
Automatic Analysis of App Reviews Using LLMs

Sadeep Gunathilaka and Nisansa de Silva
Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka

{sadeep.21, nisansadds}@cse.mrt.ac.lk

Keywords: App Review Analysis, Large Language Models, Mobile Applications, Software Evolution, Natural Language
Processing, Review Classification, GPT-3.5, Zero-Shot Learning, Fine-Tuning, Open-Source Models.

Abstract: Large Language Models (LLMs) have shown promise in various natural language processing tasks, but their
effectiveness for app review classification to support software evolution remains unexplored. This study eval-
uates commercial and open-source LLMs for classifying mobile app reviews into bug reports, feature requests,
user experiences, and ratings. We compare the zero-shot performance of GPT-3.5 and Gemini Pro 1.0, find-
ing that GPT-3.5 achieves superior results with an F1 score of 0.849. We then use GPT-3.5 to autonomously
annotate a dataset for fine-tuning smaller open-source models. Experiments with Llama 2 and Mistral show
that instruction fine-tuning significantly improves performance, with results approaching commercial models.
We investigate the trade-off between training data size and the number of epochs, demonstrating that compara-
ble results can be achieved with smaller datasets and increased training iterations. Additionally, we explore the
impact of different prompting strategies on model performance. Our work demonstrates the potential of LLMs
to enhance app review analysis for software engineering while highlighting areas for further improvement in
open-source alternatives.

1 INTRODUCTION

The widespread adoption of mobile applications has
fundamentally transformed the way users engage with
technology. In today’s highly competitive landscape
of platforms such as Google Play Store and Apple
App Store, the need for rigorous requirements en-
gineering and efficient software evolution processes
has become paramount. A number of researches have
highlighted the importance of user participation in the
software development process (Hosseini et al., 2015;
Groen et al., 2017; Maalej et al., 2015). After the de-
ployment of an application, user feedback becomes
a vital asset for ongoing enhancement (Pagano and
Maalej, 2013). Pagano and Maalej (2013) found that
the frequency of feedback reaches its highest point af-
ter new releases. This feedback encompasses a wide
range of topics, such as user experience concerns and
requests for additional features. Li et al. (2010) pre-
sented evidence that the analysis of user comments
can improve overall user satisfaction with software
solutions.

Nevertheless, the overwhelming volume and the
unstructured nature of the user reviews pose consider-
able difficulties for manual analysis (Vu et al., 2015).
Accordingly, scholars have investigated many tech-

niques under Natural Language Processing (NLP) and
Machine Learning to automate the extraction of in-
formation from user reviews. These approaches span
supervised methods, such as classification (Di Sorbo
et al., 2016; Maalej et al., 2016; Carreno and Win-
bladh, 2013; Stanik et al., 2019; Hadi and Fard,
2021; Gunathilaka and De Silva, 2022), and unsu-
pervised methods, such as clustering and topic mod-
elling (Chen et al., 2014; Guzman and Maalej, 2014).

Effective supervised approaches frequently re-
quire labelled large datasets, which can be resource-
intensive to generate (Dhinakaran et al., 2018). The
existing difficulty has prompted researchers to inves-
tigate alternative approaches, such as the utilisation of
Large Language Models (LLMs) like GPT (Radford
et al., 2018, 2019; Brown et al., 2020). These models
have shown proficient performance in a wide range of
software engineering activities (Hou et al., 2023).

Contemporary research has examined the capac-
ity of Large Language Models (LLMs) to optimise
data annotation procedures (Yu et al., 2024; He et al.,
2023; Ding et al., 2022) and to produce synthetic
data (Møller et al., 2023). Building on these advance-
ments, our research intends to utilise Large Language
Models (LLMs) to analyse user reviews on mobile ap-
plication platforms. This will assist developers in in-

828
Gunathilaka, S. and de Silva, N.
Automatic Analysis of App Reviews Using LLMs.
DOI: 10.5220/0013375600003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 2, pages 828-839
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



tegrating user feedback into their requirements engi-
neering and software evolution processes.

In pursuit of achieving the above goal, we investi-
gate the following research questions:

1. How effective are commercial and open-source
models in classifying user reviews?

2. Can we utilize commercial models to au-
tonomously annotate datasets for fine-tuning
smaller open-source models, thereby developing a
cost-effective LLM for app review classification?

In order to answer these questions, We evalu-
ated well-known commercial models using carefully
designed prompts in a zero-shot setting by bench-
marking their performance against a manually an-
notated dataset. Subsequently, we used the best-
performing commercial model to automatically an-
notate a balanced dataset, which was then used to
fine-tune smaller open-source models. Lastly, we
evaluated the performance of these fine-tuned mod-
els in comparison to their original forms as well as
the aforementioned commercially available models.

2 RELATED WORK

2.1 Large Language Models in Data
Annotation

Recent advances in Large Language Models (LLMs)
have transformed many aspects of natural lan-
guage processing, including data annotation. The
explain-then-annotate method (He et al., 2023) and
GPT-4’s performance in annotating complex pragma-
discursive elements (Yu et al., 2024) show that LLMs
have the potential to match or surpass human perfor-
mance. Researchers have also investigated LLMs’
capabilities in generating paraphrases for annotation
tasks (Cegin et al., 2023) and optimizing annotation
efficiency (Pérez et al., 2023).

LLMs have been applied to various specialised
annotation tasks, including rhetorical feature anno-
tation (Hamilton et al., 2024) and multilingual data
generation (Choi et al., 2024). Frameworks such as
LLMAAA (Zhang et al., 2023a) and Generative An-
notation Assistants (Bartolo et al., 2021) incorporate
LLMs into active learning loops to improve data an-
notation. Open-source LLMs have been shown to
outperform human-based services in text annotation
tasks (Alizadeh et al., 2023).

These advancements have led to significant im-
provements in annotation efficiency, accuracy, and
cost-effectiveness (Wang et al., 2021), highlighting

the versatility and potential of LLMs to enhance vari-
ous aspects of data annotation.

2.2 Mobile App Review Classification:
Traditional Approaches

The importance of user feedback in app development
and maintenance has been well-established (Pagano
and Maalej, 2013; Maalej et al., 2015). The chal-
lenges associated with the manual analysis of large
volumes of reviews led researchers to explore em-
ploying various NLP and machine learning tech-
niques.

