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Abstract: Autism, often known as autism spectrum disorder (ASD), is characterized by a range of neurodevelopmental 
difficulties that impact behavior, social relationships, and communication. Early diagnosis is crucial to 
provide timely interventions and promote the best possible developmental outcomes. Although well- 
established, traditional methods such as behavioral tests, neuropsychological assessments, and clinical facial 
feature analysis are often limited by societal stigma, expense, and accessibility. In recent years, artificial 
intelligence (AI) has emerged as a transformative tool. AI utilizes advanced algorithms to analyze a variety 
of data modalities, including speech patterns, kinematic data, facial photographs, and magnetic resonance 
imaging (MRI), in order to diagnose ASD. Each modality offers unique insights: kinematic investigations 
show anomalies in movement patterns, face image analysis reveals minor phenotypic indicators, speech 
analysis shows aberrant prosody, and MRI records neurostructural and functional problems. By accurately 
extracting information from these modalities, deep learning approaches enhance diagnostic efficiency and 
precision. However, challenges remain, such as the need for diverse datasets to build robust models, potential 
algorithmic biases, and ethical concerns regarding the use of private biometric data. This paper provides a 
comprehensive review of feature extraction methods across various data modalities, emphasising how they 
might be included into AI frameworks for the detection of ASD. It emphasizes the potential of multimodal 
AI systems to revolutionize autism diagnosis and their responsible implementation in clinical practice by 
analyzing the advantages, limitations, and future directions of these approaches. 

1 INTRODUCTION 

People with autism spectrum disorder (ASD), a 
complicated neurological condition, face challenges 
across various domains, including communication, 
social interaction, and environmental awareness. 
Common symptoms exhibited by individuals with 
autism include repetitive behaviors, restricted 
interests, and heightened sensitivity to sensory inputs. 
These traits may manifest as difficulty interpreting 
facial emotions, body language, and social norms. 
While autism is typically diagnosed in childhood, its 
impact extends into adulthood. With the correct 
support and early interventions, people with autism 
can lead more fulfilling lives and achieve better 
integration into society. 

Traditionally, behavioral observation and 

diagnostic instruments like the DSM (Diagnostic and 
Statistical Manual of Mental Disorders) or the Autism 
Diagnostic Observation Schedule (ADOS) have been 
used to identify autism through behavioral 
observation. While effective, these methods are time- 
consuming and require specialized expertise. New 
approaches to early and accurate autism identification 
have been made possible by recent developments in 
artificial intelligence (AI). Techniques such as 
machine learning (ML) and deep learning (DL) have 
been employed to analyze speech patterns, kinematic 
behaviors, and facial expressions. Support vector 
machines (SVMs) and convolutional neural networks 

(CNNs) are stand out for their ability to precisely 
classify and identify characteristics linked to ASD. 

One of the most promising methods for detecting 
ASD is facial image analysis. According to research, 
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CNNs are able to recognise subtle differences in 
autistic people's emotional reactions and facial 
expressions. Simultaneously, magnetic resonance 
imaging (MRI) has proven invaluable a useful 
technique for investigating brain abnormalities and 
connection patterns linked to ASD. Diffusion tensor 
imaging (DTI) and functional magnetic resonance 
imaging (fMRI) have enable detailed analysis of brain 
networks and their abnormalities in autistic people in 
great detail. By identifying abnormal patterns of gaze 
and visual attention often observed in individuals 
with ASD, eye-tracking technology have 
significantly enhanced diagnostic capabilities. 

Beyond imaging, multimodal approaches offer a 
comprehensive view of autism by integrating 
information from multiple sources, such as kinematic 
analysis, MRI scans, and facial expressions. 
Kinematic investigations, for example, have shown 
motor biomarkers that are suggestive of ASD, such as 
repeated motions. Distinct prosodic and intonational 
features that differentiate individuals with ASD from 
neurotypical populations have been identified 
through speech analysis, especially with CNNs. 
Enables a more robust and accurate diagnostic 
framework by integrating these many data sources. 

With an emphasis on developments in ML and 
DL methodologies and their application to image and 
video data, this paper methodically examines ASD 
detection techniques. The study looks at important 
indications like: 

• The accuracy of biological and behavioral 
biomarkers for early identification of ASD. 

• The effect on diagnostic accuracy of 
multimodal data integration that combines eye 
tracking, MRI, and facial imaging. 

• How sophisticated AI models, such as CNNs 
and transformers, enhance the categorisation and 
identification of symptoms of ASD in actual clinical 
situations. 

