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Abstract: Graphs are very specialized structures for modelling and representing data objects and their relationships in 
real-world applications. The number and diversity of graph-based applications existing today are clear 
testimonies of the importance and relevance of the application of graphs in solving real-world problems. 
However, more conventional graph structures have difficulty keeping up with the evolving complexity of 
problems, particularly when they involve n-ary relationships between data objects. This can be overcome 
using hypergraphs, which allow for representing complex relationships between finite sets of data objects. 
However, their implementation still has some difficulties, such as the establishment of efficient algebras and 
computing mechanisms to deal with relational content between entities of a dataset. In this paper, we present 
an extension to conventional hypergraph-based models for modelling real world problems, proposing a new 
functional abstraction based on a graph structure with several levels of abstraction. Relationships between 
data objects are established at each level in a traditional way, while relationships between levels are defined 
by “levelled” virtual data objects, allowing for the establishment of inheritance relationships between other 
data objects of sequential levels, through a logical governance structure defining the relational flow between 
the various levels of the established model. We named this structure as multilevel hypergraph.

1 INTRODUCTION 

Graph theory (Daniel, 2013) (Angles & Gutierres, 
2008) (Bondy & Murty, 2008) has been used since 
very early in our training process. From the first 
moment we saw a map of roads, graphs emerged in a 
very natural way as the most appropriate solution to 
represent the various data elements and their 
relationships presented in a map. Later, in more 
advanced study cycles, graphs appeared to us as 
simple but very powerful "tools" for modelling real-
world systems. As we study graph theory, 
approaching its history, foundations, terminology, 
models and algebras, we recognize the importance of 
the work of Euler (Biggs et al., 1986), which was the 
first to use a graph model to solve a real practical 
problem (the "Seven Bridges of Königsberg") or of 
Sylvester (1878) that coined the word graph, as well 
as the enormous potential and application of graphs. 
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In the areas of Medicine, Biology, Economics or 
Computer Science, among many others, graphs have 
been applied in a very systematic way, to represent 
and solve very complex problems (Kanhio, 2023). 
However, as problems become more complex, we 
find that the most elementary representations of 
graphs are not always the most adequate to address 
some problems, especially those that require the 
establishment of more complex relationships between 
data objects than simple binary relationships, between 
pairs of data objects. In some applications, the use of 
simple relationships can lead to the loss of pertinent 
information or even lead to the inability of the model 
to represent real data objects. Cases like these require 
other modelling approaches for overcoming such 
limitations and providing means to represent complex 
relationships (n-ary) between data objects. One of the 
ways we can use to solve these types of problems is 
using hypergraphs. 
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Berge (Berge, 1967) (Berge, 1973) introduced the 
concept of hypergraph as a form of generalization of 
graph-based approaches. In practice, a hypergraph 
(Hellmuth et al., 2012) (Voloshin, 2009) (Bretto, 
2013) is made up of a set of vertices and a set of 
hyperedges that each refer to a diverse set of vertices. 
In addition, vertices of a hypergraph can be related to 
several hyperedges. Hypergraphs are a natural model 
for the representation of networks or systems that 
require the representation and manipulation of objects 
with complex relationships or need to host higher-
order interaction processes. In fields such as physics, 
biology, or engineering, traditional graph models may 
not have the capacity to represent adequately the 
complexity of the data objects involved. In these 
cases, hypergraphs have already proven that they can 
help.  

From social network analysis to software system 
modelling, hypergraphs have had numerous 
applications. We can find them in several application 
domains (Molnár, 2014), such as image segmentation 
processes (Ducournau et al., 2012), representing 
structures of non-classical molecules (Konstantinova 
& Skorobogatov, 2001), provisioning of new data 
models for social networks (Amato et al., 2017), 
recommending music in social networks (Tan et al., 
2011), or representing systems (Sarkadi-Nagy & 
Molnár, 2019). Despite their proven usefulness, 
hypergraphs reveal some practical limitations, 
particularly in visualizing and interpreting the 
complex objects they represent and host, as well as in 
understanding the relationships established, and 
mapping them in a real field of application. In 
addition, given their complexity, they are much more 
demanding in terms of computational resources and 
may be less efficient than traditional graphs. 