Early studies leveraged traditional machine learn-
ing methods to extract valuable information from user
comments. Approaches included the use of linear re-
gression and LDA (Fu et al., 2013), topic modelling
and classification (Chen et al., 2014; Anchiêta and
Moura, 2017), and keyword-based analysis (Vu et al.,
2015).

Supervised learning approaches gained traction
later, with studies comparing individual machine
learning algorithms and their ensembles (Guzman
et al., 2015). Maalej et al. (2016) achieved high clas-
sification precision and recall in categorizing reviews
into bug reports, feature requests, user experiences,
and text ratings.

More advanced techniques were developed to ad-
dress specific challenges in app review analysis. Guz-
man et al. (2017) expanded the analysis beyond app
stores to include social media data. Dhinakaran et al.
(2018) proposed active learning to reduce the hu-
man effort required for labelling training data. Guo
and Singh (2020) introduced a method for extracting
and synthesizing user-reported mini-stories about app
problems from reviews.

These traditional approaches laid the foundation
for understanding and categorizing user feedback in
mobile app development, paving the way for more
sophisticated techniques using Deep learning ap-
proaches.

2.3 Mobile App Review Classification:
Deep Learning Approaches

Recent studies have increasingly applied deep learn-
ing to classify user feedback in mobile app reviews.
Stanik et al. (2019) found that Deep Convolutional
Neural Networks (CNNs) outperformed traditional
methods in multilingual user feedback classification.
Aslam et al. (2020) proposed a deep learning ap-
proach leveraging both textual and non-textual infor-
mation for classifying reviews into various categories.
Gunathilaka and De Silva (2022) developed a deep

Automatic Analysis of App Reviews Using LLMs

829



learning approach for conducting aspect-based sen-
timent analysis on app reviews using CNNs. Pre-
trained models such as BERT have shown promise
in this domain. Hadi and Fard (2021) demonstrated
that BERT models performed well across various set-
tings, while Restrepo et al. (2021) found that mono-
lingual BERT models outperformed baseline methods
in transfer learning for user review classification.

The literature reveals a progression from tradi-
tional machine learning to deep learning and LLM-
based methods in analyzing user reviews. Despite this
evolution, a notable gap remains in applying recent
LLMs, such as GPT and Gemini models, for mobile
app review analysis to support application evolution.

This study bridges this gap through several contri-
butions. We evaluate commercial LLMs (GPT-3.5 and
Gemini Pro) for app review classification, establish-
ing performance benchmarks and optimal parameters.
We introduce a method for creating training datasets
using commercial LLMs as autonomous annotators,
reducing manual effort while maintaining quality.

We compare open-source LLMs (Llama 2 and
Mistral) against commercial alternatives, examin-
ing fine-tuning approaches, hyperparameters tunning
(Temperature and Top p), and training dynamics
with varying dataset sizes (500-10000 samples) and
epochs. Our experiments show smaller datasets with
increased epochs achieve comparable results to larger
datasets. We also explore prompting strategies, in-
cluding an ”explain-then-annotate” approach, evalu-
ating their impact on classification performance.

By leveraging the advanced capabilities of LLMs,
this research seeks to provide a more efficient, accu-
rate, and scalable method for extracting actionable in-
sights from user feedback, potentially enhancing the
mobile application evolution process by a significant
amount.

3 METHODOLOGY

Our approach to classifying app store reviews using
Large Language Models (LLMs) consists of several
key steps, as illustrated in Figure 1. We begin by cre-
ating two essential datasets: a benchmarking dataset
for evaluation and a larger dataset for fine-tuning cus-
tom LLMs. The methodology involves selecting and
comparing various LLMs, including both commer-
cial and open-source models. We developed carefully
crafted prompts for annotation and fine-tuning, as
well as utilized optimization techniques to train cus-
tom models on consumer-grade hardware. Through-
out the process, we employed a rigorous evaluation
strategy to assess the performance of different models

and approaches in the task of app review classifica-
tion.

Figure 1: A high-level overview of our approach.

3.1 LLMs Selection

The selection of appropriate Large Language Models
(LLMs) was a crucial step in our research. We care-
fully evaluated and chose models based on a combi-
nation of performance metrics, resource constraints,
and task-specific requirements. Our selection process
aimed to find the balance between model capabili-
ties and practical implementation considerations, for
both our automated annotation approach and custom
model development. Section 3.1.1 and Section 3.1.2
respectively discuss how we selected the appropriate
LLMs for our experiments in detail.

3.1.1 LLM Selection for Automated Annotation

We selected OpenAI’s GPT-3.5 (gpt-3.5-turbo-
0125)1 and Google’s Gemini Pro 1.02 for auto-
mated annotation. Our initial experiments showed
that advanced models offered only marginal perfor-
mance improvements at substantially higher costs.
GPT-3.5 was approximately 45 times more cost-
effective than GPT-4, while Gemini Pro 1.0 was
three times cheaper than its advanced counterpart
Gemini Pro 1.5. This cost advantage enabled us
to conduct more comprehensive experiments while
maintaining acceptable performance. We employed
a zero-shot setting to minimize context size and costs,
utilizing the annotation prompt explained in Sec-
tion 3.4.1 via respective API endpoints.

1https://platform.openai.com/docs/models/
gpt-3-5-turbo

2https://console.cloud.google.com/vertex-ai/
publishers/google/model-garden/gemini-pro

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

830



3.1.2 LLM Selection for Custom Models

With the introduction of open-source LLMs, in-
cluding LLaMA (Touvron et al., 2023a,b), Vicuna
(Chiang et al., 2023), Falcon (Almazrouei et al.,
2023), Mistral (Jiang et al., 2023), and Zephyr
(Reiter, 2013), has enabled fine-tuning LLMs on
consumer-grade hardware. Given our hardware con-
straints (single RTX 4090 GPU with 24GB VRAM)
and the requirement for instruction-following ca-
pabilities to enforce the required response JSON
formatting, we selected Llama-2-7b-chat-hf
3, Mistral-7B-Instruct 4, and Falcon 7B
Instruct 5 for our experiments.

We evaluated these models’ classification perfor-
mance against a our manually annotated data, com-
paring base and fine-tuned versions under various set-
tings. These included the number of annotated re-
views, training epochs, and two types of instruction
prompts: a zero-shot template with only class def-
initions and a template incorporating ”explain then
annotate” technique (He et al., 2023; Colavito et al.,
2024). We also examined the effects of Temperature
and Top p parameters on model performance.