The articles were selected based on strict 
eligibility criteria. They were (i) written in English, 
(ii) focused on image or video data, (iii) related to 
autism in human populations, and (iv) utilized deep 
learning- based techniques for feature extraction or 
classification. Using keywords like autism spectrum 
disorder, ASD detection, deep learning, and federated 
learning, the search method includes queries across 
major databases like PubMed, Scopus, Springer Link, 
IEEE Xplore, and Google Scholar. This rigorous 
approach ensures that the review highlights the latest 
and most relevant advancements. 

There are six sections in our paper. An 
introduction comes first, and then a thorough 
literature review. We then discuss related research, 

introduce the databases we used, then a discussion, 
and wrap up with a summary of findings and future 
research directions. 

2 LITERATURE REVIW 

2.1 History and Definition 

The term "autism" was initially introduced by a Swiss 
psychiatrist to describe symptoms associated with 
schizophrenia, characterizing it as a form of childlike 
thought aimed at escaping reality through fantasies 
and hallucinations (Bleuler, E., 2012). Later, the term 
gained prominence through the work of Harris, J. 
(2018), who introduced it into psychiatric 
classification, describing it as a condition marked by 
social disengagement and communication 
difficulties, which he termed "Autistic Affective 
Contact Disorder". 

Kanner's work on autism led to significant debate 
regarding its classification. Initially, autism was 
considered an early form of schizophrenia and was 
classified as a psychosis in children in subsequent 
diagnostic manuals. Over time, similarities between 
autism and schizophrenia were noted, especially in 
2210 cases where individuals with autism exhibited 
symptoms of schizophrenia (Canitano, R., 2017). 

As understanding of autism improved, research 
began to differentiate it from schizophrenia based on 
symptomatic variations, family histories, and 
treatment responses. This evolution led to the 
inclusion of autism in diagnostic classifications 
(Kolvin, I., 1971). 

The classification of autism continued to evolve, 
with the term "Pervasive Developmental Disorders" 
(PDD) being used to refer to autism-like disorders. 
Specific diagnostic criteria for these disorders were 
later established (Sprock, J., 2014). The DSM-IV 
categorized PDD-NOS into several disorders, 
including Autism, Rett syndrome, Childhood 
Disintegrative Disorder, Asperger disorder, and 
Unspecified PDD (PDD-NOS) (Lewis, G., 1996). 

The most recent revisions consolidated various 
autistic disorders under the term "Autism Spectrum 
Disorder" (ASD), recognizing the continuity of 
symptoms and severity observed in individuals with 
autism. 

The primary behavioral and sensory markers 
commonly seen in kids with autism spectrum 
disorders are depicted in Figure 1. 
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Figure 1: Typical Behavioral and Sensory Indicators of 
Autism in Children. 
 

Individuals with neurodevelopmental disorders, 
such as autism and related conditions, may 
experience notable deficits in their cognitive, social, 
emotional, and behavioral development. Among 
these conditions, Rett syndrome, formerly thought to 
be a subtype of autism spectrum disorder (ASD), is 
now recognized as a distinct condition due to its 
genetic origin, although it still shares some clinical 
similarities with autism. Williams syndrome, a rare 
genetic disorder, is distinguished by characteristic 
facial features and mild to moderate intellectual 
disability. The most common hereditary cause of 
intellectual disability, fragile X syndrome, often 
manifests as autism and is widely examined in 
relation to ASD. Due to the wide range of ASD 
symptoms, most autism research does not typically 
focus on a single subtype. 

Nonetheless, certain forms of autism, such as 
high-functioning autism (formerly referred to as 
Asperger's syndrome), are the topic of more focused 
investigations, with an emphasis on those with 
normal or above-average intelligence but notable 
social challenges. The characteristics of the autism 
spectrum are also shared by other conditions, such as 
Prader-Willi syndrome, which is marked by eating 
disorders and moderate to severe intellectual 
handicap, and Angelman syndrome, which is 
recognized for its happy demeanor and motor issues. 
Additionally, some research emphasizes the 
variability of autism by accounting for the range of 
clinical symptoms within the spectrum. Finally, 
Smith-Magenis syndrome, which is marked by 
obsessive-compulsive behaviors and sleep 
disturbances is frequently studied in relation to 
emotion recognition  technologies,  especially in 
studies on the machine learning-based identification 
of autistic features. 

