details of the components
of the architecture behind our verification methodol-
ogy. To help us present it, we present a diagram for
each of such components. Note that, the colours are
consistent with the ones used in Figure 1, which de-
tails the more general diagram of the architecture and
its components in a whole. Specifically, we can see
how the compositionality is achieved through hierar-
chical structures; where in the root we have the gen-
eral notion, and going deeper into the resulting hierar-
chy, we have various instantiations to serve different
verification purposes.

3.1 Model

As illustrated in Figure 2, the model component
is structured hierarchically. At the root, we find
the concept of a model, while further down in the
hierarchy, two crucial branches of system models
emerge: Monolithic and Multi-Agent. The for-
mer represents the standard model for software and

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

650

Model

Monolithic Multi-Agent

Kripke
Structure

Labelled
Transition System

Interpreted
System

Concurrent Game
Structure

......

Figure 2: Model component insights.

hardware systems, such as Kripke Structures (Chel-
las, 1980) and Labelled Transition Systems (Keller,
1976). These models are used to depict the behaviour
of centralised systems. However, such models typi-
cally do not account for the presence of autonomous
entities (such as agents) and lack a proper means
to characterise their independent and rational be-
haviours. To address this, the methodology supports
the notion of multi-agent models, including Concur-
rent Game Structures (CGSs) (Alur et al., 2002) and
Interpreted Systems (ISs) (Fagin et al., 1995).

It is worth noting that, we envision the possibil-
ity of further extending the structure of the hierarchy
for the model component. Nevertheless, in its initial
phase, we have chosen to consider the two most influ-
ential and commonly used branches of models, par-
ticularly for specifying system behaviour (at least for
verification purposes).

3.2 Logics

As depicted in Figure 3, an independent structure is
in place to manage the various logics available. The
necessity for such a hierarchy arises from the diverse
nature of the logics that can be employed for the
verification of Multi-Agent Systems (MAS). Specifi-
cally, in our methodology we distinguish between two
types of formalisms for denoting properties to be ver-
ified: Temporal and Strategic. The former encom-
passes more standard temporal logics, such as Linear
Temporal Logic (LTL) (Pnueli, 1977) or Computation
Tree Logic (CTL) (Clarke and Emerson, 1981). The
latter involves more recent strategic logics, with ex-
amples including Alternating-Time Temporal Logic
(ATL) (Alur et al., 2002) or Strategy Logic (SL) (Mo-
gavero et al., 2014).

Given VITAMIN’s intrinsic compositional ap-
proach to handling logics, it allows for the addition
of branches in the hierarchy. However, in its initial
phase, we chose the two most studied and commonly
used branches of logics for verification purposes.

Logic

Temporal Strategic

Linear Temporal
Logic

Computation Tree
Logic

Alternating-time
Temporal Logic

Strategy
Logic

... ...

Figure 3: Logic component insights.

Model Checker
Interface

Temporal
Model Checker

Strategic
Model Checker

Linear Temporal
Logic

Computation Tree
Logic

Alternating-time
Temporal Logic

Strategy
Logic

... ...

Figure 4: Model Checker Interface insights.

3.3 Model Checker Interface

Once the model and logic are chosen, the next step in
our methodology is their verification. This is obtained
through the Model Checker Interface, presented
in Figure 4. Notice that, each leaf of Figure 4 repre-
sents a meta-node that can be further decomposed as
shown in Figure 5 for the case of Strategy Logic.

To better comprehend the role of such a compo-
nent, it is noteworthy that our methodology incorpo-
rates a selection mechanism connected to the model
checker interface. This mechanism enables the choice
of the appropriate model checker usage, considering
the selected model and logic. The interface is config-
ured to analyse the model description and logical for-
mula, determining the class of model among a set of
predefined model classes to which the model belongs
(Model component) and the class of logic among a set
of predefined logic classes to which the formula be-
longs (Logic component). Then, given the model and
logic, the model checker interface selects the most ef-
ficient verification method. For instance, by assuming
the number of states as main parameter of the prob-
lem, the model checker interface could select an ex-

Strategy
Logic

Explicit MC Implicit MCAbstract MC

Figure 5: Meta-node for Strategy Logic.

