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Abstract: Machine learning has advanced in healthcare, aiding diagnostics, treatment, and monitoring. In neonatal
health, it helps to classify and predict conditions such as hypoxic-ischemic encephalopathy, which requires
early detection. Thus, EEG pattern analysis is key in improving the neonatal prognosis. In this work, we
present a systematic review of the literature to identify strategies currently employed to classify and predict
neonatal EEG patterns using fuzzy logic. Fuzzy logic is particularly valuable for handling uncertainties in
biological signals and improving interpretability. Five studies were selected and analyzed, focusing on apply-
ing fuzzy systems to detect epileptic events. The reviewed studies highlight techniques involving EEG data,
emphasizing the role of fuzzy logic in advancing the understanding and management of neonatal neurological
conditions, contributing to the state of the art in this critical field.

1 INTRODUCTION

Perinatal asphyxia is one of the leading causes
of neonatal mortality, which can lead to hypoxic-
ischemic encephalopathy (HIE), a severe condition
that affects approximately 20 out of every 1,000 live
births in low- and middle-income countries (Abate
et al., 2021). HIE compromises the brain to varying
degrees, often triggering epileptic seizures within the
first hours of life. These events not only indicate the
presence of brain injuries but also reflect the severity
of neurological impairment (Zhou et al., 2021). Sub-
clinical seizures are difficult to detect without contin-
uous EEG monitoring and represent a significant risk
due to the potential for cumulative neurological dam-
age. In these cases, continuous EEG monitoring is
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essential for early seizure detection, allowing timely
clinical interventions that can improve the neonatal
prognosis (Glass and Shellhaas, 2019).

In the context of HIE, neonatal epilepsy is a crit-
ical neurological condition whose early detection is
challenging, as it requires constant monitoring of
brain activity signals. Epileptic events and changes
in the background patterns of electroencephalography
(EEG) signals are valuable indicators of neurological
impairment, which can help predict long-term seque-
lae or immediate life-threatening risks (Toet and Lem-
mers, 2009; Wikström et al., 2012). Although con-
ventional electroencephalography facilitates the iden-
tification of these conditions, the manual interpreta-
tion of these signals is complex and time-consuming,
requiring the continuous presence of specialists for
enhanced, real-time analysis (Wu et al., 2019).

To overcome this limitation, recent research has
focused on automating the analysis of these signals
by developing algorithms that automatically detect
epileptic seizures and classify EEG background pat-
terns in newborns (Wu et al., 2019; Montazeri et al.,
2021). These algorithms provide significant support
for early diagnosis, enabling rapid and precise in-
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terventions that can mitigate long-term neurological
damage (Abbasi et al., 2017). Furthermore, automa-
tion allows for the expanded use of EEG in environ-
ments where specialists are limited, such as remote
areas or smaller hospitals (Pavel et al., 2020).

Among the promising approaches for improving
these automated systems is applying fuzzy logic (Ab-
basi et al., 2014). By handling uncertainties and vari-
abilities inherent in biological signals, fuzzy logic en-
ables a more flexible and robust classification of EEG
data (Güler and Übeyli, 2005; Abbasi et al., 2014;
Pavel et al., 2020). This flexibility is essential, as
these signals frequently present subtle and continu-
ous variations, which are difficult to categorize using
traditional binary systems (Wu et al., 2019; Montaz-
eri et al., 2021). Thus, fuzzy logic applied to neona-
tal monitoring can potentially increase sensitivity and
specificity in detecting epileptic events and classify-
ing background patterns, providing a more adaptable
and precise tool that allows specialists to better under-
stand and diagnose clinical conditions.

In this context, fuzzy logic stands out for its high
explainability in classification systems, thanks to the
use of “IF-THEN” rules formulated in language close
to human reasoning and the intuitive representation
of concepts through linguistic variables. This ap-
proach allows clear traceability of how inputs influ-
ence outputs, facilitating the interpretation of results
by specialists. In applications such as EEG analysis,
fuzzy logic enables incorporating heuristic or empiri-
cal knowledge, such as known patterns of brain activ-
ity, ensuring greater transparency and reliability in the
decision-making process (Zadeh, 1996; Ross, 2010).