Individuals with autism spectrum disorders 
(ASD) often stand out due to significant differences 
in their social interactions, particularly through facial 

expressions and non-verbal behaviors. These 
differences, although subtle, play a key role in 
communication and the interpretation of emotions. 
Indeed, individuals with autism tend to display more 
neutral facial expressions, with a limited use of visual 
cues to express or interpret emotions, which 
complicates their identification. Thus, the observation 
of facial expressions and eye movements becomes a 
critical tool for understanding and diagnosing the 
early signs  of  ASD. The face features of two child 
groups are contrasted in Figure 2. Typical eye 
movements, normal face symmetry, and 
unambiguous facial expressions are characteristics 
of children without autism spectrum disease (ASD). 
Children with ASD, on the other hand, exhibit clear 
distinctions, including less coordinated facial 
expression patterns, aberrant gaze fixation, and 
diminished emotional intensity. 

 
Figure 2: The differences in facial features between 
children without autism in the first row and children with 
autism in the second row. 

2.2 Related Work General Context of 
Autism 

Numerous methods including neurological, 
behavioral, and physiological indicators are used in 
autism screening procedures. Analysing the structure 
and traits of the face is made possible by facial 
features and landmarks, which are frequently used in 
conjunction with the examination of facial 
expressions to find subtle clues of emotional 
variations. An objective and engaging way to 
measure behavioral reactions is through robot- 
evaluated systems. While methods like gaze analysis 
and eye tracking aid in the understanding of social 
interaction patterns, neurophysiological signals like 
electroencephalograms (EEGs) offer information on 
brain activity. 

Simultaneously, standardized questionnaires and 
thorough behavioral monitoring continue to be 
essential components of clinical diagnostics. Action 
analysis systems that interpret movements and social 
interactions, as well as smartphone applications that 
enable quick and easy detection, are examples of 
technological developments. Last but not least, 
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neurological tests like brain MRIs provide a 
biological perspective by detecting anatomical or 
functional changes in the brain linked to autism 
spectrum disorders. These methods, which are 
frequently combined, improve diagnosis speed and 
accuracy while opening the door to customised 
solutions. 

Autism detection in children has traditionally 
relied on careful observation of their behavior and 
comparison with established developmental reference 
tools. These tools include the Statistical Manual of 
Mental Disorders (SMD), the Autism Diagnostic 
Observation Schedule (ADOS) (Lord et al., 2000), 
the Autism Diagnostic Interview (ADI) (Lord et al., 
1994), the Autism Observation Scale Infant (AOSI) 
(Bryson et al., 2008), the Autism Spectrum Screening 
Questionnaire (ASSQ) (Ehlers et al., 1999), the 
Children's Asperger Syndrome Test (CAST) 
(Williams et al., 2005), and the .DSM-5 (Edition et 
al., 2013). This process of comparison and 
measurement requires considerable time and effort. 

In recent years, artificial intelligence (AI) has 
become increasingly important in various 
applications, particularly in the early detection and 
diagnosis of autism spectrum disorders (ASD). AI 
refers to the simulation of human cognition and 
problem-solving through intelligent systems. At the 
core of AI is ML which extracts information from 
input databases using image preprocessing 
techniques. The data is then classified or ranked using 
either supervised or unsupervised learning methods. 
Supervised learning employs classifiers such as 
support vector machines (SVMs), random forests, 
and traditional neural networks to categorize data 
based on labeled input-output pairs. 

In the medical field, deep learning (DL), a subset 
of machine learning, is gaining popularity. 
Convolutional neural networks (CNNs) are the most 
commonly used deep learning networks. There are 
fully connected and include multiple convolutional 
layers to perform tasks such as feature extraction and 
classification. Conversely, unsupervised learning 
does not rely on labeled input-output pairs, instead, it 
classifies data based on patterns within the input data 
itself. 

2.3 Related Work 

Recent advances in deep learning and machine 
learning have transformed different fields such as 
natural language processing (NLP) (Gasmi et al., 
2023, 2024), (Mezghani et al., 2024) and medical 
diagnostic practice (Mezghani et al., 2024), offering 
tools that are both accurate, fast and capable mainly 

