
A Study on Vulnerability Explanation Using Large Language Models

Lucas B. Germano a and Julio Cesar Duarte b

Military Institute of Engineering, Brazil
{lucas.germano, duarte}@ime.eb.br

Keywords: Large Language Models, LLMs, Vulnerability Explanation, Software Security, CodeLlama, ChatGPT, GPT-4.

Abstract: In the quickly advancing field of software development, addressing vulnerabilities with robust security mea-
sures is essential. While much research has focused on vulnerability detection using Large Language Models
(LLMs), limited attention has been given to generating actionable explanations. This study explores the ca-
pability of LLMs to explain vulnerabilities in Java code, structuring outputs into four dimensions: why the
vulnerability exists, its dangers, how it can be exploited, and mitigation recommendations. In this context,
smaller LLMs struggled to produce outputs in the required JSON format, with CodeGeeX4 showing high
semantic similarity to GPT-4o but generating many incorrect formats. CodeLlama 34B emerged as the best
overall performer, balancing output quality and formatting consistency. Despite these findings, comparisons
with the GPT-4o baseline revealed no significant differences to rank the models effectively. Human evaluation
further revealed that all models, including GPT-4o, struggled to adequately explain complex vulnerabilities,
underscoring the challenges in achieving comprehensive explanations.

1 INTRODUCTION

In the continuous software development landscape,
security vulnerabilities persist as a challenge, threat-
ening systems’ integrity, confidentiality, and avail-
ability. Identifying these vulnerabilities has tradi-
tionally relied on static and dynamic analysis tools,
which, while effective, often lack the ability to con-
textualize and explain vulnerabilities in a way that
is accessible to diverse audiences, including develop-
ers, security professionals, and decision-makers. The
emergence of Large Language Models (LLMs) of-
fers a transformative approach to this problem, with
their capacity to process and generate natural lan-
guage based on complex patterns in data.

LLMs like GPT and CodeLlama have shown
promise in tasks such as vulnerability detection, re-
pair, and explanation. However, most research em-
phasizes detection, with limited focus on explaining
vulnerabilities’ root causes, impacts, and remediation.
Such explanations are crucial for enhancing developer
understanding and promoting proactive security prac-
tices.

The study aims to investigate and demonstrate the
capability of LLMs to generate contextualized expla-
nations of vulnerabilities in Java code. It focuses

a https://orcid.org/0009-0007-1607-4863
b https://orcid.org/0000-0001-6656-1247

on producing explanations, encompassing critical at-
tributes, enabling a comprehensive understanding and
effective remediation of these vulnerabilities. These
attributes include: (1) elucidating why the vulnerabil-
ity exists by identifying its root causes; (2) explaining
how the vulnerability can be exploited, outlining po-
tential attack vectors and exploitation scenarios; (3)
assessing the danger posed by the vulnerability if suc-
cessfully exploited, including potential impacts on se-
curity, functionality, and data integrity; and (4) pro-
viding actionable guidance on how developers can ef-
fectively mitigate or fix the identified vulnerabilities.
By addressing these objectives, the study seeks to en-
hance the utility of LLMs in improving software se-
curity practices and developer awareness.

The results of this study show that CodeLlama
34B emerged as the best performer, balancing qual-
ity and formatting consistency, while smaller models
like CodeGeeX4 often struggled with JSON format-
ting. However, all models, including GPT-4o, faced
challenges in providing comprehensive explanations
for complex vulnerabilities, highlighting both the po-
tential of LLMs in generating structured explanations
and their limitations in addressing intricate scenarios.

The paper is structured as follows: Section 2 re-
views related work on LLM-based vulnerability de-
tection and explanation. Section 3 details the method-
ology for model training and evaluation. Section 4

1404
Germano, L. B. and Duarte, J. C.
A Study on Vulnerability Explanation Using Large Language Models.
DOI: 10.5220/0013379200003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1404-1411
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

presents the results, and Section 5 discusses insights
and future research directions.