On the other hand, Deep Neural Networks, while
extremely effective in complex scenarios, operate as
“black boxes”, making it difficult to interpret their
decisions due to the high complexity of the models.
Despite advancements in explanation methods, these
mechanisms still lack the simplicity and clarity pro-
vided by fuzzy logic. Thus, while neural networks are
preferable for tasks requiring high performance with
large volumes of data, fuzzy logic is more suitable in
contexts where interpretability and decision reliability
are essential (Samek, 2017).

In this scenario, this paper presents a systematic
review of algorithm-based approaches for the detec-
tion of epileptic events and classification of neona-
tal EEG background patterns, focusing on methodolo-
gies that integrate fuzzy logic to enhance the accuracy,
explainability, reliability, and adaptability of these al-
gorithms in order to improve clinical interventions.

The remainder of the paper is structured into four
sections. Section 2 outlines the definition and steps
involved in conducting a systematic review. Section

3 details the methodology employed to perform the
systematic research and discusses each stage. Section
4 presents the results, while the final section offers the
conclusions drawn from this study.

2 SYSTEMATIC REVIEW

The systematic literature review (SLR) is a rigorous
and structured method widely used to synthesize sci-
entific evidence on a specific research question. Un-
like traditional reviews, this approach adopts a trans-
parent, replicable, and protocol-driven process, mini-
mizing biases and enhancing the reliability of conclu-
sions (Higgins et al., 2019; Liberati et al., 2009). Rec-
ognized as the gold standard in evidence-based prac-
tice, systematic reviews are extensively employed in
fields such as health, education, and social sciences,
which are essential in informing science-based prac-
tices (Kitchenham, 2004; Gough et al., 2017).

A SLR follows a rigorous methodology that en-
sures its standardization and scientific validity. To
conduct a systematic review, it is essential to estab-
lish a research protocol consisting of four main steps.
The first step involves formulating the research ques-
tions the review aims to answer, providing a clear di-
rection for the study. In the second step, the search
strategy is defined, including selecting databases and
search terms to identify and retrieve relevant articles.
The third step establishes the inclusion and exclusion
criteria for the studies, while the fourth and final step
determines the data to be extracted, how the studies
will be characterized, and the methods for synthesiz-
ing and analyzing the data (Keele et al., 2007; Liberati
et al., 2009; Gough et al., 2017; Bramer et al., 2018;
Higgins et al., 2019).

The main advantage of a systematic review is
its well-defined methodology, which greatly reduces
the risk of bias in the results. This approach en-
sures that articles are not selectively chosen to align
with the author’s personal viewpoint, promoting a
more balanced and objective synthesis of the litera-
ture (Liberati et al., 2009).

3 METHODOLOGY

The methodology employed for conducting the sys-
tematic review adhered to the approach outlined by
Keele et al. (2007) and is summarized in the flowchart
shown in Figure 1. This flowchart illustrates the pro-
gression of the process, during which articles iden-
tified through searches are systematically excluded
from the scope of the study. A detailed discussion of
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Figure 1: Flowchart of the theoretical review methodology.

the criteria adopted for each of the four key stages of
the systematic review process follows in subsections
3.1, 3.2, 3.3, 3.4 and 3.5.

3.1 Research Questions

The first step in conducting a systematic review in-
volves defining the research questions that must be
answered. These questions guide the development
of search terms and keyword combinations used in
database searches. Based on the problem discussed
in the Introduction, four research questions were for-
mulated as follows:

Q1. Which predictive methods are applied to classify
background patterns in neonatal EEG signals?

Q2. Which computational approaches detect epilep-
tic and subclinical seizures in neonatal EEG sig-
nals?

Q3. Which techniques are applied to identify sleep-
wake states in neonatal EEG signals?

Q4. Which methodologies have expert systems em-
ployed to diagnose encephalopathies in new-
borns shortly after birth?

It is important to note that for each planned study,
only fuzzy logic approaches were reviewed, as the re-
search aims to assess their applicability in predict-
ing neonatal encephalopathy using biomarkers de-
rived from electroencephalography recordings.

3.2 Search Terms

To define the search terms for composing the query
string, a preliminary analysis of each term was con-
ducted using the Google Scholar database, as it is
diverse and indexes articles and works from various
sources. The study considered only the last 5 years
(2020–2024). It was progressively conducted (see Ta-
ble 1 for indexes k=1 to k=17) to identify the best
terms for the composition of the query string as the
number of articles returned increased. The combi-
nation of search terms and the number of articles re-
turned for each composition are described in Table 1.
Finally, the conjunction ‘AND’ and the term ‘fuzzy’
were added to the end of the query string that yielded
most of the results (see k=17 in Table 1) to limit the
search to articles that use prediction methods based
on fuzzy logic.

