When Are 1.58 Bits Enough? A Bottom-up Exploration of
Quantization-Aware Training with Ternary Weights

Jacob Nielsen®?, Lukas Galke®" and Peter Schneider-Kamp®*

Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

Keywords:

Abstract:

Quantization, Quantization-Aware Training, Graph Neural Networks, Text Classification, Language Models.

Contemporary machine learning models, such as language models, are powerful, but come with immense re-

source requirements both at training and inference time. Quantization aware pre-training with ternary weights
(1.58 bits per weight) has shown promising results in decoder-only language models and facilitates memory-
efficient inference. However, little is known about how quantization-aware training influences the training
dynamics beyond such Transformer-based decoder-only language models. Here, we engage in a bottom-up
exploration of quantization-aware training, starting with multi-layer perceptrons and graph neural networks.
Then, we explore 1.58-bit training in other transformer-based language models: encoder-only and encoder-
decoder models. Our results show that in all of these settings, 1.58-bit training is on par with standard 32/16-bit
models, yet we also identify challenges specific to 1.58-bit encoder-decoder models. Our results on decoder-
only language models hint at a possible regularization effect introduced by quantization-aware training.

1 INTRODUCTION

Large Language Models (LLMs) have dominated
the field of natural language processing in recent
years (Vaswani et al., 2017; Brown et al., 2020; Wei
etal., 2022). However, LLMs come with deployments
obstacles, especially regarding memory use, latency,
and throughput and considerations regarding LLM’s
environmental impact in terms of energy consumption
are threatening their uptake (Bommasani et al., 2021;
Schwartz et al., 2020).

Post-training quantisation methods have been pro-
posed, including but not limited to, Generative Pre-
trained Transformer Quantization (Frantar et al.,
2023) and Activation-aware Weight Quantization
(Lin et al., 2024). Post-training quantization has also
been employed in other domain such as computer vi-
sion (Li and Gu, 2023). However, post-training quan-
tization inherently comes with a decrease in perfor-
mance.

An alternative to post-training quantization is
quantization-aware training such as LLM-QAT (Liu
et al., 2023¢) and QA-LoRA (Xu et al., 2023). Here,
the quantized weights are subject to training such that

https://orcid.org/0009-0009-8141-630X
@ https://orcid.org/0000-0001-6124-1092
¢ https://orcid.org/0000-0003-4000-5570

1440

Nielsen, J., Galke, L. and Schneider-Kamp, P.

there is no decrease in performance when the quan-
tized model is then usedfor inference. Recent works
on 1-bit (Wang et al., 2023) and 1.58-bit (Ma et al.,
2024) quantization-aware training architectures have
demonstrated the potential of training in a low-bit pre-
cision while maintaining most of the LLM’s perfor-
mance.

The 1.58-bit quantization-aware training architec-
ture introduced in BitNet b1.58 (Ma et al., 2024)
quantizes the weights of linear layers to the values
—1, 0, or 1 during forward passes. It has been shown
to yield only minimal performance decrease in 3B+
parameter LLMs. Building on this, recent work sug-
gests that 1.58-bit training is promising for multi-
modal architectures (Sundaram and Iyer, 2024) and
spiking language models (Bal et al., 2024). Investi-
gating this b1.58 training scheme in small vision and
language models (ranging from 100K to 48M pa-
rameters), Nielsen and Schneider-Kamp (2024) iden-
tify scaling laws between 16-bit and 1.58-bit train-
ing, showing that 1.58-bit can achieve similar perfor-
mance to 16-bit training, even on these small lower-
capacity networks. Furthermore, they show that em-
ploying the median (as a basis for quantization and
rescaling) instead of the mean achieves even better
performance in some settings.

However, bl1.58 architectures and training
schemes still pose numerous unanswered questions,

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights.

DOI: 10.5220/0013382400003890
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 17th International Conference on Agents and Atrtificial Intelligence (ICAART 2025) - Volume 3, pages 1440-1449

ISBN: 978-989-758-737-5; ISSN: 2184-433X

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights

which require further investigation of its poten-
tial and limitations. Here, we investigate 1.58-bit
quantization-aware training in a bottom-up manner,
starting from the classic exclusive-or (X-OR) task
and non-transformer architectures such as multi-layer
perceptrons and graph neural networks. We further
fill a gap in the literature by analyzing 1.58-bit
quantization-aware training for encoder-only and
encoder-decoder transformer-based language models,
complementing prior work on decoder-only language
models.

Our results suggest that 1.58-bit weights can be
employed as a drop-in replacement for Linear layers
in a multitude of model architectures with no to mini-
mal loss in performance. We find that in encoder-only
language models, commensurate accuracy with 16-bit
models can be obtained by increasing the hidden size
throughout the model. However, we also find that
encoder-decoder transformer models, such as in 1.58-
bit variants of TS (Raffel et al., 2020), yield lower
performance than their 16-bit counterparts.