3.2 Benchmarking Dataset

This study utilizes a subset of a dataset from Maalej
and Nabil (2015). Due to discrepancies in the re-
trieved archived version, we selected a subset for
manual review and rectification. We maintained four
classes from the original work, slightly modifying
definitions for LLM readability:

• Bug Reports: Bug reports are user comments
that identify issues with the app, such as crashes,
incorrect behaviour, or performance problems.
These reviews specifically highlight problems
which affect the app’s functionality and suggest
a need for corrective action.

• Feature Requests: Feature requests are user sug-
gestions for new features or enhancements in fu-
ture app updates. These can include requests for
features seen in other apps, additions to content,
or ideas to modify existing features to enhance
user interaction and satisfaction.

• User Experience: User experience reviews pro-
vide detailed narratives focusing on specific app
features and their effectiveness in real scenarios.

3https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

5https://huggingface.co/tiiuae/falcon-7b-instruct

They offer insights into the app’s usability, func-
tionality, and overall satisfaction, often serving
as informal documentation of user needs and app
performance.

• Ratings: Ratings are brief textual comments that
reflect the app’s numeric star rating, primarily in-
dicating overall user satisfaction or dissatisfac-
tion. These reviews are succinct, focusing on ex-
pressing a general sentiment without detailed jus-
tification.

We created a balanced dataset of 200 reviews,
with 50 reviews per category. For reviews potentially
belonging to multiple categories, we applied a prece-
dence order (Bug > Feature > User Experience >
Rating) based on their impact on software evolution.
This hierarchy prioritizes bugs as critical production
issues, followed by feature requests for future devel-
opment cycles, user experience feedback for existing
features, and finally ratings which provide minimal
actionable insights.

Three developers with over 5 years of experience
annotated the dataset using provided class definitions,
examples, and guidelines. Final classifications were
determined by majority vote, with disagreements re-
solved through group discussions.

Task Description:

Review user reviews for mobile applications based on their

content, sentiment, and ratings. Utilize the

definitions provided to classify each review into the

appropriate category.

Definitions for Classification:

Bug Reports:

Definition: Bug reports are user comments that identify

issues with the app, such as crashes, incorrect

behavior,or performance problems. These reviews

specifically highlight problems that affect the app’s

functionality and suggest a need for corrective

action.

Feature Requests:

Definition: Feature requests are suggestions by users

for new features or enhancements in future app

updates. These can include requests for features seen

in other apps, additions to content, or ideas to

modify existing features to enhance user interaction

and satisfaction.

User Experience:

Definition: User experience reviews provide detailed

narratives focusing on specific app features and

their effectiveness in real scenarios. They offer

insights into the app’s usability, functionality, and

overall satisfaction, often serving as informal

documentation of user needs and app performance.

Differentiating Tip: Prioritize reviews that give

detailed explanations of the app’s features and their

practical impact on the user.

Ratings:

Automatic Analysis of App Reviews Using LLMs

831



Definition: Ratings are brief textual comments that

reflect the app’s numeric star rating, primarily

indicating overall user satisfaction or

dissatisfaction. These reviews are succinct, focusing

on expressing a general sentiment without detailed

justification.

Differentiating Tip: Focus on reviews that lack

detailed discussion of specific features or user

experiences, and instead provide general expressions

of approval or disapproval.

Questions:

Q1.Does it sound like a Bug Report?: <True or False>

Q2.Explain why Q1 is True/False: <explanation>

Q3.Does it sound like a missing Feature?: <True or False>

Q4.Explain why Q3 is True/False: <explanation>

Q5.Does it sound like a User Experience?: <True or False>

Q6.Explain why Q5 is True/False: <explanation>

Q7.Does it sound like a Rating?: <True or False>

Q8.Explain why Q7 is True/False: <explanation>

Instructions to the Language Model:

Review Processing: Carefully read the provided app

review and its star rating and answer all questions.

Output Format: Provide the classification results in the

following JSON format:

{

"Q1.Does it sound like a Bug Report?": "<True or False>",

"Q2.Explain why Q1 is True/False": "<explanation>",

"Q3.Does it sound like a missing Feature?": "<True or

False>",

"Q4.Explain why Q3 is True/False": "<explanation>",

"Q5.Does it sound like a User Experience?": "<True or

False>",

"Q6.Explain why Q5 is True/False": "<explanation>",

"Q7.Does it sound like a Rating?": "<True or False>",

"Q8.Explain why Q7 is True/False": "<explanation>"

}

Review and Star Rating to Classify:

Review: "Absolutely handy for those pics you don’t need

everyone else to see."

Star Rating: 3 out of 5"

Prompt Block 1: Prompt template: Annotating app review
data.

3.3 Dataset for Fine-Tuning Custom
LLMs

To construct a comprehensive dataset for fine-tuning
custom Large Language Models (LLMs), we system-
atically collected 92,354 reviews from the Google
App Store. The selection process targeted popular
applications in the United States, as ranked by appfig-
ures.com6 at the time the study was conducted. Our
corpus included reviews from over 90 distinct mobile
applications. We chose the United States as the target
demographic since our study is only focused on En-
glish app reviews and the United States is the largest

6https://appfigures.com/top-apps/ios-app-store/
united-states/iphone/top-overall

English-speaking market.
For the extraction and filtering process, we uti-

lized the langdetect Python library7 to identify and
filter out non-English reviews. Our initial selection
criteria prioritized reviews exceeding 10 words in
length, which yielded 85,852 reviews. To ensure com-
prehensive representation, we further extended the
corpus with an additional 6,502 reviews, each con-
taining between 2 and 10 words. This was done due
to our observation that reviews primarily consisting of
simple ratings rarely exceeded 10 words.

To annotate this extensive corpus of 92,354 re-
views, we utilized the best-performing commercial
LLM model (GPT 3.5) according to experiment re-
sults from section 4.1. The model was configured
with a Temperature setting of 1 and a Top p value
of 0.25 based on our experimental observations and
guidelines provided by Open AI8 to achieve a bal-
ance between creativity and coherence in the output.
We annotated each of the reviews using the annotation
prompt described in the section 3.4.1 until we arrived
at a balanced dataset comprising 10,000 reviews, with
an equal distribution of 2,500 reviews across each of
the four label categories.