3.3 Data Bases

The Google Scholar database can be a useful tool for
exploring broad and preliminary literature or for as-
sisting in developing the query string. However, due
to its lack of quality control, limited precision, and
difficulty in filtering results, it is not the best option as
a primary source for systematic reviews. Therefore,
specialized databases (DB) such as ACM Digital Li-
brary, EI Compendex, IEEE Xplore, Web of Science,
PubMed, ScienceDirect, Scopus, and SpringerLink
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Table 1: Keyword combinations used to construct the search string and the respective number of articles returned.

K Combination Articles
returned

1 (“baby”) AND (“electroencephalogram”) 4440
2 (“preterm”) AND (“electroencephalogram”) 4840
3 (“newborn”) AND (“electroencephalogram”) 6940
4 (“neonatal”) AND (“electroencephalogram”) 12200
5 (“preterm” OR “baby”) AND (“electroencephalogram”) 8090
6 (“preterm” OR “newborn”) AND (“electroencephalogram”) 9130
7 (“baby” OR “newborn”) AND (“electroencephalogram”) 9700
8 (“preterm” OR “neonatal”) AND (“electroencephalogram”) 13400
9 (“neonatal” OR “baby”) AND (“electroencephalogram”) 14300
10 (“neonatal” OR “newborn”) AND (“electroencephalogram”) 14400
11 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“electroencephalogram”) 16200
12 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“electroencephalography”) 16400
13 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“EEG”) 20900
14 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“EEG” OR “electroencephalogram”) 22500
15 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“EEG” OR “electroencephalography”) 23100
16 (“neonatal” OR “newborn” OR “baby” OR “preterm”) AND (“EEG” OR “electroencephalography” OR “electroencephalogram”) 26000
17 (query string presented in k=16) AND (“fuzzy”) 2730

were selected, as they collectively provide a more ro-
bust, reliable, and structured approach for conducting
systematic reviews.

3.4 Exclusion/Inclusion Criteria

Exclusion Criteria (EC) are defined as factors that,
while meeting the inclusion criteria, possess addi-
tional characteristics that may hinder the study’s suc-
cess or lead to the inclusion of irrelevant or unneces-
sary information. These criteria are designed to en-
sure the study remains focused and reliable. The EC
considered in this study were:

• EC1: Books and book chapters, as the focus is
on identifying recent developments by researchers
rather than exploring the concepts and definitions
related to the subject discussed in the work;

• EC2: Articles published before July 2019, as the
goal is to focus on the most recent developments
and studies being conducted by scholars and re-
searchers;

• EC3: Articles that do not incorporate electroen-
cephalography or electrocorticography (ECoG)
signals in their methodology, as the focus of this
systematic review is on the utilization of brain-
derived signals to assess the clinical status of new-
born patients;

• EC4: Articles that did not demonstrate the use of
fuzzy logic in the methodology for analyzing EEG
signals.

Inclusion Criteria (IC) are defined as the main
characteristics of the population or research being
conducted. ICs are used to answer the research ques-
tions and are presented below:

• Title and Keywords: Does the article title reflect
the application of expert systems for predicting or
classifying neurological disorders in newborns us-
ing electroencephalography (EEG) signal analy-
sis? Do the keywords of the article include elec-
troencephalography or terms related to this con-
text, suggesting that the article likely involves the
analysis of such signals?

• Abstract: Does the article discuss the application
of fuzzy systems for monitoring and predicting
epileptic seizures in EEG signals? Does the study
discuss the application of the fuzzy system for
classifying background patterns in EEG signals?
Does the study present a fuzzy system for classi-
fying the sleep-wake cycle in EEG signals? Does
the study present an expert system for monitoring
and diagnosis based on fuzzy logic?

• Introduction and Conclusion: Are the study’s ob-
jectives clearly defined? Does it propose us-
ing fuzzy logic to predict or classify electroen-
cephalography (EEG) exams? Does the article re-
port that the designed system can be applied to the
neonatal population?