In summary, our contributions are as follows:

* A bottom-up exploration of 1.58-bit quantization-
aware training, ranging from the X-OR problem
and 1.58-bit multi-layer perceptrons for text clas-
sification to 1.58-bit graph neural networks for
node classification (Section 3).

* Experiments on 1.58-bit encoder-only language
models showing that an increase in model capac-
ity can compensate for the lower bit precision —
yet sub-proportionally to the decrease in bit width
(Section 4.1).

» Experiments on 1.58-bit encoder-decoder lan-
guage models showing that these models suffer
more from 1.58-bit training and struggle to reach
the performance of 16-bit. (Section 4.2).

2 BACKGROUND: b1.58
QUANTIZATION

We recapitulate the basics of 1.58-bit quantization
proposed by Nielsen and Schneider-Kamp (2024),
which generalizes the one from (Wang et al., 2023).
The core of the 1.58-bit quantization scheme is to
introduce a drop-in replacement for the Linear lay-
ers in common machine learning frameworks such
as PyTorch, which we denote as BitLinear. Dur-
ing training, the BitLinear layer retains 16-bit shadow
weights. During the forward pass, the shadow
weights are quantized to 1.58-bit precision which cor-
responds to ternary weights: {—1,0,1}. During the
backward pass, the shadow weights are optimized via

the straight-through estimator (Bengio et al., 2013).
Because forward passes are always conducted with
quantized weights, we can drop the shadow weights
when training concludes, using solely the ternary
weights during inference.

The computation flow of a BitLinear layer fol-
lows a five-step procedure: First, the activations
are normalized via a parameter-free LayerNorm (Ba
et al., 2016), denoted here as [for input / .

Second, the layer normalized activations are quan-
tized to k-bit precision (usually & = 8) via AbsMax
quantization. We first calculate a scaling factor xgcy1e
such that xgge = m, where Q) = 281 is the
range of the k bits used for the quantized activa-
tions and € is a small positive value preventing zero-
division. This ensures that all activations can be
scaled to integer values {—Qp,...,Qp — 1}. We then
employ AbsMax quantization on the activations as
follows:

Xquant = Max(—Qp, min(Qp, — l,round(i “ Xscale))

Third, the 16-bit shadow weights W € R™™ are
scaled and quantized to a ternary system of integer
values in {—1,0,1} (corresponding to 1.58 bits per
weight through a generic AbsMeasure quantization
method (Nielsen and Schneider-Kamp, 2024). For
this, we calculate a second scaling factor wycye =
W(\WDH’ where Measure denotes either the
mean or median function. The quantized weights
Wuane can then be derived as:

Wuant = max(—1, min(1,round(W - wycare))

Fourth, having quantized both activations and
weights, we can conduct a forward pass with Xgyan
and Wgyant:

Yquant = Xquant * Waquant +b

where b is an optional bias term. To fully exploit
the positive impacts on memory use, latency, and
throughput, the forward pass ought to be carried out
by a specialized kernel using bit-level operations.

We detach both Xquane and Wquane from the compu-
tation graph to facilitate a straight-through estimation
of the gradients. The gradients will then be estimated
with respect to the shadow weights, i.e., the 16-bit
weights that were quantized via AbsMeasure in step
3.

Lastly, the result of this linear transformation is
rescaled with the scaling factors xgcale and wyeale from
steps 2 and 3, respectively. Thus, to calculate the
layer’s final output y, we rescale y as follows:

Yquant

Wscale * Xscale

1441

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

3 BitNet IN NON-TRANSFORMER
MODELS

Prior work on BitNet quantization has predominantly
focused on analyzing transformer models (Wang
et al., 2023; Ma et al., 2024; Nielsen and Schneider-
Kamp, 2024). Here, we ask to what extent
quantization-aware training is a feasible strategy for
neural networks in general. We engage in a bottom-
up exploration, starting from the popular X-OR prob-
lem and a minimalist BitNet model, then advance to
BitNet in multilayer perceptrons to carry out text clas-
sification from a bag-of-words representation, and, fi-
nally, explore BitNet for graph neural networks.

3.1 Can 1.58-bit Models Solve X-OR?

To better understand the dynamics of 1.58-bit train-
ing, we explore the X-OR problem, in which the
model needs to learn the function of exclusive-or:
Given two binary inputs, the task is to output 1 when
exactly one of the inputs is 1 and O otherwise. The
X-OR-problem is particularly interesting because it
is known that it cannot be solved by a purely linear
model and requires at least one hidden layer with a
non-linear activation.

In theory, ternary weights as in BitNet are suf-
ficient to solve X-OR. One possible solution would
be to have a two hidden units, one assigning a posi-
tive weight to the first input and a negative weight to
the second, and vice-versa for the second hidden unit:
hy = ReLU(x; —x;) and hy = ReLU(x; —x;). The
output layer would then have two positive weights
y = hy + hy, solving the X-OR problem. Whether
these weights can be learned from data is a question
subject to experimentation.