Task Description:

Review user reviews for mobile applications based on their

content, sentiment, and ratings. Utilize the

definitions provided to classify each review into the

appropriate category.

Definitions for Classification:

Bug Reports:

Definition: Bug reports are user comments that identify

issues with the app, such as crashes, incorrect

behavior, or performance problems. These reviews

specifically highlight problems that affect the app’s

functionality and suggest a need for corrective

action.

Feature Requests:

Definition: Feature requests are suggestions by users

for new features or enhancements in future app

updates. These can include requests for features seen

in other apps, additions to content, or ideas to

modify existing features to enhance user interaction

and satisfaction.

User Experience:

Definition: User experience reviews provide detailed

narratives focusing on specific app features and

their effectiveness in real scenarios. They offer

insights into the app’s usability, functionality, and

overall satisfaction, often serving as informal

documentation of user needs and app performance.

Differentiating Tip: Prioritize reviews that give

detailed explanations of the app’s features and their

7https://pypi.org/project/langdetect/
8https://platform.openai.com/docs/api-reference/

chat/create,https://platform.openai.com/docs/guides/
text-generation

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

832



practical impact on the user.

Ratings:

Definition: Ratings are brief textual comments that

reflect the app’s numeric star rating, primarily

indicating overall user satisfaction or

dissatisfaction. These reviews are succinct, focusing

on expressing a general sentiment without detailed

justification.

Differentiating Tip: Focus on reviews that lack

detailed discussion of specific features or user

experiences, and instead provide general expressions

of approval or disapproval.

Instructions to the Language Model:

Review Processing: Carefully read the provided app

review and its star rating and Classify the review

into one of the following categories: "Bug",

"Feature", "UserExperience", or "Rating".

Output Format: Provide the classification results in the

following JSON format:

{

"Class": "<predition>"

}

Review and Star Rating to Classify:

User Review : "Absolutely handy for those pics you don’t

need everyone else to see."

User Rating : 3 out of 5

Prompt Block 2: Template 1: App review classification
prompt for open-source models.

Instructions to the Language Model:

Review Processing: Carefully read the provided app

review and its star rating. Give a brief explanation

of the classification decision made for the review

and Classify the review into one of the following

categories: "Bug", "Feature", "UserExperience", or

"Rating".

Output Format: Provide the classification results in the

following JSON format:

{

"Explanation": "<explanation>",

"Class": "<predition>"

}

Review and Star Rating to Classify:

User Review : "Absolutely handy for those pics you don’t

need everyone else to see."

User Rating : 3 out of 5

Prompt Block 3: Template 2: App review classification
prompt for open-source models.

3.4 Selection of Prompts

Prompt quality significantly influences model perfor-
mance (Zhang et al., 2023b). Drawing inspiration
from existing work (He et al., 2023; Colavito et al.,
2024; Wang et al., 2022; Mekala et al., 2024; Schul-
hoff et al., 2024), we developed three different prompt
templates for our experiments. Section 3.4.1 de-
scribes the prompt we used for benchmark and an-

notate app reviews and Section 3.4.2 describes the
prompt templates that we used for instruct fine-tune
and benchmark our fine-tuned models.

3.4.1 Prompts for Annotation

For benchmark classification performance and anno-
tate app reviews using commercial LLMs we devel-
oped a prompt structure that encourages comprehen-
sive class consideration. Our annotation prompt con-
tains a series of boolean questions and explanations
for each class as depicted by Prompt Block: 1. We
developed this prompt to avoid scenarios where re-
views belongs to multiple labels simply get classified
to one label when the model trying to classify them.
This structure allows flexible reasoning, particularly
for multi-category reviews. Post-classification, we
apply a precedence order (e.g., Bug > Feature > User
Experience > Rating) for final categorization. For ex-
ample, if the LLM returns True for both Q3 and Q5
in the preprocessing stage, we classify the review as
a Feature request, following our defined precedence
order.

3.4.2 Prompts for Fine-Tuning Custom Models

We developed two primary templates for fine-tuning:
Template 1 (Prompt Block: 2) and Template 2,
with their main difference in the ”Instructions to
the Language Model” section (shown in Prompt
Block: 3). Both templates share identical task de-
scriptions, classification definitions, and example for-
mats, but Template 2 follows the ”explain-then-
annotate” pattern (He et al., 2023). This is imple-
mented through modified instructions requiring the
model to provide an explanation before classification,
as illustrated in Prompt Block: 3. The difference is
reflected in their JSON output formats: Template 1
outputs only the classification class, while Template
2 requires both an explanation and the class predic-
tion. To manage computational constraints, we lim-
ited the maximum sequence length to 800 tokens, bal-
ancing model capacity with resource limitations. We
chose JSON format for output due to its ease of pro-
grammatic extraction.

3.5 Fine-Tuning Open Source Models

We utilized the Hugging Face SFTTrainer Library
for fine-tuning. We employed several optimization
techniques to accommodate our consumer-grade GPU
(24 GB VRAM):

• 4-bit quantization via QLoRA (Dettmers et al.,
2023), enabling efficient fine-tuning while main-
taining high performance.

Automatic Analysis of App Reviews Using LLMs

833



(a) Mistral model performance across different
Temperature settings and Top P settings.

(b) LLAMA model performance across different
Temperature settings and Top P settings.

(c) Commercial models (GPT-3.5 and Gemini
Pro) performance comparison across different
Temperature settings and Top P settings.

Figure 2: Performance comparison of different language
models across varying Temperature settings (0-2.0) and
sampling parameters. All models demonstrate performance
variations with Temperature changes, with notable differ-
ences in stability across different Top-p values (0.0-1.0). (a)
Mistral model exhibits varying performance patterns with
different exponential variants. (b) LLAMA model shows sim-
ilar parameter sensitivity with distinct stability characteris-
tics. (c) Commercial models display unique performance
patterns compared to open-source alternatives, particularly
in high-Temperature regions. The y-axis represents model
performance metrics, while the x-axis shows Temperature
values from 0 to 2.0. Key observations include optimal per-
formance at lower Temperatures (0-0.5) and general per-
formance degradation at higher Temperatures (>1.5).

• PEFT (Mangrulkar et al., 2022) (Parameter-
Efficient Fine-Tuning), which updates only a sub-
set of the model’s most influential parameters, re-
ducing computational requirements.