2 RELATED WORK

An extensive literature review revealed no studies di-
rectly addressing the task of explaining vulnerabili-
ties. The most closely related work is GPTLens(Hu
et al., 2023), which investigates the application of
LLMs for vulnerability detection in smart contracts.

GPTLENS introduces an “Auditor” and “Critic”
framework to enhance detection accuracy, balanc-
ing diverse predictions and reduced false positives.
The “Auditor” identifies vulnerabilities and generates
reasoning, while the “Critic” evaluates correctness,
severity, and profitability. While the framework in-
cludes an explanation mechanism, it is limited, pro-
viding only brief reasoning on why vulnerabilities ex-
ist without detailing dangers, exploitation methods, or
mitigation steps. Additionally, the reliance on GPT-
4 for both generation and evaluation raises concerns
about bias, highlighting the need for human valida-
tion to ensure trustworthiness.

While only one study directly addressing vulnera-
bility explanation was identified, numerous works fo-
cus on vulnerability detection, particularly employ-
ing LLMs. An example is LineVul (Fu and Tan-
tithamthavorn, 2022), a Transformer-based approach
for fine-grained vulnerability prediction in C/C++
code. LineVul utilizes BERT’s self-attention mech-
anism to achieve line-level predictions, significantly
improving the accuracy of locating vulnerable code
compared to coarse-grained methods.

Similarly, other studies such as (Chen et al., 2023;
Hin et al., 2022; Nguyen et al., 2022) also focus on
the task of detecting vulnerabilities using advanced
techniques and models.

In addition, works like (Fu et al., 2022; Wu et al.,
2023; Zhang et al., 2024) focus on vulnerability re-
pair, introducing methods for automated fixes. How-
ever, these studies also lack emphasis on explaining
the repaired vulnerabilities, leaving developers with
a limited understanding of the changes made or their
implications.

To contextualize this study within the scope of ex-
isting research, Table 1 provides a comparative analy-
sis of these studies, highlighting their primary contri-
butions to vulnerability detection, repair, and expla-
nation tasks. It demonstrates the current emphasis on
detection and repair while revealing a lack of focus on
explanation across most works.

This gap underscores the need for approaches that
extend beyond identifying or fixing vulnerabilities to

delivering in-depth insights into their root causes, as-
sociated risks, exploitation strategies, and effective
mitigation techniques. This study addresses that gap
by proposing a framework dedicated to delivering
comprehensive and actionable explanations for soft-
ware vulnerabilities.

3 EXPERIMENTAL WORKFLOW

This study’s experimental workflow systematically
evaluates the effectiveness of LLMs in explaining vul-
nerabilities in Java source code. The process starts
with creating a refined dataset tailored for the ex-
periment. Prompt engineering techniques then en-
sure consistent and structured input formats for gen-
erating clear and concise explanations. A Retrieval-
Augmented Generation (RAG) approach enriches the
input dynamically with accurate and up-to-date vul-
nerability context. Lastly, LLM selection is based on
a detailed performance benchmark analysis, prioritiz-
ing state-of-the-art models that meet computational
constraints and research objectives. These intercon-
nected steps, outlined in Figure 1, provide a struc-
tured framework for exploring LLM capabilities in
software vulnerability analysis. Each step is detailed
in the subsections below.

Java
vulnerability

dataset

Prompt
engineering

You found that the following Java code has the
CWE-89 vulnerability (Improper Neutralization of

Special Elements used in an SQL Command
('SQL Injection')). The description of the CWE is:

{description}
Code to be analyzed:

{code}

Comparison
with baseline

RAG

Manual
qualitative
evaluation

LLMs
selection

GPT-4o
CodeLlama
Gemma-2
CodeGeeX4

Outputs
generation

Figure 1: Methodology employed on the experiment.

3.1 Java Vulnerability Dataset

The proposed dataset for this study is the Re-
posVul (Wang et al., 2024) dataset, which includes
around 1,000 Java test cases. A filtering process was
applied to refine the dataset based on the following
criteria:

• The test case must explicitly include the CWE
(Common Weakness Enumeration) number of the
vulnerability.