3.5 Selecting Works

After the inclusion and exclusion criteria were de-
fined, the study was conducted using specialized
databases (see section 3.4) and managed with the Par-
sifal software. The first step consisted of performing
a search based on the defined research terms (see k =
17 in Table 1) across all selected databases, initially
without applying any exclusion criteria.

Subsequently, the articles were imported into Par-
sifal, where duplicate studies were identified and re-
moved. Duplicates were eliminated by retaining only
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the articles from the database with the most records.
After the removal of duplicate studies (RDS), the

exclusion criteria were applied as follows: the publi-
cation date of the retrieved articles (EC2) and the type
of publication, specifically excluding books and book
chapters (EC1).

After applying criteria EC1 and EC2, the remain-
ing articles were evaluated based on EC3, which ex-
cluded studies that did not incorporate EEG signals in
their methodology. This evaluation was performed by
analyzing each article’s title and keywords.

Following the evaluation of the titles and key-
words of the articles, EC4 was applied by analyzing
the abstracts to determine whether the methodology
employed included fuzzy logic. Thirty-one articles
remained after applying this exclusion step.

Finally, the last step was to analyze the 31 remain-
ing articles to determine whether they addressed the
questions defined by the inclusion criteria. Initially,
each article’s title and keywords were evaluated. If
the title did not meet the established criteria, the arti-
cle was discarded. However, if the title and keywords
complied with the criteria, the analysis proceeded to
the article’s abstract. If the abstract met the inclusion
criteria, the introduction and conclusion of the article
were then evaluated to confirm its acceptance.

The described process is summarized in Table 2,
which presents the total number of articles retrieved
from each digital library at each study stage. Figure
2, in turn, summarizes the number of articles excluded
during the application of the inclusion and exclusion
criteria adopted in this systematic review.
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Figure 2: PRISMA Flow Diagram.

Table 2: Total articles returned for each of the described
steps.

Databases Initial RDS EC1
EC2 EC3 EC4 IC

ACM Digital
Library 6 0 0 0 0 0

EI Compendex 6 2 2 1 0 0
IEEE Xplorer 9 6 6 6 1 0
Web of Science 7 7 7 6 5 4

PubMed 8 0 0 0 0 0
ScienceDirect 152 134 94 22 1 0

Scopus 944 911 841 166 24 1
SpringerLink 86 77 46 13 0 0

Total 1218 1137 996 214 31 5

After applying all inclusion criteria, five articles
based on the established research questions were se-
lected (briefly discussed in Sect. 4), with information
detailed in Table 3.

4 RESULTS

In this section, each of the five selected articles is
briefly presented, highlighting the questions they ad-
dress and their main points.

Before starting this analysis, a word cloud was
created based on the frequency of keywords found in
each article’s titles, abstracts, introductions, and con-
clusions. This approach allowed for a more detailed
examination of the central concepts discussed in the
selected articles.

In constructing the word cloud presented in Figure
3, the most frequently appearing keywords in the se-
lected sections were considered. The most cited terms
are displayed in the figure with larger font sizes, while
less frequently cited terms across the set of articles are
shown with proportionally smaller font sizes. This
visualization facilitates the identification of the most
relevant concepts discussed in the analyzed articles.

Figure 3: Word cloud assembled from selected articles.

Thus, it can be concluded that the most fre-
quent words precisely define the scope of this study,
namely, the terms used in the queries. Additionally,
terms such as “ECoG” and “Hypoxic-Ischemic En-
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Table 3: Summary of key characteristics and findings of selected studies.
Study Methodology Results Dataset Relevance Fuzzy Logic-based Approach

Liu
et al.

(2024)

Hybrid EEG classification using
PCANet, phase space
reconstruction (PSR), and power
spectral density (PSD). Two-
layered classification: F-KNN for
initial layer; SVM for second
layer (Liu et al., 2024).

Accuracy: 99.4%, Sensitivity:
99.5%, Specificity: 99.75%.
Demonstrated potential for
neonatal EEG but not
validated on neonatal
signals.

Non-
neonatal
(Public)

Addressed Q2 and Q3,
highlighting seizure
prediction potential
without neonatal
validation.

Cascade Deep Learning Architecture:
Fuzzy K-Nearest Neighbor
(F-KNN)

Abbasi
et al.

(2020)

Spectral analysis using Fourier
Transform with a Type-1 fuzzy
classifier (FFT-Type-1-FLC).
Focused on high-frequency
spike transients (80-120 Hz)
(Abbasi et al., 2020).