In this paper, we present and discuss a new 
conceptual model for hosting hypergraphs: multilevel 
hypergraphs (MLHG). A MLHG uses multilevel 
graphs to represent complex real-world problems, 
presenting several benefits and applications in 
different areas of knowledge, namely in the field of 
data science and data engineering. The model of a 
MLHG is a new functional abstraction for modelling 
real world problems, since it allows to make more 
complex and detailed representations of relationships 
between entities and to sustain analysis processes 
along the various levels of abstraction defined in the 
structures of the implemented model. A MLHG adds 
a new set of features to conventional hypergraphs, 
namely: the ability to create and edit a modular data 
hierarchy during the construction of the model itself, 
or the process of its instantiation; the capability to 
perform isolated analyses on a specific set of data, 

bounded between two levels of abstraction, within a 
virtual vertex; or the simplicity of manipulating the 
data structure of a specific set of data contained in any 
virtual vertex, without harming the other data or the 
overall structure of the model, are just some of them. 
These characteristics enable innovative approaches to 
solve new problems, especially those related to 
models with multiple functional complexities or to 
models with irregular hierarchical groupings, whose 
hierarchies are not initially defined in the model, and 
whose mutations evolve over time, being applicable 
in latent scenarios. We organized the remaining part 
of this paper as follows. Section 2 exposes the domain 
of graphs and hypergraphs, giving emphasis to their 
fundamentals and applications, Section 3 presents and 
discusses multilevel hypergraphs, an abstract 
extension for conventional hypergraphs we propose 
for modelling complex systems, and Section 4 
demonstrates the application of multilevel 
hypergraphs to a specific application case. Finally, 
Section 5 presents some conclusions and future work. 

2 GRAPHS AND HYPERGRAPHS 

The application of graphs (Daniel, 2013) (Angles & 
Gutierres, 2008) to real-world problems are quite 
common whenever the problem requires, directly or 
indirectly, the representation and storage of data that 
requires the definition of paired relationships between 
one or more data elements. Numerous real-world 
domains provide a very broad field of application for 
the use and exploration of graph-based structures. 
However, it is the emergence of new areas of work 
and new services that, today, requires the use of 
structures such as graphs, essentially due to the 
volume and complexity of the data elements involved 
and their relationships.  

Many systems involving navigation or 
transportation problems that people use in their 
decision services use graphs, such as the one that 
Dijkstra used many years ago (Dijkstra, 1959). 
Graphs help to decide which is the shortest path 
between two points (Johnson, 1977), to find the 
shortest path between any pair of points in a directed 
heavy graph, or to help allocate rental cars to people 
who need to get around (Kuhn, 1955). These are 
typical optimization problems in which graphs can be 
naturally applied. But there are a lot more of fields 
where graphs can be applied with very success. For 
example, in Chemistry non-oriented graphs are used 
to represent molecules (Wigh et al., 2022), in Biology 
to represent bio entities such as proteins, genes, or 
molecules (Georgios et al., 2018), or in Medicine to 
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support the interpretation of proteomic data (Brin & 
Page, 1998). In Process Management and Control 
applications, some of the data representation models 
are used to represent the execution of tasks or 
processes, considering their sequence, scaling, or 
execution time.  

Graph models have enormous application 
potential. We can prove this through the numerous 
applications in various scientific fields, supporting a 
wide variety of solutions to problems in networks of 
chemical reactions, access to web pages, 
establishment of usage profiles, or in the analysis of 
population dynamics. But probably the most relevant 
application was in Google's PageRank System (Brin 
& Page, 1998). Finally, we want to mention the use 
of graphs in the implementation of database systems 
(Angles & Gutierres, 2008), in which we can find 
very high-level graph structures to host and relate 
data elements, in large volume and diversity. Take, 
for example, the cases of the database management 
systems Neo4J (Neo4J, 2024), JanusGraph 
(JanusGraph, 2024), Memgraph (Memgraph, 2024) 
or NebulaGraph (NebulaGraph, 2024), which have 
been gaining popularity over the last few years, or 
other hybrid systems, which integrate graphs with 
other types of data structures to cover a wide 
spectrum of applications. 

Generally, a graph G is abstractly defined as a 
structure G (V, E), where V represents the vertices 
and E the edges that support connections among 
vertices, allowing the establishment of relationships 
between different entities or data objects, defining 
semantic relationships, interrelating characteristics, 
and promoting inference of new information. Over 
the years, graph structures and their conceptualization 
processes have evolved, encompassing new 
representation schemes and embracing increasingly 
sophisticated and complex levels of abstraction. But 
in many real-world problems, relationships between 
objects require more complex connections than 
simple relationships between pairs of vertices. The 
eventual representation of these complex 
relationships through simple relationships could be 
done, but it would lead to some kind of loss of 
information, deteriorating the real representation of 
the model in its field of application (Schölkopf et al., 
2007). 