A Study on Vulnerability Explanation Using Large Language Models

1405

Table 1: Primary focus of cited studies on vulnerability detection, repair, and explanation. Full circle () = main focus, half
circle (G#) = partial focus, empty circle (#) = not addressed.

Study Detection Repair Explanation
GPTLENS (Hu et al., 2023) # G#
LineVul (Fu and Tantithamthavorn, 2022) # #
DiverseVul (Chen et al., 2023) # #
LineVD (Hin et al., 2022) # #
ReGVD (Nguyen et al., 2022) # #
VulRepair (Fu et al., 2022) # #
Wu et al. (Wu et al., 2023) # #
Zhang et al. (Zhang et al., 2024) # #
This Work # #

• The patch for the vulnerability should change at
most one file.

These criteria were selected to address two key
challenges. First, since the experiments involve eval-
uating seven different LLM models, detailed in sub-
section 3.4, running all 1,000 test cases would be
prohibitively time-consuming. Filtering reduces the
dataset to a more manageable size without compro-
mising representativeness. Second, multi-file vulner-
abilities are naturally more complex to analyze and
are prone to false positives, as developers may mod-
ify unrelated code during patching. Limiting the
dataset to cases where the patch affects at most one
file helps minimize this risk, ensuring that the selected
test cases are more straightforward for the models to
analyze and explain.

After applying this filtering process, the dataset
was reduced to 170 cases, resulting in a balanced and
representative sample for the study.

3.2 Prompt Engineering

This study employed prompt engineering to ensure
coherence and structure in the LLM outputs. The out-
put format was strictly defined as JSON, with four
keys: why, danger, how, and fix. Each key corre-
sponded to a specific aspect of the vulnerability, as
detailed in Box 1. This approach ensured clear and
consistent representation of explanations.

Prompts explicitly instructed LLMs to avoid gen-
erating code fixes, focusing instead on contextually
accurate explanations. They directed models to ref-
erence specific variables and functions from the pro-
vided code, ensuring explanations remained grounded
in context.

Additionally, prompts required the LLMs to focus
exclusively on the specified CWE vulnerability. For
instance, when analyzing CWE-89 (SQL Injection),
the LLMs were instructed to address only this issue,
ignoring unrelated vulnerabilities.

The system prompt sets the rules, behavior, and
response format, ensuring the model adheres to con-
straints like focusing on the specified CWE and us-
ing JSON formatting. The user prompt provides task-
specific input, such as the Java code and vulnerabil-
ity description. An example user prompt for CWE-89
(SQL Injection) is shown in Box 2.

Box 1 | System Prompt

You are a software security specialist and will be
asked to provide a JSON response about vulnera-
bilities found in Java source code. Do not write any
code in your response, but you may cite variables
and functions. The JSON must contain four spe-
cific keys: why, danger, how, and fix. Each key
should correspond to a short and concise paragraph
as instructed:

• why: Explain why the vulnerability happens.

• danger: Describe the danger the vulnerabil-
ity may cause if exploited.

• how: Explain how the vulnerability could be
exploited.

• fix: Provide directions to fix the vulnerabil-
ity, but do not write any code.

Do not include any other keys or write responses
outside the JSON format. If any part of the re-
sponse cannot be completed, explicitly state “No
information available” for that key. Concentrate
solely on vulnerabilities related to the given CWE,
ignoring all other types of vulnerabilities.

A key aspect of prompt creation is focusing on the
affected code segment identified in the patch. The
prompt includes the old, vulnerable code while ex-
cluding the corrected code. Although full file context
would be ideal, many files exceed the hardware mem-
ory limits, so the prompts prioritize the impacted seg-
ment to balance context and resource constraints.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1406

Box 2 | User Prompt

You found that the following Java code has the
CWE-89 vulnerability (Improper Neutralization of
Special Elements used in an SQL Command (’SQL
Injection’)). The description of the CWE is: The
product constructs all or part of an SQL command
using externally influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
intended SQL command when it is sent to a down-
stream component. Without sufficient removal or
quoting of SQL syntax in user-controllable inputs,
the generated SQL query can cause those inputs to
be interpreted as SQL instead of ordinary user data.
Code to be analyzed: {code}

3.3 RAG

A Retrieval-Augmented Generation (RAG) approach
is used to provide the LLMs with accurate and rele-
vant information about vulnerabilities. This method
dynamically enriches the input with real-time context
fetched via web scraping. Specifically, the mecha-
nism retrieves the full name and description of the
targeted vulnerability from the CWE website1 on de-
mand, ensuring the prompts include the most up-to-
date details. This integration enhances the relevance
and accuracy of the explanations while maintaining
efficiency. Figure 2 illustrates this process.