Overall performance:
98.87%. Effective in
identifying spike transients
but limited to specific
patterns (e.g., interburst
intervals not covered).

Animal
(Private)

Addressed Q1 (partially),
Q2, and Q4, providing
a strong framework for
transient detection.

Type-1 Fuzzy Logic Classifiers:
- FFT-Type-1-FLC classifier

Abbasi
et al.

(2021)

Scalogram-based CNN (WS-
CNN) and fuzzy classifiers (WT-
Type-I-FLC and FFT-Type-I-FLC)
using CWT for feature
extraction. Focused on the
identification of post-hypoxic
epileptiform EEG spikes
(Abbasi et al., 2021).

WS-CNN: Accuracy 99.81%,
AUC 1.0. Fuzzy classifiers
effective (99.04%, 98.42%
accuracy), but CNN
outperformed fuzzy systems
in robustness.

Animal
(Private)

Addressed Q1 (partially),
Q2, and Q4, comparing
deep learning and fuzzy
systems effectively.

Type-1 Fuzzy Logic Classifier:
- Wavelet-based fuzzy classifier
(WT-Type-1-FLC)
- Fast Fourier transform-based
Fuzzy classifier (FFT-Type-1-FLC)

Abbasi
et al.

(2019b)

Reverse biorthogonal wavelets
(Rbio-WT-Type-1-FLC) for
detecting hypoxic-ischemic
transients in gamma range (80-
120 Hz) (Abbasi et al., 2019b).

Overall performance:
99.78%. Demonstrated
biomarkers for HIE
diagnosis during latent
phase.

Animal
(Private)

Addressed Q1 (partially),
Q2, and Q4. Significant
potential for diagnostic
support tools.

Type-1 Fuzzy Classifier:
Rbio-Wavelet Type-1 fuzzy classifier
(rbio-WT-Type-1-FLC)

Abbasi
et al.

(2019a)

Wavelet-based Type-2 fuzzy
classifier (WT-Type-2-FLC) for
sharp-wave transients detection
post-hypoxic-ischemic insult
(Abbasi et al., 2019a).

Identified transients
correlated with neuronal
preservation during latent
phase. Key for therapeutic
timing.

Animal
(Private)

Fully addressed Q4,
focusing on biomarkers
and neuroprotective
intervention timing.

Type-2 Fuzzy Classifier:
Wavelet-based Type-2 fuzzy classifier
(WT-Type-2-Fuzzy)

cephalopathy (HIE)” also stand out, even though they
were not directly included in the queries, as they are
closely related to the overall context of the study. In
this context, ECoG represents a brain-derived signal,
similar to surface EEG, while HIE refers to a clinical
condition associated with the neonatal population.

The analysis included five selected studies, each
employing fuzzy logic methodologies to enhance the
analysis of neonatal EEG signals. For instance, Liu
et al. (2020) introduced a hybrid EEG classifica-
tion model that utilized PCANet, phase space recon-
struction (PSR), and power spectral density (PSD) for
seizure detection. While the model achieved high ac-
curacy, sensitivity, and specificity, it lacked valida-
tion with neonatal datasets. Similarly, Abbasi et al.
(2020) focused on high-frequency spike transients us-
ing Fourier Transform-based spectral analysis and a
Type-1 fuzzy classifier (FFT-Type-1-FLC). Their ap-
proach demonstrated strong performance in detecting
specific EEG patterns but showed limited scope for
identifying other pathological background patterns.

A comparative study between fuzzy classifiers and
a scalogram-based CNN (WS-CNN) for identifying
high-frequency spikes is conducted by Abbasi et al.
While the fuzzy classifiers demonstrated robust accu-
racy, the CNN outperformed them regarding robust-
ness and adaptability to morphological variations. In
an earlier study, Abbasi et al. (2019b) proposed a
Type-1 fuzzy classifier based on reverse biorthogo-
nal wavelets (Rbio-WT-Type-1-FLC), designed to de-

tect hypoxic-ischemic transients and identify valu-
able biomarkers for the early diagnosis of hypoxic-
ischemic encephalopathy. Following this same line of
research, Abbasi et al. (2019a) developed a Type-2
fuzzy classifier (WT-Type-2-FLC) correlating sharp-
wave transients with neuronal survival during the la-
tent phase after hypoxic-ischemic insults, highlight-
ing its potential to guide neuroprotective interven-
tions.