Setup. We set up the basic X-OR-problem, while
adding two extra noise inputs which do not affect
the output and ought to be ignored (e.g., by assign-
ing weight zero). We are interested whether a BitNet
model with a single hidden layer, i.e., two BitLin-
ear layers with an intermediate ReL.U activation, can
learn a perfect solution to the X-OR problem while
ignoring the noise inputs. The weight range is set to
1.58 bits (-1, 0, or 1), the activation range is 8 bits.
We train for 1k epochs on 5k examples with 4 fea-
tures, two of which determine the target X-OR out-
put. The learning rate is set to 0.01 unless noted oth-
erwise. Optimization is carried out by Adam (Kingma
and Ba, 2015) to minimize cross-entropy with the X-
OR ground truth.

1442

Results. A standard MLP with one hidden layer of
two hidden units solves X-OR. BitNet variants with
two hidden units do not find a solution.

With 8 hidden units, and the mean quantization
scheme, AbsMean, the model finds a perfect solution
(100% accuracy) with exactly 4 nonzero parameters
on the input layer and, in particular, all zero weights
on the noise inputs. However, with the median weight
quantization (AbsMedian), the model did not find a
solution with 8 hidden units, converging at accuracy
86.8%. The L1 norm of the X-OR input weights was
12 (out of 16) and the L1 norm of the noise input
weights was 8 (out of 16).

When we increase the number of hidden units to
16, AbsMedian found a solution with perfect accu-
racy at the end of training, but the trajectory during
training was unstable. The L1 norm for X-OR input
weights was 24. The L1 norm for noise input weights
was 17. Output layer L1 norm 26 (out of 32).

With 32 hidden units, AbsMedian found a perfect
solution (100% accuracy) with less fluctuation on the
trajectory. The L1 norm of the weights for X-OR in-
puts was 51 (out of 64). The L1 norm of the noise-
input weights was 28 (out of 64). The L1 norm of the
output layer was 50 (out of 64).

Going back to 8 hidden units, but larger learning
rate (0.1), AbsMedian also finds a 100% accurate so-
Iution. The L1 norm of weights for X-OR inputs was
12 (out of 16), while the L1 norm of weights for noise
inputs: 5 (4 of them negative). The hidden-to-output
layer had all non-zero weights (L1 norm of 16).

The bias parameters seemingly help to ignore
parts of the inputs together with ReLU activation.
Note, when the weights for the noise inputs are neg-
ative, the bias term needs to compensate such that
the noise inputs do not distort the sum with the X-
OR inputs. Both AbsMean and AbsMedian managed
to solve the X-OR problem. However, AbsMedian
needed either a larger learning rate or a higher amount
of hidden units.

3.2 BitNet in Multilayer Perceptrons

Next, we investigate to what extent a 1.58-bit multi-
layer perceptron model can learn to categorize texts
based on bag-of-words features.

Setup. We use the same setup as a recent work on
text classification (Galke and Scherp, 2022), where
a wide multilayer perceptron (WideMLP) on a bag-
of-words representation had shown good results. We
train two BitNet variants (WideMLP-b1.58-mean and
WideMLP-b1.58-median) of the WideMLP baseline.
The first layer of the WideMLP model is implemented

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights

Table 1: Text Classification: A wide multi-layer perceptron on a bag-of-words (WideMLP) compared to corresponding Bit-
Net variants WideMLP-b1.58-mean and WideMLP-b1.58-median. WideMLP baseline results taken from Galke and Scherp

(2022).
Method 20ng RS R20 ohsumed MR Average
WideMLP baseline 83.31 97.27 93.89 63.95 76.72 83.03
WideMLP-b1.58-mean Ir=10"3 79.89 9740 93.54 60.75 77.10 81.74
WideMLP-b1.58-median Ir=10"3 80.08 97.35 94.20 62.28 76.14 82.01
WideMLP-b1.58-median Ir=10"> 81.74 96.80 93.69 62.73 76.22 82.24

as an embedding layer to avoid large matrix multipli- Results. Table 2 shows the results. For both GCN

cations with the dimensions of the vocabulary size.
Therefore, we quantize only the hidden-to-output
layer of the two-layer architecture. Nevertheless,
this leads to the interesting question of how quan-
tized fully-connected layers cope with non-quantized
embedding layers. We use 5 standard benchmark
datasets: 20ng, R8, R52, ohsumed, and MR — four be-
ing topic classification and MR being sentiment clas-
sification. As in WideMLP, we train for 100 epoch
with batch size 16.

Results. As shown in Table 1, WideMLP-b1.58-
mean achieves 98.4% of WideMLP’s performance
(unweighted average over datasets). WideMLP-
b1.58-median achieves 98.8% of WideMLP perfor-
mance. With a learning rate of 10~2, WideMLP-
bl.58-median attains 99.0% of the WideMLP base-
line performance.

3.3 BitNet in Graph Neural Networks

We seek to understand how BitNet affects graph
representation learning. We evaluate 1.58-bit vari-
ants of graph convolutional networks (GCN; Kipf
and Welling, 2016) and simplified graph convolution
(SGC; Wu et al., 2019) on three commonly used cita-
tion datasets to evaluate node classification in graphs:
Cora, Citeseer, Pubmed under the split by Yang et al.
(2016): using only the labels of 20 nodes per class for
training.