in autism detection. Several different techniques used 
to identify autism, and each one significantly 
advances the diagnosis. Techniques like Diffusion 
Tensor Imaging (DTI) and structural MRI (sMRI), 
which examine brain connectivity and structure, as 
well as functional MRI (fMRI), which uses BOLD 
methodologies to emphasize activity and functional 
connectivity, have significantly advanced the use of 
MRI (Magnetic Resonance Imaging). The brain in 
different cognitive states can be examined thanks to 
these technologies. Finding brain biomarkers from 
MRI and EEG data has been significantly enhanced 
by ML and DL techniques. For instance, Pan et al. 
(2021) used graph convolutional networks (GCN) 
with an accuracy of 87.62%, whereas Yang et al. 
(2019) used ASSDL on MRI data and obtained an 
accuracy of 98.2%. The efficiency of these strategies 
is demonstrated by multimodal approaches, such as 
those explored by Tang et al. (2020) and cutting-edge 
techniques like the Deep Belief Network (DBN) 
optimised by the Adam War Strategy (AWSO) which 
obtained 92.4% accuracy on the ABIDE dataset. 
Furthermore, Park et al. (2023) created a model 
integrating residual CNN and Bi-LSTM with self- 
attention, which achieved 97.6% on ABIDE-I, 
whereas Wen et al. (2022) employed multi-view 
GCNs to reach an accuracy of 69.3%. 

Simultaneously, the examination of emotions and 
facial expressions provides a non-invasive way to 
identify abnormal patterns linked to ASD. The 
integration of neural networks and machine learning 
techniques has been made easier by the challenges 
that people with ASD have when it comes to 
expressing and recognising their emotions. Wu et al. 
(2021) investigated head movements and facial points 
via OpenFace, while Hassouneh et al. (2020) 
classified emotions with an accuracy of 87.25% using 
LSTM-convolutional models. In order to enhance 
emotional recognition, Cai et al., (2022) more 
recently included attention techniques. Accuracy 
ranges from 84% to 96% thanks to these efforts, 
which combine face dynamics, gazes, and emotional 
shifts with models like VGG19, MobileNet, and 
Vision Transformers (ViT). Notably, the ViTASD-L 
model was presented by Cao et al. (2023) and 
achieved 94.5% accuracy on the Piosenka dataset. 
Last but not least, privacy-preserving strategies that 
use federated learning, as those by Shamseddine et al. 
(2022), integrate behavioral and facial characteristics 
while guaranteeing the security of personal 
information. 

Emerging techniques include eye tracking, which 
examines gaze patterns to identify ASD early. The 
accuracy of techniques developed by Atyabi et al. 
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(2023) and Wei et al. (2021) that combine temporal 
and spatial information has surpassed that of earlier 
approaches. Similarly, to enhance categorisation, 
Liaqat et al. (2021) and Wloka et al. (2017) employed 
synthetic saccade models. Another potential 
technique is kinematic analysis, which uses motor 
impairments as biomarkers. 

While Prakash et al. (2023) utilised R-CNN 
models to study joint attention tasks and achieved 
93.4% accuracy, Zhao et al. (2019) employed KNN 
to analyse hand movements with an accuracy of 
86.7%. YOLO-V5 and DeepSORT were coupled by 
Ali et al. (2022) to track and categorise motions. 
Lastly, speech and language-based detection looks at 
linguistic and prosodic abnormalities that are 
commonly seen in kids with ASD. With models like 
CNNs (Ashwini et al., 2023) and SVMs (Nakai et al., 
2017), these studies take advantage of voice 
spectrograms and linguistic data, exhibiting great 
accuracy in this area because of machine learning. 

3 FEATURE EXTRACTION 

3.1 Feature Extraction for Facial 
Recognition 

Two primary types of facial features those linked to 
emotion recognition and those related to eye 
movement analysis are crucial in diagnosing autism. 
Finding distinguishing characteristics in facial 
expressions is essential in the field of emotion 
recognition in order to identify emotional states like 
happiness, sadness, or anger. For instance, Banire et 
al. (2021) used the iMotions software to extract 34 
face landmarks and utilized those cues to create 
geometric features based on Euclidean distance 
estimates. Conditional Local Neural Field (CLNF) 
models have been utilised in several studies, 
including those by Leo et al. (2018) and Del Coco et 
al. (2017), to automatically analyse the facial 
expressions of children with autism spectrum 

disorders (ASD).In order to support the prediction of 
behaviours associated with autism, sophisticated 
techniques like OpenFace (Wu et al., 2021) make it 
easier to extract key points, action units (AU), head 
positions, and gaze orientations. Furthermore, by 
extracting pertinent features, pre-trained 
convolutional neural networks like AlexNet, 
MobileNet, and Vision Transformers (ViT) (Slimani 
et al., 2024) have demonstrated efficacy in 
automatically segmenting and classifying facial 
images. Furthermore, techniques like gesture analysis 
and thermal imaging have been used to distinguish 
children with ASD from those with typical 
development (TD). 