We maintained consistent model configurations
across all experiments to mitigate potential training
biases.

3.6 Evaluation Strategy

We conducted three experimental runs for each exper-
iment and reported the average results to ensure the
reliability of our findings.

Occasionally, even when provided with correct
formatting instructions, both commercial and open-
source Large Language Models (LLMs) produced re-
sponses with inaccurate JSON formatting. These in-
stances were resubmitted to the classification loop un-
til the LLM generated a valid JSON response compat-
ible with our automation script.

To evaluate the performance of our experiments,
we selected precision, recall, and F1-score metrics,
aligning with methodologies established in prior re-
search (Maalej and Nabil, 2015).

Given our balanced dataset, we employed macro-
averaging as an aggregated metric to compute over-
all performance. Additionally, we manually reviewed
and measured the quality of the automatically anno-
tated dataset. To estimate the required sample size,
we used the Krejcie and Morgan Table (Krejcie and
Morgan, 1970).

The manual review process involved three anno-
tators. We calculated inter-annotator agreement using
Cohen’s kappa to assess consistency among annota-
tors. When determining the class label for a given
review, we adopted the majority label. In cases where
no majority label emerged, we resolved discrepancies
through discussion among the three annotators.

As we utilized an ”explain-then-annotate” pattern
in one of the prompt templates used to train the open-
source LLMs, we also manually reviewed and evalu-
ated the accuracy of the generated explanations. For
this evaluation, we considered only the correctly clas-
sified instances and assessed the accuracy of gener-
ated explanations.

4 EXPERIMENTS

We divided our experiments into two main parts.
First, we tested commercially available closed-source
models to see how well they could classify app re-
views. We tested two well-known Large Language
Models (LLMs) in different settings. Then, we used

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

834



Table 1: Model Performance Comparison Including Gemini Pro and GPT 3.5.

Model Name Bugs Feature Userexperience Rating Macro Avg

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Gemini Pro 1.00000 0.69333 0.81642 0.96270 0.66000 0.78264 0.67373 0.89333 0.76808 0.91623 0.50667 0.65246 0.81142 0.76333 0.75490
GPT 3.5 Turbo 0.83261 0.92667 0.87701 0.84969 0.82667 0.83788 0.87150 0.86000 0.86557 0.84871 0.78667 0.81624 0.85063 0.85000 0.84917

Base llama 0.60318 0.88000 0.71542 0.88189 0.28667 0.43142 0.67024 0.48667 0.56284 0.59229 0.74667 0.66046 0.66440 0.60000 0.57753
Base mistral 0.66769 0.73333 0.69882 0.63743 0.22000 0.32649 0.40545 0.80000 0.53798 0.43591 0.25333 0.31912 0.53662 0.50167 0.47060
llama + instruct finetune (10k) 0.84212 0.88667 0.86375 0.78199 0.86000 0.81910 0.85761 0.92000 0.88759 0.87924 0.68000 0.76620 0.84024 0.83667 0.83416
mistral + instruct finetune (10k) 0.85926 0.77333 0.81404 0.74127 0.92667 0.82294 0.77677 0.88000 0.82482 0.87438 0.62000 0.72356 0.81292 0.80000 0.79634
llama + instruct finetune (10k) + explanation 0.83144 0.88667 0.85794 0.74492 0.83333 0.78637 0.85523 0.89333 0.87385 0.85480 0.66667 0.74837 0.82410 0.82000 0.81786
mistral + instruct finetune (10k) + explanation 0.81092 0.85333 0.83119 0.72597 0.84667 0.78152 0.88876 0.90000 0.89410 0.89881 0.68667 0.77778 0.83112 0.82167 0.82115

(a) Model performance across training epochs for
LLAMA and Mistral, both with and without explana-
tion capabilities.

(b) Model performance scaling with training data
size, comparing base models and their explanation-
enhanced variants.

Figure 3: Training dynamics analysis of open-source lan-
guage models. (a) Performance evolution across training
epochs shows consistent improvement patterns, with both
LLAMA and Mistral achieving F1 scores above 0.80 by
epoch 4. Models with explanation capabilities demon-
strate comparable learning trajectories to their base vari-
ants. (b) Impact of training data size on model perfor-
mance, ranging from 500 to 10000 samples. All models
show significant improvements with increased data, with
initial performance variations converging at larger dataset
sizes. The explanation-enhanced versions (LLAMA+Exp
and Mistral+Exp) maintain competitive performance across
different data regimes, suggesting effective integration of
explanation capabilities without compromising base model
performance.

the best model and setting as an annotator to create
a dataset fully autonomously. We used this dataset to
fine-tune three popular open-source models in various
settings.

Section 4.1 describes our experiments with com-

mercial LLMs in detail. Section 4.2 explains our work
with open-source LLMs.

4.1 Evaluating Commercial Model
Performance

To address our primary research question, we evalu-
ated the classification performance of two prominent
commercial models: Google’s Gemini Pro 1.0 and
OpenAI’s GPT-3.5. Experiments were conducted in a
zero-shot setting utilizing prompt template described
in section 3.4.1. As presented in Table 1, we obtained
F1 scores of 0.75490 and 0.84917 for Gemini Pro
and GPT-3.5, respectively. GPT-3.5 demonstrated
superior performance with a margin of approximately
0.09427.

Subsequently, we investigated the impact of two
performance-tuning parameters provided by both
models: Temperature and Top p. Figure 2c shows
the performance variations of commercial mod-
els (GPT-3.5 and Gemini Pro 1.0) across various
Temperature and Top p settings.

Our findings indicate that parameter tuning can
enhance model performance. GPT-3.5 exhibited
greater responsiveness to parameter changes, achiev-
ing higher performance in the app review classifi-
cation task when Temperature or Top p was set to
lower values. However, when both parameters were
set to their maximum values (Temperature = 2 and
Top p = 1), both models failed to produce results, fre-
quently encountering errors at the REST API level.

The OpenAI documentation recommends modi-
fying only one parameter at a time to achieve pre-
dictable outcomes. Lower parameter values result in
more focused model responses, while higher values
produce more creative responses. Our observations
aligned with this recommendation, as changing both
parameters simultaneously led to deviations from the
expected behavior pattern.