3.4 LLMs Selection

Selecting appropriate LLMs is crucial due to the rapid
evolution of this field. Peer-reviewed benchmarks of-
ten become outdated by the time they are published,
making online benchmarks a practical alternative for
evaluating the latest models. This study consulted
several benchmarks, including Can AI Code Results2,
BigCode Models Leaderboard3, Aider Chat Leader-
boards4, ProLLM Coding Assistant Leaderboard5,
and BigCode Bench6.

From these benchmarks, six models were selected
for the experiments in this study: CodeLlama (7B,
13B, 34B, and 70B versions) (Rozière et al., 2024),
Gemma 2 27B (Team et al., 2024), and CodeGeeX4

1https://cwe.mitre.org/
2https://huggingface.co/spaces/mike-ravkine/

can-ai-code-results
3https://huggingface.co/spaces/bigcode/

bigcode-models-leaderboard
4https://aider.chat/docs/leaderboards/
5https://prollm.toqan.ai/leaderboard/coding-assistant
6https://bigcode-bench.github.io/

9B (Zheng et al., 2023), where B stands for billion
parameters. The primary selection criteria were:

• Hardware Compatibility. Each selected model
must fit within the memory constraints of a 64GB
VRAM GPU, as detailed in subsection 4.1. This
ensures that the models can be evaluated without
additional infrastructure constraints.

• Performance Ranking. The selected models
represent the best-performing LLMs across the
consulted benchmarks, prioritizing their relevance
and effectiveness in code-related tasks.

This approach allows the study to utilize state-
of-the-art LLMs that are both feasible to deploy and
aligned with the objectives of vulnerability explana-
tion in Java. The selected models are evaluated exten-
sively in the subsequent sections.

4 RESULTS

This section presents the findings of the study, en-
compassing both quantitative and qualitative analy-
ses of the performance of the selected LLMs. The
section starts by describing the hardware and model
parameters utilized for the experiments; it then eval-
uates the adherence of the model outputs to the re-
quested JSON format, a critical aspect of generating
structured and usable results. Next, the outputs of the
LLMs are quantitatively compared against a baseline
(GPT-4o) using metrics such as BERTScore, BLEU,
and ROUGE. Finally, a manual qualitative analysis
is conducted to assess the models’ ability to gener-
ate meaningful, accurate, and contextualized expla-
nations for vulnerabilities of varying complexities.

The filtered ReposVul dataset, as well as the out-
puts from all LLMs used, are available online7.

4.1 Hardware and Model Parameters

The experiments were conducted on a virtual machine
equipped with four NVIDIA A16 GPUs (16GB each,
totaling 64GB VRAM), 32GB RAM, and an 8-core
2GHz CPU. The transformers library version 4.46
was used throughout the experiments.

For the CodeLlama 70B model, QLoRa 4-
bit quantization was employed to accommo-
date the hardware limitations. Key parame-
ters were adjusted, including the quantization
type (bnb 4bit quant type set to nf4), com-
pute data type (bnb 4bit compute dtype set

7https://github.com/lucasg1/
vulnerabilities-explanation-with-llms

A Study on Vulnerability Explanation Using Large Language Models

1407

You found that the following Java code has the CWE-89 vulnerability
(Improper Neutralization of Special Elements used in an SQL Command

('SQL Injection')). The description of the CWE is: The product constructs all or
part of an SQL command using externally-influenced input from an

upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is

sent to a downstream component. Without sufficient removal or quoting of
SQL syntax in user-controllable inputs, the generated SQL query can cause

those inputs to be interpreted as SQL instead of ordinary user data.