Setup. As base graph neural network models, we
use a 2-layer ReLU-activated GCN and an SGC
model with 2-hop neighborhood aggregation. In both
models, we substitute the linear layers with BitLinear
(2 for the GCN, and 1 for SGC). We then experiment
with mean and median weight quantization. All mod-
els are trained for 100 epochs with learning rate 0.01.
We report mean accuracy and 95% confidence inter-
vals across 10 repetitions.

and SGC, the bl.58-mean and bl.58-median vari-
ants yield accuracy scores very close to their full-
precision counterparts and even higher accuracy in
some cases: SGC-b1.58-median on Cora and GCN-
b.158-mean on Citeseer. On the unweighted averaged
over all three datasets, GCN-b1.58-median achieves
98.8% relative performance to GCN and SGC-b1.58-
median achieves 98.5% of SGC’s performance.

3.4 Summary and Interim Discussion

What can we learn from this set of experiments? In
the toy X-OR setting, we found that BitNet mod-
els need a higher number of parameters, or a higher
learning rate — as also suggested by prior work on
BitNet (Wang et al., 2023). However, in practical
settings, such as text classification and node classi-
fication, BitNet variants yield almost the same per-
formance as their respective baselines — even without
increasing the learning rate or the number of model
parameters. We hypothesize that this is due to suffi-
cient overparameterizion.

The experiments with the SGC-b1.58 models
show higher standard deviations, when compared to
the GCN-b1.58 models. A potential reason is that
SGC employs a linear mapping from neighborhood-
aggregated features to classes, which could lead to
higher variability as the model has less opportunities
to compensate for the reduced precision.

As for the difference between mean and median
quantization schemes, we find that both options lead
to similar performance. In the following, we will pro-
ceed with the median option only.

4 BitNet IN TRANSFORMERS

We now move to transformer-based language mod-
els including encoder-only, encoder-decoder, and
decoder-only transformer architectures employing
BitLinear layers with the AbsMedian quantization for
1.58-bit weights and AbsMax quantization for 8-bit

1443

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

Table 2: Node classification. Mean accuracy over 10 runs with 95% confidence intervals. Graph convolutional networks
(GCN) and Simplified Graph Convolution (SGC) compared to their BitNet variants (*-b1.58-mean and *-b1.58-median).

Method Cora Citeseer Pubmed Avg.
GCN baseline 7857+049 63.76+£048 76.02+0.19 72.78
GCN-b1.58-mean 76.03£0.50 65.83+045 73.51+047 71.79
GCN-bl.58-median 75.76£0.32 65.60+0.65 74.42+0.39 71.93
SGC baseline 77.07+£0.15 63.66+0.18 75.63+0.08 72.12
SGC-b1.58-mean 77.31£0.38 59.31+1.82 75.224+0.33 70.61
SGC-b1.58-median 77.46+0.75 61.31+£1.90 74.42+0.26 71.06

activations. We will show that the performance of
b1.58 in encoder-only architectures align with previ-
ous results on decoder-only architectures, but that this
does not hold for the encoder-decoder architecture.

4.1 Encoder-Only Language Models

Here, we experiment with 1.58-bit variants of the
encoder-only model BERT (Devlin et al., 2019).

Setup. We employ the Cramming framework
(Geiping and Goldstein, 2023) and the crammed-
BERT architecture' with the bert-o4 config? provided
by the framework to standardize our experiments. As
such, we use a learning rate of 1073, AdamiW-optimizer
(Loshchilov, 2017) and a batch size of 8192. We train
for masked language model objective with the default
masking probability of 25%. We experiment with dif-
ferent hidden sizes for the 16-bit and 1.58-bit models.

Motivated by low-resource language modeling,
the experiments are conducted with a dataset consist-
ing of approximately 80% Danish texts mixed with
20% equal amounts of Norwegian, Swedish, Ger-
man, and English over 6.2 million documents, tok-
enized into 517M tokens with BERT tokenizer (Wu
et al., 2016), and into 403M tokens for T5’s tok-
enizer (Kudo, 2018). The dataset is collected from
high quality text sources and split into train and vali-
dation sets balanced equally from data sources. Due
to copyright restrictions and usage agreements, the
dataset cannot be published.

Results. We compare the performance of 16-bit and
1.58-bit training in Figures 1a and 1b. Encoders scale
as outlined by prior work, needing approximately
twice the hidden layer size to achieve performance
comparable to 16-bit versions. For instance, a hid-
den layer size of 384 in b1.58 archives performance

Uhttps://github.com/JonasGeiping/cramming/blob/
main/cramming/config/arch/crammed-bert.yaml

Zhttps://github.com/JonasGeiping/cramming/blob/
main/cramming/config/train/bert-o4.yaml

1444

similar to hidden size of 192 in 16-bit. This trend is
observed across other pairs of hidden sizes, e.g., 768
and 384 as well as 1536 and 768.