Table 3 presents the key characteristics and find-
ings of these studies, detailing their methodologies,
results, and specific contributions.

This structured analysis highlights the diverse
methodologies employed and their contributions to
the field. While the results underscore the potential
of fuzzy logic systems, they also reveal critical gaps,
particularly the lack of validation in human neonatal
datasets and the need to address broader EEG patterns
for clinical application.

5 CONCLUSIONS

Machine learning-based methodologies have been
widely used to solve problems in the healthcare field.
In neonatal contexts, conditions such as hypoxic-
ischemic encephalopathies and epileptic events re-
quire continuous monitoring and early diagnosis, as
they can cause severe neurological damage.
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The objective of this study is to identify predic-
tion and classification methodologies based on fuzzy
logic applied to the analysis of neonatal EEG signals,
focusing on advancements that improve system sen-
sitivity, specificity, and interpretability. To this end,
a systematic review was conducted to understand the
state-of-the-art techniques used for the detection of
epileptic events and background patterns in neonatal
EEGs. The review was carried out considering strict
inclusion and exclusion criteria to select relevant stud-
ies, ensuring the quality and reliability of the results.

Based on the reviewed studies, it was observed
that fuzzy logic techniques - such as Type 1 and Type
2 fuzzy classifiers, wavelet-based fuzzy systems, fre-
quency spectrum-based fuzzy systems, and Fuzzy K-
Nearest Neighbor (F-KNN) - are widely applied in
the detection of epileptic events and the classifica-
tion of neonatal EEG background patterns. These ap-
proaches demonstrate how fuzzy logic improves the
sensitivity, specificity, and interpretability of algo-
rithms that process complex biological signals, par-
ticularly in challenging contexts such as hypoxic-
ischemic encephalopathy. Nonetheless, the valida-
tion of these techniques has predominantly been per-
formed on animal models or datasets of adult patients,
which presents limitations for their direct application
to human neonates. This methodological gap high-
lights the need for future studies aimed at validating
these techniques in real neonatal populations to en-
sure their clinical relevance.

From this perspective, several aspects remain un-
explored, offering opportunities for future research.
In this context, none of the selected studies fully ad-
dress the integration of multiple EEG patterns beyond
high-frequency peak transients. Other patterns, such
as burst suppression, excessive discontinuity, low-
voltage patterns, and inactivity, were not considered
in the reviewed studies, despite their clinical impor-
tance. Furthermore, the databases used often include
EEG signals with limited characteristics or obtained
under controlled conditions, which may not represent
the broad variability observed in neonatal intensive
care units (NICUs). Thus, developing a comprehen-
sive fuzzy system capable of identifying a wider range
of background patterns and validating by real clinical
data could significantly improve diagnostic accuracy.

Additionally, while the reviewed studies explore
conventional fuzzy classifiers, none employed the
Adaptive Neuro-Fuzzy Inference System (ANFIS).
The use of ANFIS could be a promising solution as it
combines the high accuracy of neural networks with
the explainability and interpretability of fuzzy logic.
Implementing this method would enable the creation
of hybrid systems capable of automatically adjusting

fuzzy rules based on EEG patterns, thereby enhancing
both accuracy and interpretability. Nevertheless, the
lack of widely available and specific neonatal EEG
databases limits the evaluation of new methods and
underscores the need for initiatives to build standard-
ized neonatal clinical repositories. Another possibil-
ity would be the integration of real-time monitoring
systems based on fuzzy logic, providing continuous
feedback to physicians in NICUs, leading to faster
and more effective interventions.

Finally, incorporating multimodal data sources —
such as oxygen saturation and clinical observations
— into fuzzy logic-based systems could offer a more
holistic approach to neonatal neurological monitor-
ing, providing robust support for early diagnosis and
treatment planning. So, given these gaps, the next step
is to develop and implement a comprehensive fuzzy
logic-based methodology for neonatal EEG analy-
sis that addresses these unexplored areas. This ap-
proach should prioritize validation using real neonatal
datasets to ensure greater clinical applicability while
aiming to enhance the accuracy, explainability, and
adaptability of diagnostic tools, thereby offering more
reliable support for clinical interventions and improv-
ing outcomes in neonatal care.
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