Hypergraphs (Hellmuth et al., 2012) (Ouvrard, 
2020) can be a good solution for receiving complex 
relationships, since they allow for the representation 
of relationships between more than two vertices.  
Hypergraph theory is not new, having been studied by 
many researchers over the years. The concept of the 
hypergraph was introduced by Claude Berge in 1967 

(Berge, 1967). Since then, hypergraphs have been 
used in a variety of applications, including problem 
optimization, network analysis, machine learning, or 
data science, among other areas (Molnár, 2014). 
However, one of the biggest applications of 
hypergraphs, probably the most impactful, has been 
in graph partitioning, which is a technique widely 
used in several areas, such as Computer Science, 
Mathematics, Engineering or Physics. In these areas, 
hypergraphs are used for solving combinatorial 
optimization problems, data clustering, social 
network analysis, or data routing, among many other 
problems. Contrarily to traditional graphs, 
hypergraphs are composed of vertices and 
hyperedges. Hyperedges are sets of two or more 
vertices identified as a single entity. The definition of 
hyperedges provides essential means to receive and 
deal with complex relationships among communities 
of vertices, not only among simple vertices. In 
scientific collaboration networks (Ouvrard et al., 
2017), for example, the use of hyperedges allows for 
modelling the co-authorship of articles. In this case, 
each vertex represents an author, and each hyperedge 
represents an article on which those authors 
collaborated. Using a hypergraph, we can effectively 
model the (complex) relationships between authors 
and papers, rather than simply relating pairs of 
authors as would happen in a traditional graph. 
Hypergraphs can represent higher-order relationships 
between vertices, while traditional graphs are limited 
to representing relationships of order 2 (edges). This 
is the big distinction between conventional graphs 
and hypergraphs. Furthermore, hypergraphs have 
specific properties that differentiate them even more 
from traditional graphs. For example, the cardinality 
of a hyperedge is the number of vertices it contains, 
while the cover of a hypergraph is the smallest set of 
vertices that intersects all hyperedges. These 
properties have important implications for the 
analysis and understanding of hypergraphs. They 
promote the investigation of richer structures and 
provide greater flexibility in the relationships that 
must be represented.   

Formally, a hypergraph (HG) can be defined as a 
structure (V, E, I), in which V is a non-empty set of 
vertices, E a set of hyperedges, and I the incidence 
function that associates each hyperedge of E with a 
non-empty subset of V. The incidence function I is 
defined as I:  And → P(V), where P(V) is the set of 
all subsets of V. Figure 1a illustrates a small example 
of a hypergraph. The representation of hypergraphs 
can be performed using algebraic, incidence, 
adjacency matrices and their respective lists, as well 
as through set-based approaches (Ouvrard, 2020). 
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Each of these representations must be carefully 
chosen, considering the field of application and the 
desired modelling, as each of them has specific 
advantages and applications. In Figure 1a we can see 
an example of a hypergraph and in Figure 1b the 
corresponding matrix representation. However, 
despite their advantages, hypergraphs pose some 
difficulties, not only in terms of their complexity of 
their computational representation and processing, 
but also in their subsequent visualization, 
manipulation, and analysis of their various data 
elements. To work with a hypergraph, it is necessary 
to use several techniques, such as, for example, 
decomposition trees (Habib et al., 2022). 

 
Figure 1: A hypergraph and its adjacency matrix. 

In addition, modelling a hypergraph can also be quite 
challenging, sometimes requiring the use of machine-
learning techniques (Gao et al., 2022), as well as 
interpreting the information we obtain from a 
hypergraph, given the complexity of the data and the 
relationships that are included in it. To interpret data 
like these, Frieze and Karoński (2015) proposed some 
specific random graph-based techniques, namely for 
applying in processes of pattern and relationship 
analysis in scientific literature. 

Over time, depending on the needs of the 
problems and their domains of knowledge, several 
types of hypergraphs have been created, which are 
basically extensions to the original model of a 
hypergraph. Today, in the literature, we can find a 
large diversity of references about hypergraphs, 
ranging from random hypergraphs (Frieze & 
Karoński, 2015) (Ghoshal et al., 2009), incident 
hypergraphs (Grilliette et al., 2022), to hierarchical 
hypergraphs (Ancona & De Floriani, 1989), among 
many others. Although the importance of all these 
types of hypergraphs in their own fields of 
application, in this work we have relied in a particular 
type of hypergraphs, hierarchical (Figure 2), in which 
vertices and hyperedges are organised at different 
levels.  
 

 
Figure 2: An example of a hierarchical hypergraph. 