VITAMIN: A Compositional Framework for Model Checking of Multi-Agent Systems

651

Expert User

Model

Sp
ec

if
y

Formula

Specify

GUI

Non-Expert User

A
I-

gu
id

ed
m

od
el

in
g

Formula

N
L

P-based
specificationGUI

agents?

states?
actions?

Verify

Outcome

Parsing
Model

Parsing
Formula

Internal model
representation

Internal formula
representation

Model Checker
Selection

Which logic?Which model?

Model Checker

Interface

Temporal

Model Checker

Strategic

Model Checker

ATL...

Actual verification with
selected model checker

Model

Figure 6: Our methodology’s flowchart for a ATL.

plicit method for models with less than fifty states,
an implicit method for models with less than one-
hundred states, and an abstract method with more than
one-hundred states.

3.4 User Interface

Here, we focus on the way the end-user interacts with
VITAMIN. In VITAMIN, we categorise end-users based
on their knowledge of formal methods. Specifically,
we distinguish between Expert and Non-Expert
users. In both cases, being end-users of the system,
they would benefit from a Graphical User Interface
(GUI) to guide them through the verification.

In Figure 6, we present an ideal interaction flow
for both types of users.

On the left, we depict the interaction involving an
expert user, which is more straightforward and direct.
Since the user is experienced with formal methods,
they can simply upload the corresponding files for the
model and formula through a GUI. These files must
be compatible with the format expected by the spe-
cific instantiation. Once these files are provided as
input, the verification continues.

On the right, the interaction is guided, as the non-

expert user lacks experience with formal methods. To
address this, our methodology solicits details and in-
formation about the model and the formula. These
information can be gathered through a sequence of
questions to the user. For instance, the user may be
asked about the number of agents he/she thinks to
employ in the MAS, or, how many and which kind
of actions are available for such agents. These exam-
ples serve only as illustrations, demonstrating the sys-
tem’s potential to guide non-expert users. By follow-
ing such a constrained step-by-step process, a non-
expert user can interact in a more natural way. Once
information about the model is supplied, we may con-
tinue by seeking additional details about the formula.
The communication in this phase can also be handled
through natural language. Questions during this step
may inquire about the specific property of interest,
which might involve considering temporal informa-
tion. It is worth noting that this step is inspired by
what is commonly done in the FRET framework (Gi-
annakopoulou et al., 2020) (and similar ones), where
users can describe formal properties in a constrained
natural language, and it is the system’s responsibility
to generate the corresponding formal property in the
chosen formalism.

At the conclusion of the guided process, akin to
the expert user, the non-expert user can proceed with
the verification steps illustrated in Figure 6. This pro-
cess begins with a parsing step, in which the model
and formula are parsed, leading to the creation of an
internal representation. Following the parsing step,
the verification process advances with the selection of
an appropriate model checker to address the verifica-
tion of the model against the given formula. Subse-
quently, the verification result is returned to the user.

4 IMPLEMENTATION

In this section, we focus on the instantiation of
VITAMIN and what the tool currently supports.
VITAMIN is implemented in Python and its GUI is ac-
cessible through a web browser (https://vitamin-app.
streamlit.app/), which makes the tool cross-platform.
This accessibility is facilitated by utilising the
Streamlit1 Python library, which supports the trans-
parent sharing of Python programs via HTTP proto-
col. Furthermore, the source code of the architec-
ture of VITAMIN can be found in https://github.com/
VITAMIN-organisation/VITAMIN-public. It is im-
portant to note that this repository contains only the
architecture, while the source codes of the individual

1https://streamlit.io/

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

652

modules are not publicly available. However, they can
be freely utilised through VITAMIN’s browser GUI. It
is worth mentioning that the actual implementation of
the modules is beyond the scope of this paper, as its
goal is to present the engineering and architecture of
the VITAMIN framework. As mentioned in the paper,
VITAMIN supports the interaction with both expert and
non-expert users.

4.1 Non-Expert User Experience

Figure 7 displays a screenshot of VITAMIN’s GUI
where the user is asked about the number of agents to
employ in the MAS to verify. In this specific exam-
ple, the user wants to create a MAS comprising two
agents, named A0 and A1.

Figure 7: VITAMIN asks the user for the agents of the MAS.