Gaze-related traits, which frequently show 
abnormalities in children with ASD, offer important 
hints for early identification. By combining the 
temporal and spatial aspects of eye movements, 
Atyabi et al. (2023) improved this method and 
enhanced classification performance. The accuracy of 
this study was further enhanced by Wei et al. (2021) 
by integrating spatiotemporal data from gaze 
trajectories. 

Other cutting-edge studies, such as those by 
Liaqat et al. (2021) and De Belen et al. (2021), have 
either analyzed fixation sequences to find anomalies 
or converted eye-tracking data into visual 
representations. Additionally, recent research has 
concentrated on emotional states like boredom or 
dissatisfaction or on dynamic social interactions, 
including head movements and eye contact (Chong et 
al., 2017). 

A schematic of models for autism detection that 
concentrate on feature extraction from facial images 
is shown in Figure 3. 

3.2 Feature Extraction for Kinematic 
Analysis 

Certain motor biomarkers can help diagnose autism 
spectrum disorders (ASD) more precisely.  
Attention problems are often linked to complex motor, 
 

 
Figure 3: Diagram of models for autism detection. 
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patterns including head motions, arm flapping, finger 
trembling, and body shaking. Children with autism 
may exhibit repetitive behaviors, such as shaking 
their heads. Currently, motor deficits are considered 
associated characteristics that lend credence to the 
ASD diagnosis. According to recent studies, a better 
comprehension of the motor deficits associated with 
ASD could lead to for novel approaches to diagnosis 
and treatment. 

Patients with ASD can be differentiated from 
those with typical development (TD) using kinematic 
data. 20 kinematic features were derived from hand 
gestures using kinematic analysis in a study with 16 
participants with ASD and 14 with TD (Li et al., 
2017). Eight noteworthy characteristics were found 
when these parameters were tested using the Naive 
Bayes approach. Four methods were tested: Support 
Vector Machine (SVM, both RBF and linear), 
Random Forest, Decision Tree, and Naive Bayes. 
SVM and Naive Bayes fared better than the other 
algorithms, according to the results, with the linear 
SVM showing the best results with 86.7% accuracy, 
87.5% specificity, and 85.7% sensitivity. 

Using machine learning techniques such as SVM, 
LDA, Decision Tree, Random Forest, and K-Nearest 
Neighbors (KNN), Zhao et al. (2019) enhanced the 
diagnosis of ASD. Twenty-five children with high- 
functioning autism and twenty-three typically 
developing children participated in the study and 
completed a variety of motor tasks. As markers of 
limited kinematic properties, the researchers 
computed the entropy and range of 95% of the 
motion's amplitude, speed, and acceleration. With 
88.37% precision, 91.3% specificity, 85% sensitivity, 
and an area under the curve (AUC) of 0.8815, the 
KNN approach (k = 1) outperformed the other five 
classifiers in terms of classification accuracy. 

An important development in the assessment of 
autism was the creation of the Autism Diagnostic 
Observation Schedule (ADOS) by Lord et al. (2006). 
This method looks for behavioral indicators of autism 
by utilising unstructured observation tasks to look at 
how kids react to various situations. 

3.3 Feature Extraction for MRI 

A key tool in the research of autism spectrum disorder 
(ASD) is MRI, which provides unmatched insights 
into the structure and function of the brain and enables 
the identification of neurological biomarkers linked 
to the disorder. 

Both structural and functional neuroimaging data 
have been widely used in recent studies on the 
diagnosis of autism spectrum disorder (ASD), and 

feature extraction is essential to processing and 
interpreting these datasets for machine learning 
applications. Structural imaging techniques, such as 
diffusion tensor imaging (DTI) (Travers, 2012) and 
sMRI (Dekhil, O., 2020) are two structural methods 
that reveal anomalies linked to ASD by shedding light 
on brain connectivity and morphology. By using 
blood oxygenation level-dependent (BOLD) 
approaches to analyse brain activity and functional 
connectivity, functional magnetic resonance imaging 
(fMRI) enhances these investigations. Researchers 
may examine how the brain functions in different 
cognitive states using both task-based and resting- 
state fMRI (rsfMRI). 

The diagnosis of ASD has greatly improved with 
the use of ML algorithms in conjunction with 
neuroimaging data. For example, BOLD signals can 
yield valuable information when functional MRI is 
used in conjunction with methods like the General 
Linear Model (GLM) and Independent Component 
Analysis (ICA). Furthermore, the application of ML 
and DL techniques to EEG and MRI signals makes it 
easier to identify biomarkers linked to ASD, 
including regional cortical thickness, grey matter 
volume, and white matter (WM) volume. Studies like 
Yang et al. (2019), which used ASSDL methods to 
obtain a 98.2% accuracy on MRI data, and Pan et al. 
(2021), which claimed an 87.62% accuracy with 
graph convolutional networks (GCNs), serve as 
examples of these developments. 