4.2 Encoder-Decoder Language Models

Next, we investigate the impact of 1.58-bit training on
TS5 (Raffel et al., 2020) as an encoder-decoder model.

Setup. We apply b1.58 to the standard masked span
reconstruction objective with a masking probability of
15%. We use the NanoT5 framework (Nawrot, 2023)
with a T5v1_1-base architecture and mT5’s Senten-
cePiece tokenizer (Kudo, 2018). Specifically, we use
a learning rate of 0.02, a batch size of 128, an input
sequence length of 512, a cosine learning rate sched-
uler and the adamwscale optimizer (Nawrot, 2023).
The architecture has 6 layers in the encoder and an-
other 6 in the decoder stack (Fig. 2). Hidden sizes are
varied between 48 and 1536. Experiments are con-
ducted on the dataset described in Section 4.1.

Results. We compare the 16 bit and 1.58 bit per-
formance in Figure 2. In Figure 2a we compare dif-
ferent hidden size’s performance between 16-bit and
1.58-bit (median). We observe that every 16-bit ver-
sion (solid line) outperform all the 1.58-bit versions
(dashed line). We refer to Figure 2b evaluating the
models on held-out validation set, however, coming
from the same distribution. We observe that the val-
idation loss aligns almost perfectly with their corre-
sponding training loss curve, likely indicative of de-
cent in-distribution generalization and decent down-
stream task performance (Liu et al., 2023a). In gen-
eral, we observe the 1.58-bit versions to exhibit more
unstable training behavior, resulting in an increase in
loss over time, which is also reflected in the validation
performance.

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights

16-bit, #hidden 96
—— 16-bit, #hidden 192
—— 16-bit, #hidden 384
6 —— 16-bit, #hidden 768
—— 16-bit, #hidden 1536

y e

T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000

(a) Scaling for 16 bit

bl1.58
bl1.58
bl1.58
6 — bl.58

median), #hidden 192
median), #hidden 384
median), #hidden 768
median), #hidden 1536

T T T T T T T
o] 20000 40000 60000 80000 100000 120000 140000

(b) Scaling for 1.58 bit (median)

Figure 1: Scaling Behavior of 16-bit and 1.58-bit (median) BERT models. Training loss over 150K optimization steps.
Smoothing applied with a Savitzky-Golay filter with a window size of 1000 and a polynomial order of 2.

4.3 Decoder-Only Language Models:
Quantization as a Regularizer?

Here, we experiment with decoder-only language
models to better understand the training dynamics.
We hypothesize that there could be a regularization
effect of 1.58-bit quantization due to coarser repre-
sentations.

Setup. To investigate this potential regularization
effect, we experiment with Open Language Mod-
els (OLMo Groeneveld et al., 2024) with 1B param-
eters. We employ b1.58 with weight-only quantiza-
tion using AbsMedian with a 1.58-bit weight range.
We train on the dataset described in Section 4.1 with
OLMo’s standard hyperparameters 3, which include a
sequence length of 2048 and a batch size of 2048.

Results. Figure 3 shows the results of the OLMo
models. As expected, we observe that 16-bit performs
best (see Figure 3a). The b1.58 variant is worse at fit-
ting the data early on and consistently shows only a
small decrease in loss. However, in Figure 3b, we see
that b1.58 delays overfitting to the training dataset.
We attribute this to a regularization effect the quanti-
zation must introduce, making the b1.58 versions su-
perior on the validation set. We see that 1.58-bit with-
out and with dropout perform better and best, respec-
tively, on the validation set. These results indicate that

3https://github.com/allenai/OLMo/blob/main/configs/
official/lOLMo- 1B.yaml

the coarseness of the ternary quantization also con-
tributes positively to model regularization (see Figure
3) and a good generalization performance.

S DISCUSSION

We have shown that BitNet models can generally be
trained to yield commensurate accuracy with their
standard 16/32-bit counterparts in multi-layer per-
ceptrons, graph neural networks, encoder-only lan-
guage models, and decoder-only language models —
only T5-like encoder-decoder architectures pose ex-
tra challenges. Our results with decoder-only lan-
guage models further hint at a possible regularization
effect being introduced by quantization-aware train-
ing. Together, these results highlight that 1.58-bit
quantization-aware training methods could be applied
more widely and thereby greatly reduce memory re-
quirements at inference time for a wide range of mod-
els.