A noteworthy observation was that Gemini
Pro 1.0 produced identical F1 scores at lower
Temperature and Top p values. To validate this phe-
nomenon, we conducted repeated experiments and
found consistent results. Further analysis on the gen-
erated classification responses revealed identical out-
puts in mutually exclusive classification runs, suggest

Automatic Analysis of App Reviews Using LLMs

835



that this could be a potential caching effect or model-
specific issue.

To evaluate the quality of the generated dataset,
we randomly selected a sample of 370 reviews
from the 10,000 app review dataset annotated us-
ing GPT-3.5, achieving a 95% confidence level with
a 5% margin of error based on (Krejcie and Mor-
gan, 1970) guidelines. Three experienced develop-
ers served as annotators, and we calculated the inter-
annotator agreement using Cohen’s Kappa (κ). The
κ values between annotator pairs ranged from 0.9079
to 0.9180, with an average of 0.9135. For interpret-
ing κ values, we used the following scale by (Lan-
dis and Koch, 1977): κ ≤ 0 (less than chance agree-
ment), 0.01 ≤ κ ≤ 0.20 (slight), 0.21 ≤ κ ≤ 0.40
(fair), 0.41 ≤ κ ≤ 0.60 (moderate), 0.61 ≤ κ ≤ 0.80
(substantial), and 0.81 ≤ κ ≤ 1 (almost perfect agree-
ment). According to this scale, our scores indicate
“almost perfect” agreement, as they exceed the 0.81
threshold.

Tables 2 and 3 provide detailed insights into the
annotation analysis. Table 2 presents the pairwise Co-
hen’s Kappa scores, demonstrating strong consistency
across all three annotators. Table 3 shows the distribu-
tion of annotations across four categories (Bug, Fea-
ture, Rating, and UserExperience), revealing similar
classification patterns among annotators that further
validate the high inter-annotator agreement. Based on
this rigorous evaluation process, the GPT-3.5 anno-
tated dataset achieved an average accuracy of 81.89%.

Table 2: Pairwise Cohen’s Kappa Scores and Agreement
Levels.

Annotator Pair Kappa Score Agreement Level
Annotator 1 vs 2 0.9146 Almost perfect
Annotator 1 vs 3 0.9180 Almost perfect
Annotator 2 vs 3 0.9079 Almost perfect
Average 0.9135 Almost perfect

Table 3: Annotation Distribution by Annotator and Cate-
gory.

Annotator Bug Feature Rating UserExp
Annotator 1 84 55 84 147
Annotator 2 82 69 89 130
Annotator 3 84 68 83 135

4.2 Evaluating Open Source Models

Motivated by the impressive performance of commer-
cial closed-source models in app review classification,
we extended our evaluation to popular open-source
models, including Llama 2, Mistral, and Falcon.
Initially, we assessed the performance of these mod-
els using our benchmark dataset. Table 1 presents the
base models’ performance results.

A B C D

0

50

100

150
129

28

10
1

Gradings

N
um

be
ro

fR
ev

ie
w

s

Explanation Quality Grades

Figure 4: Distribution of grades for explanations generated
by the fine-tuned Mistral 7B model on our 200-review
benchmark dataset, evaluated by human experts. Grades
range from A (highest quality) to D (lowest quality).

Our experimental results shows that base Llama
2 and Mistral achieved F1 scores of 0.57753 and
0.47060, respectively. It is noteworthy that we ini-
tially intended to include the Falcon model in our ex-
periments. However, due to its inability to adhere to
our required output response JSON formatting, even
after fine-tuning attempts, we excluded it from subse-
quent experiments.

We proceeded to instruction-fine-tune Llama 2
and Mistral using a dataset with 10,000 samples an-
notated by GPT-3.5. For this process, we used two
different instruction prompt templates, which are de-
scribed in Section 3.4.2.

Table 1 demonstrates that Llama 2 exhibits supe-
rior performance with prompt Template 1 from sec-
tion 3.4.2, while Mistral achieves optimal perfor-
mance with the ”explain-then-annotate” prompt tem-
plate (Template 2).

To determine the optimal training dataset size, we
investigated the relationship between model accuracy
and training data volume, maintaining a single train-
ing epoch while varying the dataset size. The results,
presented in Figure 3b, demonstrate that model per-
formance improves proportionally with the training
dataset size.

We also examined the impact of training epochs
using 2,500 reviews from the training set. Fig-
ure 3a illustrates these results. Our analysis reveals
that models trained on smaller datasets with multiple
epochs can achieve comparable performance to those
trained on larger datasets with fewer epochs.

We manually reviewed the quality of explanations
generated by the Mistral model, which performed
better with Template 2, focusing only on correctly

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

836



classified instances. The generated explanations were
evaluated using a four-tier grading system: Grade A
for correct, comprehensive responses containing all
the relevant or important details from the user re-
view; Grade B for correct responses with some rel-
evant details; Grade C for generic responses lacking
specific details; and Grade D for incorrect explana-
tions inconsistent with the user review content. Fig-
ure 4 presents the results of our manual review. Out
of 168 correct classifications, 129 were graded as A,
28 as B, 10 as C, and only one as D. This distribution
indicates that the fine-tuned model generated satisfac-
tory results (Grade A or B) 93.45% of the time, with
76.79% achieving the highest grade. These findings
demonstrate the model’s strong capability to gener-
ate accurate and detailed explanations for app review
classifications. Additionally, we experimented with
the effects of Temperature and Top p parameters on
all the fine-tuned models. As shown in Figures 2a
and 2b, both fine-tuned models demonstrated perfor-
mance variations similar to commercial LLMs across
different Temperature settings (0-2.0) and Top p
values (0.0-1.0), with optimal performance typically
achieved at lower Temperatures (0-0.5) and perfor-
mance degradation observed at higher Temperatures
(>1.5).

5 CONCLUSION

In this study, we explore the performance of commer-
cial and open-source LLMs for app review classifi-
cation. Our evaluation shows GPT-3.5 achieving an
F1 score of 0.849 in zero-shot settings, outperform-
ing Gemini Pro’s 0.754, with both models perform-
ing optimally at lower Temperature and Top p val-
ues.

Using GPT-3.5, we generated a balanced dataset
of 10,000 reviews, validated through manual review
yielding a Cohen’s Kappa score of 0.913 and an av-
erage accuracy of 81.89%. These results demon-
strate LLMs’ effectiveness for automated annotation.
Our experiments with open-source models showed
instruction fine-tuning significantly improves perfor-
mance, with Llama 2 reaching an F1 score of 0.834
and Mistral achieving 0.821 using the ”explain-
then-annotate” approach. We found that smaller
datasets (2,500 reviews) with multiple training epochs
achieve comparable results to large-scale training.
The ”explain-then-annotate” approach with Mistral
proved particularly effective, with 76.79% of expla-
nations achieving Grade A in manual evaluation.