Researchers improve the accuracy and 
dependability of diagnosing ASD by customising 
feature extraction methods to the unique properties of 
MRI data, illustrating the interaction between cutting- 
edge imaging technology and complex computational 
methods. 

3.4 Feature Extraction for Speech and 
Language 

Many children with autism spectrum disorder (ASD) 
struggle greatly with speech and language 
comprehension, which frequently leads to ongoing 
communication problems or no communication at all 
after the age of two. These children may repeat words 
or phrases without completely understanding their 
meaning, and their voices may have an odd pitch or 
rhythm when they do talk. A toddler may count from 
one to five several times during a conversation that 
has nothing to do with numbers, demonstrating how 
speech can occasionally seem divorced from 
conversational context. Many autistic children also 
display echolalia, which is the immediate or delayed 
repetition of previously heard words or phrases, 
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frequently accompanied by irrelevant enquiries. 
Some autistic kids start conversations with cliches, 
even with people they know, while others sing, talk 
too much, or have a robotic voice. Another prevalent 
trait is repetitive speech patterns. 

These abnormal speech and language 
characteristics linked to ASD have motivated 
researchers to investigate machine learning (ML) 
methods for assessment and classification, with 
encouraging outcomes. Using 24 fundamental 
frequency (F0)-based variables to measure pitch, 
Nakai et al. (2017) used a Support Vector Machine 
(SVM) to analyse single-syllable utterances in both 
neurotypical (NT) and autistic participants, 
outperforming traditional speech-language 
pathologists in terms of accuracy. 

In a similar vein, Hauser et al. (2019) classified 
ASD in people between the ages of 18 and 50 using a 
linear regression model with 123 audio features, with 
a weighted accuracy of 0.83. SVMs were used by Lau 
et al. (2022) to examine intonation and rhythmic 
patterns in English and Cantonese speech, finding 
that rhythmic features were only important in English. 

Advanced approaches like Random Forests and 
Convolutional Neural Networks (CNNs) have 
significantly enhanced classification performance 
beyond conventional machine learning techniques. A 
CNN trained on spectrograms improved accuracy to 
0.79. Plank et al. (2023) achieved a balanced accuracy 
of 0.76 by using L2-regularized SVMs on phonetic 
data that was extracted using the Praat tool. By 
training SVM models on transcripts that contained a 
variety of language variables from both NT and 
autistic children, Ashwini et al. (2023) were able to 
reach an impressive accuracy of 0.94. 

Liu et al. (2022) extended this study by looking 
into transformer-based models to find linguistic 
patterns unique to ASD. The study used written 
transcripts of adult conversations captured during 
collaborative tasks and discovered that transformer 
models performed noticeably worse for participants 
with ASD than for those without ASD, indicating a 
difficulty in representing the aberrant language of 
autistic people. This disparity was ascribed to biases 
in the training data, which were mostly drawn from 
online and news sources and did not accurately 
represent the distinct social-linguistic techniques used 
by people with ASD. 

These results highlight how machine learning and 
deep learning techniques can be used to identify and 
decipher the complex speech and language traits of 
ASD, opening the door to more precise and non- 
invasive diagnostic instruments. 

3.5 A Multimodal Approach for 
Enhanced Feature Extraction 

People with ASD have abnormal gaze patterns, such 
as avoiding eye contact and having different joint 
attention in social situations, in addition to 
neurological abnormalities. The direct measurement 
of gaze behaviors and directed visual activities is 
made possible by eye-tracking technology (ET), 
which has been extensively employed in research on 
attention allocation in individuals with ASD. 
According to Nakano et al., (2010), for instance, 
children with ASD spend less time observing faces 
and social interactions than children who are 
normally developing. Using an ET dataset, Liu et al., 
(2016) created a machine learning framework that 
could classify children with ASD and TD with up to 
88.51% accuracy. 

In research on ASD, electroencephalogram (EEG) 
and ET have been used separately to find useful 
biomarkers and create diagnostic models with 
cutting-edge machine learning techniques. However, 
it is challenging to make a reliable diagnosis using 
only unimodal data, like EEG or ET, because ASD is 
complex and heterogeneous, showing up at both the 
behavioral and cellular levels. Despite having 
different viewpoints while ET captures behavioral 
information and EEG reflects neurophysiological 
activity these two modalities provide rich and 
complementing data on ASD. However, it can be 
difficult to directly identify the underlying 
correlations and complementarities due to the 
diversity of the data. 