Our findings are particularly interesting in the
light of very recent considerations on scaling laws
in the context of quantization (Kumar et al., 2024;
Nielsen and Schneider-Kamp, 2024). Kumar et al.
(2024) propose scaling laws for precision, claim-
ing that to some extent bit-precision and parameter
count balance each other out and that the compute-
optimal bit-width lies around 7-8 bits. Nielsen and
Schneider-Kamp (2024) instead argue that the need to
increase parameters is sub-proportional to the reduc-
tion in memory size attained by 1.58-bit quantization-

1445

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

hidden 48, d_ff 128, 16 bit
hidden 48, d_ff 128, 1.58 bit
—— hidden 96, d_ff 256, 16 bit

--- hidden 96, d_ff 256, 1.58 bit
—— hidden 192, d_ff 512, 16 bit
-=-- hidden 192, d_ff 512, 1.58 bit

15.0

0 2000 4000 6000 8000 10000 12000 14000 16000

(a) Training Loss. [savitzky-golay, 512, 2]

—— hidden 384, d_ff 1024, 16 bit
--- hidden 384, d_ff 1024, 1.58 bit
hidden 768, d_ff 2048 16 bit

hidden 768, d_ff 2048, 1.58 bit
hidden 1536, d_ff 2048, 16 bit
hidden 1536, d_ff 2048, 1.58 bit

20.0

(b) Validation Loss. [savitzky-golay, 4, 2]

Figure 2: Scaling behavior of a nanoT5 encoder-decoder language model (T5v1.1-base), comparing 16 bit with 1.58-bit
quantization-aware training with quantization applied to throughout the entire TS model. d_ff denotes the hidden size of the
feedforward components within each encoder and decoder stack.

aware training. Our current study contributes to these
discussion by showing that in several cases beyond
language models, the parameter count does not even
need to be increased, and most importantly, we have
observed a regularization effect for decoder-only lan-
guage models — a highly interesting phenomenon
of quantization-aware training if confirmed in future
work.

In more detail, we have investigated how encoder-
only transformers scale with 1.58-bit quantization
aware-training. Analyzing the scaling behaivour of
16-bit and 1.58-bit models, we observed the need to
re-introduce capacity in some cases. This is inline
by the considerations of both Kumar et al. (2024)
and Nielsen and Schneider-Kamp (2024). Specifi-
cally, we see the need to use a hidden size of 192
in 1.58-median to gain the same performance as 16-
bit with a hidden size of 96. This also holds for
hidden layer sizes of 384, 768 and 1536 for 1.58-
median paired with 192, 368 and 768 for 16-bit, re-
spectively. This confirms that, there is a subpropor-
tional scaling law at play for quantization-aware train-
ing of encoder-only transformers — similar to previ-
ous observations on decoder-only language models by
Nielsen and Schneider-Kamp (2024),

In Figure 2a, we have observed ed “knees” form-
ing in multiple loss curves, where the training ex-
hibits a sudden drop in loss at a certain point of time,

1446

e.g. in the teal, blue, red and pink graph (dashed
and solid). Both the 16-bit and 1.58-bit versions ex-
hibit this behavior, where the 16-bit versions dropping
around 2200-3000 step mark, where the 1.58-versions
are delayed and in general yield a less significantly
and spread out drop. Similar phenomena have been
observed by Chen et al. (2024) on masked language
models, who was found that this is the point where
the models picks up the syntactic structure of the lan-
guage. We presume that the knees in the loss curve we
observe here also hint at syntax acquisition, which is
important to confirm for quantization-aware training.

We have further shown that findings for the
encoder-decoder transformer architectures do not di-
rectly align with the findings for the separate encoder-
only and decoder-only architectures. Employing
1.58-bit throughout the model generally degrades per-
formance substantially, as observed both on the train-
ing and the validation loss — and this cannot be com-
pensated by scale as to the limits of our experiments.
Note that these results do not include a full epoch
worth of optimization steps. Therefore, one cannot
attribute this effect to the model seeing the same ex-
emplars multiple times. Notably, even an increased
hidden size, did not lead to the 1.58-bit models catch-
ing up with 16-bit models, as was the case in all other
settings studied in this paper. We hypothesize that this
may be caused by the specific setup of cross- atten-

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights

16-bit
—— 1.58 Weight
1.58 Weight, dropout 0.05

0 1000 2000 3000 4000 5000 6000

(a) Training Loss

16-bit
—— 1.58 Weight
1.58 Weight, dropout 0.05

5.6 q

5.4 1

5.2 1

5.0 1

4.8

4.6 q

4.4+

4.2

4.0

(b) Validation Loss

Figure 3: Regularization Effect of b1.58 (median), OLMo 1B model trained on the dataset described in Section 4.1. Smoothing
is applied using a Savitzky-Golay filter with a window size of 1000 and polynomial order 2.

tion in the encoder-decoder architectures and encour-
age future work to investigate this effect further.

Comparing the two weight quantization schemes
for BitNet: AbsMedian and AbsMean, we have ob-
served that AbsMedian is on par with AbsMean.
Prior work has shown that AbsMedian performs bet-
ter in some situations (Nielsen and Schneider-Kamp,
2024), conjecturing AbsMedian to be more resilient
to weight-updates, which allows for higher variance
without noticeable effect on the scaling factor. While
this may be a factor for models with millions of
parameters, the miniature models involved in solv-
ing the X-OR task seem to be extraordinarily sensi-
tive when the scaling factor is computed on a much
smaller sample. We conjecture that this is the source
of the instability observed in some configurations
(e.g, hidden size 8 and 16 with low learning rate),
which we have observed to be dampened when in-
creasing the hidden size or the learning rate. In prac-
tical tasks, AbsMean and AbsMedian quantization are
close to each other with a 0.6% drop in accuracy for
MLPs and within each other’s confidence intervals for
GNNG.