This type of hypergraph is used effectively in very 
interesting areas of application. Of note is their 
application in rule-based modelling of biochemical 
systems (Lemonset al., 2011), representing structural 
properties of robotic systems (Scioni et al., 2016), or 
describing the structure of an application and its 
computing architecture (Yang & Shen, 2015). 

Inspired by all these works, we designed a new 
definition for a multilevel hypergraph structure, as a 
new class of hypergraphs, which has greater 
flexibility in modelling complex systems, involving 
multiple levels of hierarchy. With this type of 
hypergraph, it will be possible to create connections 
that are more complex, with greater granularity, when 
compared to traditional hierarchical hypergraphs, 
which we think are an interesting alternative for 
representing and manipulating complex systems, at 
different areas of knowledge. In the next section, we 
will approach this new class of hypergraphs: MLHG. 

3 MULTILEVEL HYPERGRAPHS 

The nature of a problem determines what kind of data 
model we need to use. Different problems impose 
different data models. Obviously. Each type of 
problem requires a specific data model, supported by 
a particular type of graph. There are problems having 
complex natures that require sophisticated graph 
structures for modelling and receiving data, capable 
of representing entities whose characterization (and 
relationships) is done through the establishment of 
several levels of abstraction, with some kind of 
defined hierarchy. To accommodate this kind of 
modelling problems, we propose MLHG as an 
alternative functional abstraction. 

A MLHG (Figure 3) is a generalization of a 
hypergraph, which allows for describing complex 
relationships between multiple data objects 
distributed by distinct abstraction levels. The 
mathematical-computational representation of 
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problems using a MLHG provides the basis for 
modelling relationships between objects belonging to 
different levels, which often cannot be described in an 
adequate manner by other hypergraph approaches, 
even by hierarchical hypergraphs. 

 
Figure 3: Illustration of a MLHG conceptual structure. 

The MLHG model proposal we propose uses a 
structure (Vi,n, Ai,n, V*

i,n, Ei,n) (Figure 3), in which Vi,n 
represents the set of regular vertices, Ai,n the set of 
level trees, V*

i,n the set of virtual vertices, and Ei,n the 
set of edges of the hypergraph. The vertices Vi,n, 
which are organized at different levels of abstraction, 
represent the entities at a given level of abstraction n, 
while the logical structure trees of levels (Ai,n) 
manage the relational flow between the vertices of the 
various levels. The virtual vertices (V*

i,n) are 
candidates for hypergraphs at the n-level, and the 
edges (Ei,n) materialize the relationships between the 
vertices Vi,n and V*

i,n.  
The mathematical-computational representation 

of an MLHG is obtained using an adjacency matrix 
structure supported by a dictionary of labels, in which 
each vertex is represented on a specific line and a 
column. The graphical representation of a MLHG 
allows for visualizing different entities and 
relationships present at a certain level of abstraction, 
making it easier to understand and analyse any system 
model. The level trees (Ai,n) (Figure 4) play an 
essential role in defining the flow of relationships 
between different levels of abstraction of the MLHG. 
Each tree starts with a specific root, which represents 
the various regular vertices (Vi,n) and the virtual 
vertices (V*

i,n), at the ni level. As the tree may grow 
to higher levels, virtual vertices (V*

i,n) turn into 
branches, feeding other branches and providing 
leaves (vertices) at the next higher level, n+1. 

Level trees provide a clear hierarchical structure 
of the various relationships between different levels 
of abstraction of a MLHG. This provides a way for 
establishing a coherent and efficient organization in 

the representation of graphs of diverse multi levels of 
abstraction, facilitating the understanding of the 
relationships between all the entities involved in each 
level of abstraction. 

 
Figure 4: An example of a level tree of a MLHG. 

Additionally, using virtual vertices (V*
i,n) allows 

MLHG to represent models in which an entity has not 
yet been fully defined or is not relevant to an ongoing 
analysis process. Furthermore, we have created a 
structure for labelling vertices representing entities at 
a given level of abstraction n. This structure uses a 
unique index for each vertex V, in the form 
<i(n1).i(n2).i(n3).i(n4)…i(nn)>. The size of the index 
allows for setting the cardinal of the level, as well as 
the cardinal of the vertex at each level it crosses. For 
example, a label having the format <1.3.4.2> refers to 
a vertex, V1.3.4.2, at the maximum level, n=4, 
representing, respectively, the second vertex of that 
level, the fourth vertex of level 3, the third vertex of 
level 2, and the first vertex of level 1. Labelling these 
elements is important for identifying uniquely each 
vertex in a MLHG. 
 