To address this challenge, multimodal fusion 
emerges as a promising solution. This approach, 
which has garnered increasing interest in the medical 
field, has been applied not only to the diagnosis of 
ASD but also to other diseases such as Parkinson's, 
Alzheimer's, and depression. For example, Alexandru 
et al., (2018) integrated EEG, fMRI, and DTI data to 
characterize the autistic brain, while Mash et al., 
(2020) explored the relationships between fMRI and 
EEG in spontaneous brain activity related to ASD. 
Recent work, such as that of Vasquez-Correa et al., 
(2019), has shown that the fusion of multimodal data 
can fully exploit the strengths of each modality while  
compensating for their weaknesses, resulting in 
improved diagnostic performance. Han et al., (2022) 
combine electroencephalogram (EEG) and eye- 
tracking data (ET) to present a novel multimodal 
diagnostic approach for detecting autism spectrum 
disorders (ASD) in children. Stacking denoising 
autoencoders (SDAE) are used in this method to learn 
and fuse features from both modalities. 
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This approach, which was tested on a dataset that 
included 40 children with ASD and 50 normally 
developing (TD) children, shows how 
neurophysiological (EEG) and behavioral (ET) 
perspectives complement each other. It achieved an 
overall accuracy of 95.56%, with a sensitivity of 
92.5% and a specificity of 98%. When compared to 
unimodal and basic techniques, the experimental 
findings demonstrate a substantial improvement, with 
multimodal fusion enabling better separation of 
ASD/TD groups. 

A diagram showing the various deep learning 
(DL) techniques examined in this review is shown in 
Figure 4. 
 

 
Figure 4: Diagram of diferents DL/ML-based approaches 
considered in this review. 

4 DATASETS 

In this part, we examine in depth the different 
databases public and private that are crucial to autism 
research, emphasising their content, unique features, 
and contributions to the development of autism 
spectrum detection and analysis methods. 

4.1 MRI Datasets 

Significant disparities between people with ASD and 
neurotypical participants can be identified thanks to 
magnetic resonance imaging (MRI), a non-invasive 
technique that creates three-dimensional anatomical 
pictures. The Autism Brain Imaging Data Exchange 
(ABIDE) (Di Martino et al., 2014, 2017) has collected 
structural and functional brain imaging data from labs 
worldwide in order to better understand the 
neurological underpinnings of autism. Two 
significant collections that are the outcome of this 
effort are ABIDE I and ABIDE II. The initial version 
of ABIDE I, which was released in 2014, combined 

information from 17 different countries, comprising 
1,112 resting-state functional MRI (rs-fMRI) 
recordings with 539 participants with ASD and 573 
neurotypical people between the ages of 7 and 64. A 
more varied sample, consisting of 1,044 records, 
including 487 participants with ASD and 593 
neurotypical people, was added to the collection by 
ABIDE II in 2017. Researchers can use these 
databases as a useful resource to investigate the 
neurological underpinnings of autism. 

4.2 Visual Datasets 

1Face and eye tracking datasets are essential for 
identifying autism. Eye movement data from 28 
children (with ASD and TD) was gathered using the 
Tobii T120 eye tracker from 300 different visual 
stimuli and is included in the Saliency4ASD (Duan et 
al., 2019b). Chong et al. (2017) annotated 2 million 
video images of 100 youngsters interacting with 
adults to identify gaze, while Carette et al. (2018) 
created a set of 547 photos translating dynamic eye 
movements. In terms of facial data, Shukla et al. 
(2017) gathered 1,126 facial images labelled by age 
and gender, and Leo et al. (2018b) gathered videos of 
17 kids displaying a range of emotions. Lastly, with 
2,540 training images and a standardised reference 
protocol, the Autism Facial Image Dataset (AFID) 
(Piosenka, 2021) continues to be the only publicly 
available database devoted to autism research using 
facial images. These varied datasets provide a 
valuable foundation for developing more precise and 
reliable diagnostic tools. Once more, Rani, (2019) 
gathered 25 pictures of people with ASD with four 
different emotions (angry, neutral, sad, and cheerful) 
from various online sources for their study. 