We hypothesize that these previously described ef-
fects can be attributed to neural networks often not
utilizing all parameters effectively and contain redun-
dant parameters or even layers (e.g., see Ashkboos
et al., 2024; He et al., 2024). Therefore, these ex-
isting parameters can be considered as surplus capac-
ity when 1.58-bit quantization-aware training is em-
ployed, which would explain the smaller performance
gap when the model size increases.

To fully harvest the potential of 1.58-bit quanti-

zation regarding memory use, latency, and through-
put, there is a need for specialized kernels. Moreover,
quantization-aware training for b1.58 comes with a
slight increase in training resources due to having to
quantize and scale weights and activations. However,
in exchange, required resources at inference time are
greatly reduced. Thus, together with specialized ker-
nels, b1.58 models would contribute to more sustain-
able inference and serving of large models. Reduc-
ing the memory footprint also allows researchers and
practitioners to carry out more computation locally
and therefore may help alleviate privacy concerns.

Limitations. Due to to the high number of cov-
ered experimental settings, the experiments on lan-
guage models are limited to analyzing loss trajec-
tories: training loss for encoder-only models, and
training and validation loss for encoder-decoder as
well as for decoder-only models. We acknowledge
that this does limit the generalizability of our results.
Although the validation loss has been shown to be
highly correlated with downstream performance in
language models, there might be effects of quanti-
zation that could harm downstream performance of
1.58-bit models (Liu et al., 2023b).

6 CONCLUSION

We conducted a bottom-up investigation of 1.58-bit
quantization-aware training for a range of both non-
transformer and transformer models, demonstrating

1447

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

very competitive performance for multi-layer per-
ceptrons, graph neural networks, encoder-only, and
encoder-decoder architectures when compared to 16
and 32-bit. Specifically, we find that b1.58-bit train-
ing works well beyond language models, demonstrat-
ing competitive performance in bag-of-words MLPs
for text classification and graph neural networks for
node classification. Median quantization seems on
par or better than mean in most real-world scenar-
ios. We further analyze the “BitNet Scaling Law” for
encoder-only models, showing that 1.58-bit models
match the training performance of standard precision
models when the hidden size is twice as large, align-
ing with similar observations for decoder-only mod-
els. For encoder-decoder models, we find that no such
scaling law is applicable, as b1.58 consistently per-
forms worse than 16-bit. We encourage future work to
investigate the challenges of b1.58 quantization with
encoder-decoder architecture in more depth. Finally,
there seems to be a regularization effects of 1.58-bit
quantization-aware training that helps generalization.
Yet, more research is needed to further investigate this
regularization effect.

ACKNOWLEDGEMENTS

We are grateful to the Danish Foundational Models
(DFM) project for access to data for low-resource
language modelling, to SDU UCloud and EuroHPC
Leonard Booster for providing computational re-
sources.

REFERENCES

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. (2024). Slicegpt: Compress large
language models by deleting rows and columns.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization. arXiv preprint arXiv:1607.06450.

Bal, M., Jiang, Y., and Sengupta, A. (2024). Exploring ex-
treme quantization in spiking language models. arXiv
preprint arXiv:2405.02543.

Bengio, Y., Léonard, N., and Courville, A. C. (2013). Es-
timating or propagating gradients through stochas-
tic neurons for conditional computation. CoRR,
abs/1308.3432.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R. B.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch,
S., Card, D., Castellon, R., Chatterji, N. S., Chen,
A. S., Creel, K., Davis, J. Q., Demszky, D., Don-
ahue, C., Doumbouya, M., Durmus, E., Ermon, S.,
Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C.,
Gale, T., Gillespie, L. E., Goel, K., Goodman, N. D.,

1448

Grossman, S., Guha, N., Hashimoto, T., Henderson,
P., Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang,
J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karam-
cheti, S., Keeling, G., Khani, F., Khattab, O., Koh,
P. W, Krass, M. S., Krishna, R., Kuditipudi, R., and
et al. (2021). On the opportunities and risks of foun-
dation models. CoRR, abs/2108.07258.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, 1., and
Amodei, D. (2020). Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems 33.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and
Saphra, N. (2024). Sudden drops in the loss: Syn-
tax acquisition, phase transitions, and simplicity bias
in MLMs. In The Twelfth International Conference on
Learning Representations.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transform-
ers for language understanding. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171-4186. Associ-
ation for Computational Linguistics.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
(2023). Gptq: Accurate post-training quantization for
generative pre-trained transformers.

Galke, L. and Scherp, A. (2022). Bag-of-words vs. graph
vs. sequence in text classification: Questioning the ne-
cessity of text-graphs and the surprising strength of a
wide MLP. In Muresan, S., Nakov, P., and Villavicen-
cio, A., editors, Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4038-4051, Dublin,
Ireland. Association for Computational Linguistics.

Geiping, J. and Goldstein, T. (2023). Cramming: Training
a language model on a single gpu in one day. In In-
ternational Conference on Machine Learning, pages
11117-11143. PMLR.