 
Figure 5: An adjacency matrix of a MLHG. 

Figure 5 shows the mapping of an MLHG in an 
adjacency matrix. Through the adjacency matrix of 
the level tree, it is possible to identify directly the 
virtual vertices (V*

i,n) and the edges (Ei,n) associated 
with each level of abstraction of the MLHG. Thus, a 
more organized and efficient representation of a 
MLHG is achieved, facilitating the analysis of the 
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relationships established between the entities 
involved, using the labels of their vertices. The 
adjacency matrix of a MLHG is a square matrix of 
dimensions (V x V), which can be represented simply 
by [Vij]. This type of structure was chosen because it 
is possible to know its dimensions in advance. It is a 
structure commonly recommended for the 
representation of dense graphs, which allows for 
creating algebraic operators, and it is especially 
oriented for representing digraphs.  

The algorithm used for constructing the adjacency 
matrix of an MLHG (Figure 6), as well as its vertex 
labelling dictionary, was developed to ensure its 
integrity. This is important, because there is an 
inheritance relationship between the relationships of 
each abstraction level (n) and its successor level 
(n+1). This means that for a given relationship Ei,ni+1, 
existing at the level ni+1 between two vertices of this 
level (Vi,ni+1) and another virtual vertex (V*

i,ni+1), 
candidate to be managed by each of the elements 
integrated in the higher level, ni+2, it is necessary to 
ensure the replication by inheritance of the 
relationships, Ei,ni+1 (of edges) and of the vertex Vi, 

ni+1, for all vertices Ei,ni+2 constituents of V*
i,ni+1, 

which in this process will no longer be part of the ni+2 
level. 

 
Figure 6: Building an adjacency matrix for a MLHG. 

In the process of inheritance between levels (Figure 
7), due to a certain relationship Ei,ni+1 of the ni+1 
level, relating the vertex Vi,ni+1 with the virtual vertex 
V*

i,ni+1 at the level ni+2, it can be observed that three 
new relationships arise, one for each vertex of V*

i,ni+1, 
despite the loss of another relationship. The 
inheritance relations defined with the relationships 
established between each abstraction level (n) and its 
successor level (n+1) are defined through the 
algorithm, which allows for constructing the 
adjacency matrix for the MLHG, for any level n. The 
adjacency matrix, AdjM(MLHG), at the first level, is 
initialized according to the standard convention for 
labelled graphs. The algorithm iterates through each 
virtual vertex V*

i.ni+1 with edges Ei,n+1, at each level 
n+k, and establishes a new adjacency matrix 
AdjM(Vi.ni+2,Ei,n+2), having dimension V* x V*, where 
V* is the number of vertices in Vi.ni+2. For expanding 

the dimension of the current Madj array, and 
accommodate a new Madj array (Vi.ni+2,Ei,n+2), the 
algorithm performs three steps, namely it:  
 
1) expands dimensionally the matrix in the (i-th+1) 

row and column referring to the position of the 
vertex V*

i.ni+1, by adding |V*|-1;  
2) replicates the constant values with respect to the 

virtual vertex V*
i.ni+1 in the new coordinates 

resulting from step 1, per column and per row;  
3) develops the new Madj matrix from the correct 

coordinates of the current Madj matrix, from the 
initial coordinates of the vertex V*

i.ni+1. 

 
Figure 7: Illustrating inheritance between levels. 

For virtual vertices with no edges (Ei,n+1), the 
algorithm performs a similar process, but performing 
a dimensional expansion from the origin of the 
adjacency matrix, assigning zeros to all new 
coordinates. The result is an adjacency matrix 
AdjM(MLHG) representing an MLHG with levels 
and no virtual vertices. The algorithm uses constant 
values and straightforward development processes, to 
minimize the number of calculations required to 
construct the final adjacency matrix. MLHG are 
designed to represent systems having multiple 
hierarchies, or complex interactions between 
different levels, being particularly adequate for 
modelling systems. For example, in transportation 
systems, Bezrukova (2019) demonstrated the 
practical application of MLHG, and Yu Gu (2022) 
their applications in the field of distributed data 
processing, proposing a partitioning algorithm for 
graph division for facilitating the distributed 
processing of hypergraphs. All the experiments 
revealed very interesting results. In the next section 
we will look at how we can apply the model proposed 
in this paper in a real-world application domain 

4 AN APPLICATION CASE 

Today, the application of hypergraphs has some 
prominence in several application areas. By 
modelling complex interactions between structural 
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elements, hypergraphs allow the visualization of 
global relationships defined in a system model, 
making simple to understand how these interactions 
influence the project. In this section, we will show 
how to explore a MLHG for representing (and see) 
relationships in a Rowing Club, which will allow us 
to understand how the different elements of the club 
are related and interact with each other.  Using a 
MLHG for representing them, it will be possible to 
identify patterns and structures that would not be as 
evident just by looking at the raw data. We can get a 
more detailed view seeing the relationships between 
different elements of the club, such as athletes, 
coaches, competitions, and boats. 