These findings demonstrate that LLMs can effec-
tively automate app review analysis while maintain-

ing high accuracy, with fine-tuned open-source mod-
els offering a cost-effective alternative to commercial
solutions. We have published our code and dataset9

to facilitate further research. Future work will investi-
gate the generalizability of our results across multiple
domains.

6 LIMITATIONS

While this study provides valuable insights into
LLMs for app review classification, several limita-
tions should be noted:

Our analysis focused on a limited selection of
commercial (GPT-3.5, Gemini Pro 1.0) and open-
source (Llama 2, Mistral) LLMs, which may not
fully represent all available models. The bench-
mark dataset of 200 reviews, though carefully cu-
rated, could be considered small for comprehensive
evaluation.

The study concentrated on English-language re-
views from U.S. Google Play Store apps, potentially
limiting generalizability to other regions, languages,
and app categories. Due to resource constraints, we
only evaluated 7 billion parameter models, though
larger models may offer improved performance.

While we conducted prompt engineering experi-
ments and selected optimal templates, further investi-
gations could yield improvements. As noted by Chen
et al. (2023), commercial models like GPT-3.5 show
temporal performance variations, making our results
a snapshot of their capabilities at testing time.

7 ETHICAL CONSIDERATIONS

Our research prioritized several ethical aspects: Pri-
vacy was maintained by anonymizing app reviews and
excluding personally identifiable information. We
acknowledge potential biases in training data from
GPT-3.5, which could affect classification results for
underrepresented groups or app categories. Environ-
mental impact was considered through efficiency op-
timization in dataset size and training epochs. How-
ever, broader discussion is needed regarding energy
consumption in NLP research, especially for fine-
tuning on consumer hardware. We recognize this
technology’s dual-use potential - while improving app
development, it could be misused for manipulating
rankings or spreading misinformation. To promote
transparency, we’ve made our datasets and code pub-

9https://github.com/sadeep25/
LLM-Mobile-App-Review-Analyzer.git

Automatic Analysis of App Reviews Using LLMs

837



licly available. Future research should focus on bias
mitigation, energy efficiency, responsible use guide-
lines, and long-term effects on app ecosystems and
user trust.

REFERENCES

Alizadeh, M., Kubli, M., Samei, Z., Dehghani, S., Bermeo,
J. D., Korobeynikova, M., and Gilardi, F. (2023). Open-
source large language models outperform crowd work-
ers and approach chatgpt in text-annotation tasks. arXiv
preprint arXiv:2307.02179, 101.

Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A.,
Cojocaru, R., Debbah, M., Goffinet, E., Heslow, D., Lau-
nay, J., Malartic, Q., et al. (2023). Falcon-40b: an open
large language model with state-of-the-art performance.

Anchiêta, R. T. and Moura, R. S. (2017). Exploring un-
supervised learning towards extractive summarization of
user reviews. In Proceedings of the 23rd Brazillian Sym-
posium on Multimedia and the Web, pages 217–220.

Aslam, N., RAMAY, A., KEWEN, X., and Sarwar, N.
(2020). Convolutional neural network-based classifica-
tion of app reviews. IEEE Access, 8:1–11.

Bartolo, M., Thrush, T., Riedel, S., Stenetorp, P., Jia, R.,
and Kiela, D. (2021). Models in the loop: Aiding crowd-
workers with generative annotation assistants. arXiv
preprint arXiv:2112.09062.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. (2020). Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901.

Carreno, L. V. G. and Winbladh, K. (2013). Analysis of
user comments: an approach for software requirements
evolution. In 2013 35th international conference on soft-
ware engineering (ICSE), pages 582–591. IEEE.

Cegin, J., Simko, J., and Brusilovsky, P. (2023). Chatgpt to
replace crowdsourcing of paraphrases for intent classifi-
cation: Higher diversity and comparable model robust-
ness. arXiv preprint arXiv:2305.12947.

Chen, L., Zaharia, M., and Zou, J. (2023). How is chat-
gpt’s behavior changing over time? arXiv preprint
arXiv:2307.09009.

Chen, N., Lin, J., Hoi, S. C., Xiao, X., and Zhang, B.
(2014). Ar-miner: mining informative reviews for devel-
opers from mobile app marketplace. In Proceedings of
the 36th international conference on software engineer-
ing, pages 767–778.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H.,
Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E., et al.
(2023). Vicuna: An open-source chatbot impressing gpt-
4 with 90%* chatgpt quality. See https://vicuna. lmsys.
org (accessed 14 April 2023), 2(3):6.

Choi, J., Yun, J., Jin, K., and Kim, Y. (2024). Multi-news+:
Cost-efficient dataset cleansing via llm-based data anno-
tation. arXiv preprint arXiv:2404.09682.

Colavito, G., Lanubile, F., Novielli, N., and Quaranta, L.
(2024). Leveraging gpt-like llms to automate issue label-
ing. In 2024 IEEE/ACM 21st International Conference
on Mining Software Repositories (MSR), pages 469–480.
IEEE.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. (2023). Qlora: Efficient finetuning of quantized llms.

Dhinakaran, V., Pulle, R., Ajmeri, N., and Murukannaiah,
P. (2018). App review analysis via active learning: Re-
ducing supervision effort without compromising classifi-
cation accuracy. pages 170–181.

Di Sorbo, A., Panichella, S., Alexandru, C., Shimagaki, J.,
Visaggio, C. A., Canfora, G., and Gall, H. (2016). What
would users change in my app? summarizing app re-
views for recommending software changes.

Ding, B., Qin, C., Liu, L., Chia, Y. K., Joty, S., Li, B., and
Bing, L. (2022). Is gpt-3 a good data annotator? arXiv
preprint arXiv:2212.10450.

Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N.
(2013). Why people hate your app: Making sense of user
feedback in a mobile app store. Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Groen, E., Seyff, N., Ali, R., Dalpiaz, F., Doerr, J., Guz-
man, E., Hosseini, M., Marco, J., Oriol, M., Perini, A.,
and Stade, M. (2017). The crowd in requirements engi-
neering: The landscape and challenges. IEEE Software,
34.