After the number of agents has been given to the
system, the process continues with the number of
states. As reported in Figure 8, the user inserts the
number of states he/she wishes to add to the MAS
model under analysis. In this specific case, the user
chooses to add four states, which are then named: S0,
S1, S2, and S3. Once both agents and states have been
collected, VITAMIN asks for the actions that the agents
can perform in the states. Figure 9 reports the step
where VITAMIN asks the user to assign the actions
to the agents created previously, in the states added
previously. In this specific scenario, the user decides
that the agents can perform three actions, which are
named: A, B, and C.

Now that the agents have actions to perform,
VITAMIN requires the user to specify which actions
can be performed by which agent in which state.
This process allows a natural definition of transitions
amongst states through agents’ actions. The transi-
tions are reported by the user through VITAMIN’s GUI.
In Figure 10, we report only a subset of A1’s transi-
tions to improve readability. In this specific scenario,
agent A1 can perform only action A in state S1 to move
to state S2, and actions B and C to move to state S3.
For the remaining transitions, both for A0 and A1, the

Figure 8: VITAMIN asks the user the states of the model.

Figure 9: VITAMIN asks the user for the agents’ actions.

reader can refer to Figure 11.

Figure 10: VITAMIN asks the user for transitions.

At this point, VITAMIN has all the information it
needs to represent the model graph created by the
user. To allow the user to validate the resulting model,
VITAMIN shows the graph result to the user, as re-
ported in Figure 11. VITAMIN supports the graphical
visualisation of the model and allows the user to vali-
date it before moving on in the verification process.

Finally, given the model produced step-by-step by
guiding the user through all the details needed to pop-
ulate the model, VITAMIN can conclude the process by
asking the formula to verify on the obtained model.
Figure 12 reports the last step of the VITAMIN’s pro-
cess where the user can specify the formal property to

VITAMIN: A Compositional Framework for Model Checking of Multi-Agent Systems

653

Figure 11: VITAMIN displays the graph from the gathered
information for user validation.

verify on the model. In this specific case, the user de-
cides to specify an ATL formula and, in particular, to
verify whether the agents can reach state S3 by collab-
orating. Such a property is verified then by VITAMIN
and concluded as satisfied on the model of the MAS.

VITAMIN’s current instantiation requires the for-
mula to be specified, however, a step-by-step mech-
anism could be employed as well. Nonetheless, dif-
ferently from the model scenario, the formula may re-
quire additional engineering since it may largely de-
pend on the formalism chosen by the user.

Figure 12: VITAMIN asks the user for the formula to verify
on the previously constructed model of the MAS.

4.2 Expert User Experience

Here, we show how an expert user interacts with
VITAMIN. Specifically, this is achieved by the defini-
tion of the model of the MAS and the formal property
the user wishes to verify. Differently from the non-
expert user, VITAMIN does not guide the expert user,
but it expects the model and formula as input.

VITAMIN is born to handle different types of mod-
els and logics. Due to its design, it is not lim-
ited to any specific model (resp., logic) since each
model (resp., logic) can be seen as an independent
component of the system. However, to give an ex-
ample, we show how to define a MAS model as a
CGS in VITAMIN. Figure 13 displays a screenshot of
VITAMIN’s GUI where the user can upload the CGS
of the MAS to verify. The model has to follow a spe-
cific format that has been chosen for the definition of

CGSs in VITAMIN. Naturally, because of their compo-
sitionality, these format choices are exclusive to how
VITAMIN handles CGSs and do not concern the de-
velopment of other formalisms for model representa-
tion. So, if VITAMIN supported Interpreted Systems
(like MCMAS), it would be free to choose the format
that best suits such models, without being concerned
about how CGSs are modelled, and vice versa.

Figure 13: Screenshot of VITAMIN’s GUI with an example.

Figure 14: Screenshot of VITAMIN’s GUI.

After the model has been uploaded by the user,
VITAMIN expects the formula to be verified on the lat-
ter. This step, similarly to the non-expert user sce-
nario, is obtained by letting the user fill a field box in
the VITAMIN’s GUI. Figure 14 displays a screenshot
of the GUI where the user fills the box with the for-
mula of interest to verify on the model. Once both the
model and formula are given, the verification process
may start and the result of the verification is returned
back to the user.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

654

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we introduced VITAMIN, a compre-
hensive and versatile framework designed for model
checking of Multi-Agent Systems and beyond. Our
emphasis was on the engineering aspects and deci-
sions made during the development of VITAMIN.