4.1 The Case: General Overview 

Rowing, as a sport, has a deeply intertwined history 
with the regattas that emerged along the River 
Thames in England around 1700. Initially used for 
transportation, even in war contexts, rowing has 
evolved to become an emblematic sporting activity. 
Historic competitions, such as the Oxford-Cambridge 
regatta, established in 1829 and still held in London 
today, were essential in consolidating rowing as a 
prominent sport. Rowers compete in narrow 
watercraft, sitting on movable benches with their 
backs to the bow. In this speed competition, athletes 
are challenged to propel the boat as fast as possible, 
using oars and controlling the rudder by means of 
cables attached to the feet.  

There is a wide variety of categories, from 
individual boats to teams of eight rowers. The number 
of oars used depends on the type of boat and the 
modality. On certain types of boats, especially larger 
ones, a helmsman is present to guide the team and 
dictate the pace of the paddling. Rowing clubs are 
institutions dedicated to the training and competition 
of rowers of all athletic levels. The management of 
rowing clubs presents a series of complex difficulties 
requiring well-defined strategies for ensuring the 
success of the institution in competitions, namely to: 
organize and coordinate training and competitions 
ensuring that athletes are prepared for the 
competitions, manage available resources – e.g. 
boats, equipment or technical personnel – efficiently 
to improve the performance of the club, or make 
strategic decisions in various areas, to hire technical 
staff, set training goals or plan competitions, for 
example. 

 
 
 

4.2 A MLHG Model 

The MLHG allows for representing the diverse range 
of relationships and interactions between the different 
elements involved in the club. Its flexible structure is 
essential to capture the complexity of the 
management environment, which involves a variety 
of intricate and dynamic relationships between its 
elements, namely athletes, coaches, boats and 
competitions, etc. The possibility of achieving a 
multi-level representation of the relationships within 
the club is an aspect that enhances the relationships 
that can be visualized and analysed at different levels 
of granularity.  From the individual level of athletes 
and coaches to the functional level of the competition 
boats, as well as the management of the club. On the 
other hand, club managers can conduct an integrated 
analysis of the interactions between the different 
members of the club, which includes identifying 
patterns, trends, and correlations that may not be 
easily perceived in a traditional management 
approach. Faced with a chaotic scenario of the 
dynamic management of the club, which is subject to 
constant changes, such as the entry of new athletes, 
the hiring of new coaches or the scheduling of new 
competitions, we consider that the MLHG is 
adequate, as it welcomes any changes that may occur 
over time, which allows new elements to be easily 
incorporated into a graph-based database and 
relationships to be adjusted accordingly is necessary. 
Let’s focus now specifically on our case study and 
how modelling it is using a MLHG. The club has nine 
different boats for the competitions (Table 1).  

Table 1: Types of boats. 

 
Each boat is identified by a unique label, Bi. The club 
has its own facilities, in which the athletes perform 
specific daily training in water tanks and ergometers. 
Within the group of athletes, only 12 are selected to 
occupy the positions (Ai), previously established for 
each boat. Figure 8 shows the structure of the HGMN 
and Figure 9 its corresponding adjacency matrix. The 
matrix was defined as a general structure of the club 
management, with hyperedges/vertices for athletes 
(A), coaches (T), boats (B), helmsmen (TM), 
competitions (C) and directors (D). 
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Figure 8: Illustration of the club management MLHG. 

Edges indicate the various relationships established 
between the entities of the club, such as the 
assignment of athletes to coaches or their 
participation in competitions, for example. Since we 
are dealing with an MLHG, hyperedges could be 
associate some relationships by inheritance, which in 
turn can connect different entities, such as athletes, 
coaches, competitions, and types of boats. Each entity 
(hyperedge) may have several attributes and be 
associated with specific relationships established 
between entities. 

 
Figure 9: The adjacency matrix of the MLHG. 

Let's now take a closer look at the various entities we 
defined for the club and the MLHG adjacency matrix 
representing the various relationships established 
between them. In the adjacency matrix, each column 
corresponds to a relationship (hyperedge) between 
the entities of the club, namely: 
 
- Competition (C1), represents athletes, coaches 

and types of boats that participate in the 
competitions; they provide information that 
allows for determining which athletes and 
coaches are involved in each competition, and 
what types of boats can be used.  