Code to be analyzed:
{code}

Vulnerability: CWE-89 Web scraper

Full name: CWE-89: Improper Neutralization of …
Description: The product constructs all or part of an SQL…

Prompt creation

Figure 2: RAG procedure.

to bfloat16), and enabling double quantization
(bnb 4bit use double quant=True). Gradient check-
pointing was activated to optimize memory usage
while preserving precision.

For the other LLMs used in this study, the pa-
rameters were maintained at their default settings, ex-
cept for the quantization configuration, which was ad-
justed to 8-bit (load in 8bit=True). All models uti-
lized the bfloat16 compute data type throughout the
experiments.

4.2 Outputs not Conforming to the
JSON Standard

The study also evaluated the ability of LLMs to pro-
duce outputs in the requested JSON format across the
170 test cases. Smaller models, such as CodeLlama
7B and CodeGeeX4 9B, frequently deviated from the
standard, likely due to limited capacity to handle strict
formatting requirements. Larger models, like CodeL-
lama 70B, also showed higher error rates, potentially
due to excessive quantization affecting output accu-
racy. In contrast, mid-sized models, such as CodeL-
lama 13B and CodeLlama 34B, demonstrated bet-
ter adherence to the JSON standard, with error rates
of 7.6% and 2.9%, respectively. These findings, il-
lustrated in Figure 3, highlight the effectiveness of
these models in producing structured outputs within
the constraints of the study.

4.3 Comparison with Baseline (GPT-4o)

The outputs of the models were compared against
GPT-4o, chosen as the baseline for its reputation

Cod
eLl

am
a 7

B

Cod
eG

ee
X4 9

B

Cod
eLl

am
a 1

3B

Gem
ma 2

 27
B

Cod
eLl

am
a 3

4B

Cod
eLl

am
a 7

0B

Model

0

20

40

60

80

100

Er
ro

r C
ou

nt

114

93

13

41

5

49

Error Count by Model

Figure 3: Number of errors for requested output format by
model.

as a reliable and advanced large language model.
Renowned for its superior natural language under-
standing and generation, GPT-4o serves as a high-
quality benchmark widely used in research and indus-
try.

The comparison employed the following metrics:

• BERTScore (Zhang* et al., 2020). Captures se-
mantic similarity by embedding texts and measur-
ing scores. BERTScore, as the main metric, re-
veals semantic relationships beyond word match-
ing.

• BLEU. Evaluates n-gram matches between gen-
erated and reference responses, focusing on exact
word sequence matches without accounting for
semantics.

• ROUGE-X. Measures lexical overlap via uni-
grams (ROUGE-1), bigrams (ROUGE-2), and
longest common subsequences (ROUGE-L), em-
phasizing word-level similarity over semantic fi-
delity.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1408

While BLEU and ROUGE provide insights into
lexical overlap, they fail to account for semantically
equivalent expressions with different wording, a fre-
quent occurrence in complex explanations. For in-
stance, synonyms or rephrased structures conveying
the same meaning are often overlooked by these met-
rics. In contrast, BERTScore, which evaluates con-
textual embeddings, is better suited for assessing ex-
planations where semantic accuracy is critical.

The results of the comparison with the baseline
GPT-4o are presented in Figure 4. This figure summa-
rizes the aggregated performance of the models across
the four JSON keys: why, danger, how, and fix. For
each key, the metrics BLEU, ROUGE-1, ROUGE-L,
and BERTScore are used to evaluate the quality of
the generated outputs. The full results, including ad-
ditional graphs, are available in the provided GitHub
repository.

The selected metrics proved insufficient to draw
meaningful comparisons between the models. The
main metric, BERTScore, showed a maximum differ-
ence of only 2% across all models, highlighting the
limitations of the metric in capturing nuanced differ-
ences in model performance for this task.