4.3 Skeleton Datasets 

The 2D/3D coordinates of the human joints make up 
skeleton data. 136 participants with evenly dispersed 
ASD and TD were included in a video collection of 
social interaction created by Kojovic et al. (2021). 
Later, they use OpenPose to extract the essential 
elements from videos (Cao et al., 2017). 

4.4 Multi Modal Datasets 

Simple but frequently constrained by noisy data and 
poor accuracy are unimodal systems, which employ a 
single feature or modality to identify or assess autism 
spectrum disorders (ASD) (Uddin et al., 2017). Multi- 
modal data, which combines multiple sensor and 
feature kinds, has been introduced to address these 
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issues. For instance, 128 children between the ages of 
5 and 12 participated in 152 hours of multi-modal 
interactions (audio, depth, and video) through robot 
or adult-assisted activities in the De-Enigma dataset 
(Shen et al., 2018). Similar to this, the DREAM 
dataset (Billing et al., 2020) records 300 hours of 
robot-assisted therapy for 61 children with autism. 3D 
skeletons and metadata (such as age, gender, and 
diagnosis) are extracted using RGB and RGBD 
cameras. Additional datasets include those of Zunino 
et al. (2018), which consists of 1,837 recordings of 40 
children (autistic and neurotypical) doing gestures in 
particular tasks, and Cai et al. (2022), which 
examines videos of 57 children with ASD and 25 
neurotypical children based on facial and movement 
traits. Finally, to categorise repetitive behaviors like 
spinning or flapping of the arms, the SSBD 
(Rajagopalan et al., 2013) gathers 75 videos from 
public platforms. The diagnosis of ASD and 
behavioural analysis are made more accurate and 
diverse by using multi-modal datasets. 

5 DISCUSSION 

The various feature extraction techniques used to 
diagnose autism spectrum disorder (ASD)—
including facial recognition, kinematic analysis, MRI, 
speech a n d  language, multimodal data, and others—
emphasize how difficult it is to capture the complex 
character of ASD. With machine learning techniques 
like SVM and KNN attaining noteworthy 
classification accuracies of up to 88.37% (Zhao et al., 
2019), kinematic analysis reveals motor biomarkers. 
However, small sample sizes highlight the necessity 
for more datasets to improve generalisation. With 
sophisticated approaches like graph convolutional 
networks reaching accuracies over 98%, MRI 
techniques that make use of diffusion tensor imaging 
(DTI) and functional MRI (fMRI) offer vital insights 
into structural and functional abnormalities (Pan et 
al., 2021). Similar to this, despite difficulties with 
cultural heterogeneity and data biases, machine 
learning methods such as CNNs can achieve up to 
94% accuracy in speech and language feature 
extraction, revealing linguistic patterns unique to ASD 
(Ashwini et al., 2023). Although integration 
complexity is still a problem, multimodal approaches 
such as merging EEG and eye-tracking data have 
shown greater diagnostic performance, with fusion 
techniques obtaining accuracies of 95.56% (Junxia et 
al., 2022). In the meantime, facial recognition 
leverages sophisticated deep learning models like 
Vision Transformers and tools like iMotions to 

improve diagnostic accuracy by analysing eye 
movements and emotions. Even though these 
approaches have a lot of potential, issues with 
scalability and accessibility, as well as ethical 
concerns about data protection, need to be addressed. 
In order to increase the precision and dependability of 
ASD diagnosis, these findings collectively highlight 
the necessity of interdisciplinary cooperation and the 
creation of strong, affordable, and morally sound 
multimodal diagnostic frameworks. 

6 CONCLUSION 

Our review of the literature focusses on various 
feature extraction techniques and highlights 
important advancements in the field of autism 
identification. Among the approaches studied are 
deep learning models, machine learning algorithms, 
and conventional image processing techniques. The 
ability of deep learning models to extract important 
and complex aspects from a range of data, such as eye 
movements, facial expressions, and brain signals, has 
made them particularly promising. 

However, problems persist in spite of these 
advancements, particularly in the areas of accuracy, 
model generalisation, and participant privacy 
protection. Despite their significance, the size and 
diversity limitations of the current datasets make it 
difficult to build robust and inclusive models. 

Using techniques like federated learning could be 
a good solution for further study. This approach 
would improve the security of sensitive data by 
allowing models to be trained on decentralised data by 
utilising information from several sources. 
Furthermore, the use of multimodal data for example, 
integrating facial, ocular, and brain signals could 
significantly improve model performance by 
capturing complementary information. 

By paving the way for more inclusive, secure, and 
reliable detection systems, these perspectives 
contribute to our growing understanding and support 
of autism. 
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