- Type of boat (B1..B9), defines each of the types 
of competition boats. Each type of boat has a 

specific relationship with the athletes and 
coaches. For example, we can identify which 
athletes are assigned to each type of boat, and 
which coaches are responsible for their training. 

- Athlete (A1..AA12), represents the athletes of the 
club; they are related to the types of boats which 
they compete on and the coaches who supervise 
them. The adjacency matrix defined does not 
allow us to determine which athletes are in each 
boat and which are their coaches.  

- Coach (T1, T2), which characterizes the club's 
coaches, are associated with the athletes he 
supervises and the types of boats they are 
involved in. This information allows us to know 
how the distribution of coaches is done among 
the different types of boats and athletes. 

- Helmsman (TM1), who represents the helmsmen 
of the boats; each helmsman is associated with 
the various types of boats he drives and implicitly 
with the athletes who are involved in each boat. 
This information can be used to know its 
influence on the results between different types 
of boats and athletes.  

- Director (D1, D2), who characterizes the 
members of the club involved in the organization 
and logistics of competitions and training. Their 
relationships can be inferred indirectly based on 
the relationships between athletes, coaches, and 
competitions. 

 
Using the MLHG presented earlier in Figure 8, 

let's analyse some practical application cases. 
Athletes are directly related to the types of boats 
available. Each athlete is associated with one or more 
types of boats, which indicates they compete in these 
boats. For example, the athlete A8 is related to the 
boats B5, B6 and B9, which means that he participates 
in competitions with these three types of boats. 
Coaches are directly related to the types of boats 
available. Each trainer is related to one or more types 
of boats, indicating supervision and training actions 
on these vessels. For example, the trainer T1 is related 
to all types of boats available. The director D1 is not 
directly related to the types of boats, but rather to the 
competitions. On the other hand, director D2 is related 
to boat B9 – this boat, with eight seats, is the one that 
will bring the most prestige to the club, if it is 
successful in the competition. The helmsman is 
related to the types of boats available, which require 
his steering. For example, the helmsman TM1 is 
associated with boats B6, B8 and B9. 
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4.3 A Graph-Based Database 

To establish a schema for a graph-based database 
from the structure of an MLHG, it is important that 
its creation is carried out according to the schema 
presented in Figure 10, and the trees of the levels 
logical structure reflect the hierarchical organization 
of the all the aspects considered in the management 
of the club. The MLHG framework provides a 
flexible basis for representing information by 
defining hierarchical dimensions. It allows for 
creating a database model with different levels of 
detail and complex relationships, having the ability to 
represent the large number of relationships between 
the club's entities. 

 
Figure 10: The club’s graph-based database schema. 

The schema for the database should be defined to 
capture all relevant elements of the management of 
the club, including the entities, relationships and 
attributes necessary to represent the data involving 
athletes, coaches, competitions, resources and other 
aspects involving the club management. The scheme 
depicted in Figure 10 represents the club and the 
relationships between management elements. 
However, it could, if necessary, include other vertices 
to represent other aspects, such as the coordination of 
training and competitions, or the performance of 
athletes, among others. As mentioned earlier, logical 
level structure trees are essential for breaking down 
club management into several hierarchical layers. 
Each level of the tree includes a specific set of 
elements and their relationships, which allows us to 
get a detailed and structured view of the management 
of the club (Figure 11).  

The logical framework defined for the MLHG in 
the context of the modelling of the management of the 
rowing club shows how the 6 levels of abstraction are 
linked, from the individual level of athletes and 
coaches to the level of competitions. 

 

 
Figure 11: Logical structure of the club’s levels. 

To create an instance of a given competition (Figure 
13), after the conclusion of the aggregation process 
presented in section 3, an aggregate subgraph 
representative of the instance is incorporated into the 
database, through its dictionaries and its adjacency 
matrix, Figure 12, which at the limit, may be 
coincident with the overall adjacency matrix of the 
scheme. This matrix provides a visual mapping 
representation of the relationships established 
between the club's entities for the competition 
instance. In the array, each cell indicates whether 
there is a relationship between two entities. This 
visual representation of relationships is essential to 
understanding the connections established within the 
club's organizational structure. For example, if a cell 
contains a value that indicates a relationship between 
an athlete and the competition, it suggests the athlete's 
participation in that competition. 

 
Figure 12: The adjacency matrix of an instance. 