CodeGeeX4 performed best in semantic similarity
to GPT-4o, achieving the highest overall scores. How-
ever, it exhibited significant formatting issues, with 93
responses (55%) failing to conform to the JSON stan-
dard. In contrast, CodeLlama-34B had only 5 improp-
erly formatted outputs (3%), demonstrating superior
reliability in adhering to the requested format.

These results suggest that while CodeGeeX4 ex-
cels in generating responses semantically close to
GPT-4o, its high rate of formatting errors limits its
practical utility. CodeLlama-34B, with its signifi-
cantly lower error rate, presents itself as a more reli-
able option for applications requiring strict adherence
to output formatting.

Due to space restrictions, an example of a CWE-
400 (Uncontrolled Resource Consumption) vulner-
ability, CVE-2022-24839, is provided on the main
page of the GitHub repository: https://github.com/
lucasg1/vulnerabilities-explanation-with-llms. The
corresponding explanation provided by two models,
GPT-4o and CodeLlama 34B, is shown at the page.

4.4 Qualitative Manual Analysis

The comparison with the baseline using automated
metrics proved insufficient in evaluating the models
in terms of the quality of their explanations. As a re-
sult, a manual evaluation of the vulnerabilities was
conducted to provide a more comprehensive analysis
of the models’ performance in generating meaningful

and actionable explanations. The vulnerabilities were
analyzed based on the following criteria:

• Contextualization. Assesses how well the model
connects its explanation to the provided code, in-
cluding references to variables, functions, or code
snippets used.

• Clarity. Evaluates the clarity of each explanation
in terms of language and structure.

• Identification of the Cause (why?). Examines
whether the model correctly identifies the root
cause of the vulnerability in the provided code.

• Risk Assessment (danger?). Measures if the
model accurately describes the potential dangers
of the vulnerability.

• Explanation of Exploitation (how?). Evaluates
if the model clearly and correctly explains how the
vulnerability can be exploited.

• Fix Direction (fix?). Assesses whether the model
provides practical and clear directions to fix the
vulnerability.

To accomplish this, five vulnerabilities were selected
for analysis, varying in complexity:

• CWE-521. Weak password requirements (low
complexity)

• CWE-611. Improper restriction of XML external
entity reference (medium complexity)

• CWE-668. Exposure of resource to wrong sphere
(medium complexity)

• CWE-79. Improper neutralization of input during
web page generation (XSS) (medium complexity)

• CWE-203. Observable discrepancy (high com-
plexity)

The evaluations were conducted using the following
scale:

• 1: Poor (does not meet expectations)

• 3: Average (partially meets expectations)

• 5: Excellent (fully meets expectations)

This analysis enhances understanding of the mod-
els’ qualitative performance and their ability to ad-
dress vulnerabilities with structured and actionable
explanations.

Table 2 shows GPT-4o achieved the highest av-
erage score of 3.9, as expected, given its status as
the baseline and a state-of-the-art model. CodeLlama
34B and Gemma 2 27B followed with scores of 3.3
and 3.6, demonstrating comparable performance and
alignment with evaluation criteria.

Smaller models like CodeLlama 13B (2.7),
CodeLlama 7B (3.0), and CodeGeeX4 9B (3.2)

A Study on Vulnerability Explanation Using Large Language Models

1409

why danger how fix
Category

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

BE
RT

-F
1

Sc
or

e
Comparison of BERT-F1 Scores by Model

meta-llama/CodeLlama-7b-Instruct-hf
THUDM/codegeex4-all-9b
meta-llama/CodeLlama-13b-Instruct-hf
google/gemma-2-27b-it
meta-llama/CodeLlama-34b-Instruct-hf
meta-llama/CodeLlama-70b-Instruct-hf

(a) Results for the BERT-F1 metric

why danger how fix
Category

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

BL
EU

 S
co

re

Comparison of BLEU Scores by Model
meta-llama/CodeLlama-7b-Instruct-hf
THUDM/codegeex4-all-9b
meta-llama/CodeLlama-13b-Instruct-hf
google/gemma-2-27b-it
meta-llama/CodeLlama-34b-Instruct-hf
meta-llama/CodeLlama-70b-Instruct-hf