Gunathilaka, S. and De Silva, N. (2022). Aspect-based sen-
timent analysis on mobile application reviews. In 2022
22nd International Conference on Advances in ICT for
Emerging Regions (ICTer), pages 183–188. IEEE.

Guo, H. and Singh, M. P. (2020). Caspar: Extracting and
synthesizing user stories of problems from app reviews.
page 628–640.

Guzman, E., El-Haliby, M., and Bruegge, B. (2015). En-
semble methods for app review classification: An ap-
proach for software evolution (n). pages 771–776.

Guzman, E., Ibrahim, M., and Glinz, M. (2017). A little bird
told me: Mining tweets for requirements and software
evolution.

Guzman, E. and Maalej, W. (2014). How do users like this
feature? a fine grained sentiment analysis of app reviews.
In 2014 IEEE 22nd international requirements engineer-
ing conference (RE), pages 153–162. IEEE.

Hadi, M. A. and Fard, F. H. (2021). Evaluating pre-trained
models for user feedback analysis in software engineer-
ing: A study on classification of app-reviews.

Hamilton, K., Longo, L., and Bozic, B. (2024). Gpt assisted
annotation of rhetorical and linguistic features for inter-
pretable propaganda technique detection in news text. In
Companion Proceedings of the ACM on Web Conference
2024, pages 1431–1440.

He, X., Lin, Z., Gong, Y., Jin, A., Zhang, H., Lin,
C., Jiao, J., Yiu, S. M., Duan, N., Chen, W., et al.
(2023). Annollm: Making large language models
to be better crowdsourced annotators. arXiv preprint
arXiv:2303.16854.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

838



Hosseini, M., Snijders, R., Dalpiaz, F., Brinkkemper, S.,
Ali, R., and Ozum, A. (2015). Refine: A gamified plat-
form for participatory requirements engineering.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo,
X., Lo, D., Grundy, J., and Wang, H. (2023). Large lan-
guage models for software engineering: A systematic lit-
erature review. arXiv preprint arXiv:2308.10620.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. (2023). Mistral 7b. arXiv
preprint arXiv:2310.06825.

Krejcie, R. V. and Morgan, D. W. (1970). Determining sam-
ple size for research activities. Educational and psycho-
logical measurement, 30(3):607–610.

Landis, J. R. and Koch, G. G. (1977). The measurement
of observer agreement for categorical data. biometrics,
pages 159–174.

Li, H., Zhang, L., Zhang, L., and Shen, J. (2010). A user sat-
isfaction analysis approach for software evolution. 2010
IEEE International Conference on Progress in Informat-
ics and Computing, 2:1093–1097.

Maalej, W., Kurtanović, Z., Nabil, H., and Stanik, C.
(2016). On the automatic classification of app reviews.
Requirements Engineering, 21.

Maalej, W. and Nabil, H. (2015). Bug report, feature re-
quest, or simply praise? on automatically classifying app
reviews. In 2015 IEEE 23rd international requirements
engineering conference (RE), pages 116–125. IEEE.

Maalej, W., Nayebi, M., Johann, T., and Ruhe, G. (2015).
Toward data-driven requirements engineering. IEEE
Software, 33:48–56.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. (2022). Peft: State-of-the-art
parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft.

Mekala, R. R., Razeghi, Y., and Singh, S. (2024).
Echoprompt: Instructing the model to rephrase queries
for improved in-context learning.

Møller, A. G., Dalsgaard, J. A., Pera, A., and Aiello, L. M.
(2023). The parrot dilemma: Human-labeled vs. llm-
augmented data in classification tasks. arXiv preprint
arXiv:2304.13861.

Pagano, D. and Maalej, W. (2013). User feedback in the
appstore: An empirical study.

Pérez, A., Fernández-Pichel, M., Parapar, J., and Losada,
D. E. (2023). Depresym: A depression symptom anno-
tated corpus and the role of llms as assessors of psycho-
logical markers. arXiv preprint arXiv:2308.10758.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. (2018). Improving language understanding by gen-
erative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.

Reiter, L. (2013). Zephyr. Journal of Business & Finance
Librarianship, 18(3):259–263.

Restrepo, P., Fischbach, J., Spies, D., Frattini, J., and Vo-

gelsang, A. (2021). Transfer learning for mining feature
requests and bug reports from tweets and app store re-
views.

Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A.,
Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., Dulepet,
P. S., Vidyadhara, S., Ki, D., Agrawal, S., Pham, C.,
Kroiz, G., Li, F., Tao, H., Srivastava, A., Costa, H. D.,
Gupta, S., Rogers, M. L., Goncearenco, I., Sarli, G.,
Galynker, I., Peskoff, D., Carpuat, M., White, J., Anad-
kat, S., Hoyle, A., and Resnik, P. (2024). The prompt
report: A systematic survey of prompting techniques.

Stanik, C., Haering, M., and Maalej, W. (2019). Classify-
ing multilingual user feedback using traditional machine
learning and deep learning. pages 220–226.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., et al. (2023a). Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Alma-
hairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., et al. (2023b). Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Vu, P. M., Nguyen, T. T., Pham, H. V., and Nguyen,
T. T. (2015). Mining user opinions in mobile app
reviews: A keyword-based approach. arXiv preprint
arXiv:1505.04657.

Wang, S., Liu, Y., Xu, Y., Zhu, C., and Zeng, M. (2021).
Want to reduce labeling cost? gpt-3 can help. arXiv
preprint arXiv:2108.13487.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. (2022). Self-instruct:
Aligning language models with self-generated instruc-
tions. arXiv preprint arXiv:2212.10560.

Yu, D., Li, L., Su, H., and Fuoli, M. (2024). Assessing
the potential of llm-assisted annotation for corpus-based
pragmatics and discourse analysis: The case of apology.
International Journal of Corpus Linguistics.

Zhang, R., Li, Y., Ma, Y., Zhou, M., and Zou, L. (2023a).
Llmaaa: Making large language models as active anno-
tators. arXiv preprint arXiv:2310.19596.

Zhang, T., Irsan, I. C., Thung, F., and Lo, D. (2023b).
Revisiting sentiment analysis for software engineering
in the era of large language models. arXiv preprint
arXiv:2310.11113.

Automatic Analysis of App Reviews Using LLMs

839