By associating this matrix with the formal definition 
of relationships (Table 2), it is possible to establish 
the labelled subgraph, as shown in Figure 14, to 
support a representative instance of a particular 
competition. After having typified the relationships 
involved, using the MLHG adjacency matrix to 
support the instantiation process of the competitions, 
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we can obtain the support subgraph presented in 
Figure 13. 

Table 2. Definition of the relationships. 

Entity Relationship  Description 
Director RELATED_TO  The person in charge to coordinate the 

members of the club. 
Helmsman ACCOUNTABLE The responsible for a specific set of boats 

during competitions or training.
Trainer TRAINS The one that trains a specific set of athletes.
Athlete TRAINE An athlete trained by one or more coaches 

specialized in a given sport. 

This subgraph offers a detailed view of the various 
relational flows between the various entities of the 
club, for a given competition, even without revealing 
the identity of the athletes, coaches or directors, 
where, for example, it is verified that the athlete 
(1.2.6.1.3.1) relates exclusively to the two coaches 
(1.2.5) and (1.2.6.2), who in turn report directly to 
(1.1) and (1.2.3), your situation as an athlete. In the 
final populating stage of the database, a careful 
selection was made of the individuals to be included 
in the database, such as athletes. 

 
Figure 13: Support aggregate subgraph. 

The athletes were chosen based on their performance 
history, which includes their technical level, 
endurance and physical strength. In addition to 
physical capabilities, the potential of athletes was also 
evaluated based on their mental capabilities, so that 
we can achieve higher competitive results. The 
willingness of the athletes to train and compete, along 
with their commitment to the club, were also 
considered as determining factors in the selection of 
the athletes. This process resulted in the formation of 
a very refined subgraph (Figure 14), which allows the 
identification of all the participants in each 
competition, where, for example, it turns out that 
Ethan relates exclusively to the two coaches David 
and Henry, who in turn report directly to the directors 
James and Michael, his situation as an athlete. 

To conclude, we want to emphasize once again 
the importance of creating a graph-based database for 
the club, using a HGMN model for representing the 
complex relationships that can be established 

between one or more entities of the club. The 
database created is a robust structure to store and 
organize information related to athletes, coaches, 
competitions, types of boats and other essential 
aspects in the management of the club. 

 
Figure 14: Participant Aggregate subgraph. 

By using a HGMN as the fundamental model of 
the database, we can capture and model the 
interactions and interdependencies between the 
different entities of the club, which facilitates the 
implementation of analysis and decision-making 
processes, and provides a high-level conceptual 
model of the database.  

5 CONCLUSIONS AND FUTURE 
WORK 

The growing demand for advanced approaches for 
analysing complex systems has driven to the 
exploration of mathematical structures with the 
ability for capturing interconnections and 
interdependencies present in the various system’s 
data elements. Graphs, in general, and hypergraphs, 
in particular, stood out in this domain as adequate and 
very versatile instruments, capable of dealing with the 
complexity of the intricate way data elements are 
related to (and aggregate). Graphs offer an elegant 
mathematical representation for creating very 
intuitive, easy-to-understand visual abstract models. 
It is not surprising, therefore, that it is adopted and 
applied in modelling systems requiring reliable 
representations of real systems and effective 
mechanisms for manipulating their data elements, 
using specific languages for selecting and combining 
data elements, different types of data, and other types 
of data. 

In this paper, we presented a new strain of 
hypergraphs, as a new functional abstraction for 
modelling real world problems. This kind of graphs, 
MLHG, allows for receiving complex and detailed 
representations of relationships between entities as 
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well as the ability for sustaining analysis processes 
along the multilevel architecture of a hypergraph. 
MLHG allow for solving complex problems, 
involving models with multiple functional 
complexities or with irregular hierarchical groupings, 
not defined initially and involving mutations evolve 
over time. Their basic characteristics sustain the 
definition of modular data elements hierarchies 
during the construction of a system model, 
performing isolated analyses on a specific set of data, 
bounded between two levels of abstraction, within a 
virtual vertex, and allowing handling autonomously 
data element structures contained in virtual vertices, 
without affecting other data elements of a specific 
model.  

MLHGs stand out for their ability to deal with 
systems that exhibit unpredictable behaviours, in 
which the so-called global properties arise from local 
interactions between individual components. On the 
other hand, they have great potential in large-scale 
systems, helping to identify problems and improve 
the performance of complex systems. It is important 
that, in a near future, we develop more efficient 
algorithms, and increase the understanding of 
complex systems, to improve MLHG-based 
solutions.  
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