(b) Results for the BLEU metric

why danger how fix
Category

0.300

0.325

0.350

0.375

0.400

0.425

0.450

RO
UG

E-
1

Sc
or

e

Comparison of ROUGE-1 Scores by Model

meta-llama/CodeLlama-7b-Instruct-hf
THUDM/codegeex4-all-9b
meta-llama/CodeLlama-13b-Instruct-hf
google/gemma-2-27b-it
meta-llama/CodeLlama-34b-Instruct-hf
meta-llama/CodeLlama-70b-Instruct-hf

(c) Results for the ROUGE-1 metric

why danger how fix
Category

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

RO
UG

E-
L

Sc
or

e

Comparison of ROUGE-L Scores by Model

meta-llama/CodeLlama-7b-Instruct-hf
THUDM/codegeex4-all-9b
meta-llama/CodeLlama-13b-Instruct-hf
google/gemma-2-27b-it
meta-llama/CodeLlama-34b-Instruct-hf
meta-llama/CodeLlama-70b-Instruct-hf

(d) Results for the ROUGE-L metric

Figure 4: Results for the comparison with the baseline GPT-4o. Each image in the grid is the aggregated result for one of the
JSON keys of the generated outputs with the metrics BLEU, ROUGE-X, and BERTScore.

Table 2: Qualitative manual analysis results. The average
score represents the mean value of the manual evaluation
scores across all criteria and all five analyzed cases for each
model.

Model Average score
GPT-4o 3.9
CodeLlama 7B 3.0
CodeLlama 13B 2.7
CodeLlama 34B 3.3
CodeLlama 70B 3.0
Gemma 2 27B 3.6
CodeGeeX4 9B 3.2

scored lower. Although differences between top per-
formers and smaller models are evident, they are
not significant enough to make these smaller models
completely unsuitable. Medium-sized models, such
as CodeLlama 34B and Gemma 2 27B, performed
better, likely due to reduced quantization and fewer
memory limitations.

These results show that model size does not solely
determine performance. CodeLlama 70B did not sur-
pass mid-sized models like CodeLlama 34B using the
provided metrics, raising questions about the impact
of quantization. Better hardware resources are needed

to assess whether hardware limitations affected the
larger model’s potential.

5 CONCLUSIONS

As reliance on secure software systems grows, ad-
dressing vulnerabilities is crucial to safeguarding in-
frastructure. Traditional static and dynamic analysis
tools, while effective for detection, often lack contex-
tualized explanations needed by developers and secu-
rity practitioners. This study demonstrates how LLMs
can bridge this gap by generating structured, con-
textualized explanations for Java code vulnerabilities.
By addressing the why, danger, how, and fix dimen-
sions, the research highlights both the potential and
limitations of LLMs in this domain.

Among the evaluated models, CodeLlama 34B
performed best, particularly in generating structured
outputs with minimal formatting errors. However,
all models, including GPT-4o, struggled with provid-
ing comprehensive explanations for complex vulner-
abilities, often failing to contextualize vulnerabilities
within the provided code.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1410

A key limitation of this study lies in the inade-
quacy of BLEU, ROUGE, and BERTScore metrics
for evaluating vulnerability explanations. These met-
rics, standard in NLP tasks, fail to capture nuances
relevant to this domain. Additionally, hardware chal-
lenges, such as VRAM limitations, posed significant
obstacles during model execution, highlighting the
need for robust memory resources.

Problems Found. Various operational challenges
were observed. The Gemma-2 27B model fre-
quently encountered memory issues, requiring man-
ual restarts. Similarly, the CodeGeeX4 9B model ex-
hibited inconsistent response times, often taking ex-
cessively long to generate outputs, leading to the im-
plementation of a 150-second execution time limit.
Many models also occasionally produced unusable
outputs, such as repeated line breaks or redundant
phrases.

Future Works. Future research should focus on
fine-tuning models, though larger models will require
more memory for this process. Exploring alternative
RAG techniques and their impact on the quality of
explanations is another promising direction. Addi-
tionally, explanations, particularly the why? and fix?
components, could support tasks aimed at automating
vulnerability repair. Investigating collaborative rea-
soning techniques, where multiple LLMs interact to
produce more contextualized explanations, is another
avenue. Finally, surveying experienced programmers
for their opinions on model performance could pro-
vide valuable insights into practical applications and
user preferences.