Groeneveld, D., Beltagy, 1., Walsh, P., Bhagia, A., Kin-
ney, R., Tafjord, O., Jha, A., Ivison, H., Magnus-
son, 1., Wang, Y., Arora, S., Atkinson, D., Authur, R.,
Chandu, K. R., Cohan, A., Dumas, J., Elazar, Y., Gu,
Y., Hessel, J., Khot, T., Merrill, W., Morrison, J. D.,
Muennighoff, N., Naik, A., Nam, C., Peters, M. E.,
Pyatkin, V., Ravichander, A., Schwenk, D., Shah, S.,
Smith, W., Strubell, E., Subramani, N., Wortsman, M.,
Dasigi, P., Lambert, N., Richardson, K., Zettlemoyer,
L., Dodge, J., Lo, K., Soldaini, L., Smith, N. A., and
Hajishirzi, H. (2024). Olmo: Accelerating the science
of language models. arXiv preprint.

He, S., Sun, G., Shen, Z., and Li, A. (2024). What matters
in transformers? not all attention is needed.

Kingma, D. P. and Ba, J. (2015). Adam: A method for

When Are 1.58 Bits Enough? A Bottom-up Exploration of Quantization-Aware Training with Ternary Weights

stochastic optimization. In Proceedings of the Inter-
national Conference on Learning Representations.

Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Kudo, T. (2018). Sentencepiece: A simple and language in-
dependent subword tokenizer and detokenizer for neu-
ral text processing. arXiv preprint arXiv:1808.06226.

Kumar, T., Ankner, Z., Spector, B. F., Bordelon, B., Muen-
nighoff, N., Paul, M., Pehlevan, C., Ré, C., and
Raghunathan, A. (2024). Scaling laws for precision.
arXiv preprint arXiv:2411.04330.

Li, Z. and Gu, Q. (2023). I-vit: integer-only quantization for
efficient vision transformer inference. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 17065-17075.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S.
(2024). Awq: Activation-aware weight quantization
for llm compression and acceleration.

Liu, H., Xie, S. M., Li, Z., and Ma, T. (2023a). Same pre-
training loss, better downstream: Implicit bias mat-
ters for language models. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,
editors, Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pages 22188—
22214. PMLR.

Liu, H., Xie, S. M., Li, Z., and Ma, T. (2023b). Same pre-
training loss, better downstream: Implicit bias matters
for language models. In ICML, volume 202, pages
22188-22214. PMLR.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V.
(2023c). Llm-qat: Data-free quantization aware train-
ing for large language models.

Loshchilov, I. (2017). Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang,
S., Dong, L., Wang, R., Xue, J., and Wei, F. (2024).
The era of 1-bit llms: All large language models are
in 1.58 bits.

Nawrot, P. (2023). nanoT5: Fast & simple pre-training and
fine-tuning of TS5 models with limited resources. In
Proceedings of the 3rd Workshop for Natural Lan-
guage Processing Open Source Software (NLP-OSS
2023). Association for Computational Linguistics.

Nielsen, J. and Schneider-Kamp, P. (2024). Bitnet bl.
58 reloaded: State-of-the-art performance also on
smaller networks. In International Conference on
Deep Learning Theory and Applications, pages 301—
315. Springer.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning
research, 21(140):1-67.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O.
(2020). Green AL. Commun. ACM, 63(12):54-63.

Llavaolmobitnet1b:
arXiv preprint

Sundaram, J. and Iyer, R. (2024).
Ternary llm goes multimodal!
arXiv:2408.13402.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Advances in Neu-
ral Information Processing Systems 30, pages 5998—
6008.

Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma, L.,
Yang, F., Wang, R., Wu, Y., and Wei, F. (2023). Bitnet:
Scaling 1-bit transformers for large language models.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P., Dean, J., and Fedus, W. (2022). Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Wu, E, Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. (2019). Simplifying graph convolutional
networks. In Chaudhuri, K. and Salakhutdinov, R.,
editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 6861—
6871. PMLR.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi,
M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Lukasz Kaiser, Gouws, S., Kato, Y., Kudo,
T., Kazawa, H., Stevens, K., Kurian, G., Patil, N.,
Wang, W., Young, C., Smith, J., Riesa, J., Rudnick,
A., Vinyals, O., Corrado, G., Hughes, M., and Dean,
J. (2016). Google’s neural machine translation sys-
tem: Bridging the gap between human and machine
translation.

Xu, Y., Xie, L., Gu, X., Chen, X., Chang, H., Zhang, H.,
Chen, Z., Zhang, X., and Tian, Q. (2023). Qa-lora:
Quantization-aware low-rank adaptation of large lan-
guage models.

Yang, Z., Cohen, W., and Salakhudinov, R. (2016). Re-
visiting semi-supervised learning with graph embed-
dings. In Balcan, M. F. and Weinberger, K. Q., editors,
Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Ma-
chine Learning Research, pages 40-48, New York,
New York, USA. PMLR.

1449