We acknowledge that VITAMIN is an ongoing
project that will require additional refinement, but
recognise that its current state already represents a
noteworthy advancement in the realm of tools for the
formal verification of MAS. This is especially notable
given its potential for further study and extension, fa-
cilitated by its inherent compositionality.

Note that VITAMIN is currently in a prototype
stage. Certain aspects presented in this paper such as
Natural Language Processing (NLP) support for non-
expert users and the Model Checker Interface
part, are still in development. However, everything
related to verification and compositional representa-
tion in VITAMIN has already been implemented and
tested across various scenarios, each highlighting dif-
ferent models and formulas for verification.

Our future plans include the continued expansion
of VITAMIN, along with sharing it with the MAS
community. Additionally, we intend to present its
extensions in future research endeavours, exploring
possible instantiations of models and logics within
the tool. While this work has primarily focused on
VITAMIN’s engineering and architecture, future re-
search will delve into specific instantiations (of what
we called the VITAMIN’s components).

REFERENCES

Alur, R., Henzinger, T. A., and Kupferman, O. (2002).
Alternating-time temporal logic. J. ACM, 49(5):672–
713.

Belardinelli, F., Ferrando, A., and Malvone, V. (2023). An
abstraction-refinement framework for verifying strate-
gic properties in multi-agent systems with imperfect
information. Artif. Intell., 316:103847.

Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V.,
and Murano, A. (2019). Strategy logic with simple
goals: Tractable reasoning about strategies. In IJCAI
2019, pages 88–94.

Belardinelli, F., Lomuscio, A., Malvone, V., and Yu, E.
(2022). Approximating perfect recall when model
checking strategic abilities: Theory and applications.
J. Artif. Intell. Res., 73:897–932.

Chellas, B. F. (1980). Modal Logic - An Introduction. Cam-
bridge University Press.

Clarke, E. M. and Emerson, E. A. (1981). Design and syn-
thesis of synchronization skeletons using branching-

time temporal logic. In Logics of Programs, pages
52–71.

Dennis, L. A., Fisher, M., Webster, M. P., and Bordini,
R. H. (2012). Model checking agent programming
languages. Autom. Softw. Eng., 19(1):5–63.

Dima, C. and Tiplea, F. L. (2011). Model-checking ATL un-
der imperfect information and perfect recall semantics
is undecidable. CoRR, abs/1102.4225.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y.
(1995). Reasoning About Knowledge. MIT Press.

Ferrando, A. and Malvone, V. (2022). Towards the combi-
nation of model checking and runtime verification on
multi-agent systems. In PAAMS, pages 140–152.

Ferrando, A. and Malvone, V. (2023). Towards the verifica-
tion of strategic properties in multi-agent systems with
imperfect information. In AAMAS, pages 793–801.

Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein,
J., Schumann, J., and Shi, N. (2020). Formal require-
ments elicitation with FRET. In REFSQ.

Keller, R. M. (1976). Formal verification of parallel pro-
grams. Commun. ACM, 19(7):371–384.

Kurpiewski, D., Jamroga, W., and Knapik, M. (2019). STV:
model checking for strategies under imperfect infor-
mation. In AAMAS, pages 2372–2374.

Lomuscio, A., Qu, H., and Raimondi, F. (2017). MC-
MAS: an open-source model checker for the verifica-
tion of multi-agent systems. Int. J. Softw. Tools Tech-
nol. Transf., 19(1):9–30.

Mogavero, F., Murano, A., Perelli, G., and Vardi, M. Y.
(2014). Reasoning about strategies: On the model-
checking problem. ACM Trans. Comput. Log.,
15(4):34:1–34:47.

Nguyen, C. D., Perini, A., Bernon, C., Pavón, J., and
Thangarajah, J. (2009). Testing in multi-agent sys-
tems. In AOSE, pages 180–190.

Pnueli, A. (1977). The temporal logic of programs. In
FOCS, pages 46–57.

Reif, J. H. (1984). The complexity of two-player games
of incomplete information. J. Comput. Syst. Sci.,
29(2):274–301.

Winikoff, M. (2017). Debugging agent programs with
why?: Questions. In AAMAS, pages 251–259.

VITAMIN: A Compositional Framework for Model Checking of Multi-Agent Systems

655