REFERENCES

Chen, Y., Ding, Z., Alowain, L., Chen, X., and Wagner, D.
(2023). DiverseVul: A New Vulnerable Source Code
Dataset for Deep Learning Based Vulnerability De-
tection. In PROCEEDINGS OF THE 26TH INTER-
NATIONAL SYMPOSIUM ON RESEARCH IN AT-
TACKS, INTRUSIONS AND DEFENSES, RAID 2023,
pages 654–668, New York. Assoc Computing Ma-
chinery.

Fu, M. and Tantithamthavorn, C. (2022). LineVul: A
Transformer-based Line-Level Vulnerability Predic-
tion. In 2022 IEEE/ACM 19th International Confer-
ence on Mining Software Repositories (MSR), pages
608–620.

Fu, M., Tantithamthavorn, C., Le, T., Nguyen, V., and
Phung, D. (2022). VulRepair: A T5-based automated
software vulnerability repair. In Proceedings of the
30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Soft-

ware Engineering, ESEC/FSE 2022, pages 935–947,
New York, NY, USA. Association for Computing Ma-
chinery.

Hin, D., Kan, A., Chen, H., and Babar, M. A. (2022).
LineVD: Statement-level Vulnerability Detection us-
ing Graph Neural Networks. In 2022 MINING SOFT-
WARE REPOSITORIES CONFERENCE (MSR 2022),
MSR ’22, pages 596–607, Los Alamitos. IEEE Com-
puter Soc.

Hu, S., Huang, T., Ilhan, F., Tekin, S. F., and Liu, L. (2023).
Large Language Model-Powered Smart Contract Vul-
nerability Detection: New Perspectives. In 2023 5TH
IEEE INTERNATIONAL CONFERENCE ON TRUST,
PRIVACY AND SECURITY IN INTELLIGENT SYS-
TEMS AND APPLICATIONS, TPS-ISA, pages 297–
306, New York. IEEE.

Nguyen, V.-A., Nguyen, D. Q., Nguyen, V., Le, T., Tran,
Q. H., and Phung, D. (2022). ReGVD: Revisiting
Graph Neural Networks for Vulnerability Detection.
In 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 178–182.

Rozière, B. et al. (2024). Code llama: Open foundation
models for code.

Team, G. et al. (2024). Gemma 2: Improving open language
models at a practical size.

Wang, X., Hu, R., Gao, C., Wen, X.-C., Chen, Y., and Liao,
Q. (2024). Reposvul: A repository-level high-quality
vulnerability dataset. In Proceedings of the 2024
IEEE/ACM 46th International Conference on Soft-
ware Engineering: Companion Proceedings, ICSE-
Companion ’24, page 472–483, New York, NY, USA.
Association for Computing Machinery.

Wu, Y., Jiang, N., Pham, H. V., Lutellier, T., Davis, J., Tan,
L., Babkin, P., and Shah, S. (2023). How Effective Are
Neural Networks for Fixing Security Vulnerabilities.
In Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
ISSTA 2023, pages 1282–1294, New York, NY, USA.
Association for Computing Machinery.

Zhang, Q., Fang, C., Yu, B., Sun, W., Zhang, T., and Chen,
Z. (2024). Pre-Trained Model-Based Automated Soft-
ware Vulnerability Repair: How Far are We? IEEE
Transactions on Dependable and Secure Computing,
21(4):2507–2525.

Zhang*, T., Kishore*, V., Wu*, F., Weinberger, K. Q., and
Artzi, Y. (2020). Bertscore: Evaluating text generation
with bert. In International Conference on Learning
Representations.

Zheng, Q. et al. (2023). Codegeex: A pre-trained model
for code generation with multilingual benchmarking
on humaneval-x. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5673–5684.

A Study on Vulnerability Explanation Using Large Language Models

1411

