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Abstract: Depression affects over 280 million people globally and requires timely, accurate intervention to mitigate its
effects. Traditional diagnostic methods often introduce delays and privacy concerns due to centralized data
processing and subjective evaluations. To address these challenges, we propose a smartphone-based approach
that uses federated learning to detect depressive episodes through the analysis of spontaneous phone calls.
Our proposal protects user privacy by retaining data locally on user devices (i.e., smartphones). Our approach
addresses catastrophic forgetting through the use of knowledge distillation, enabling efficient storage and ro-
bust learning. The experimental results demonstrate reasonable accuracy with minimal resource consumption,
highlighting the potential of privacy-preserving AI solutions for mental health monitoring.

1 INTRODUCTION

Depression, a prevalent mental health disorder, im-
pacts more than 280 million individuals world-
wide, according to the World Health Organization
(WHO) (World Health Organization, 2023). As one
of the leading causes of disability, major depression
disorder profoundly affects both mental and physi-
cal health, necessitating early detection of depressive
episodes. Traditional diagnostic practices are often
lengthy and rely on subjective tools such as interviews
and questionnaires. Although effective in diagnos-
ing Major Depressive Disorder (MDD), these meth-
ods usually fail to detect depressive episodes, which
can prevent early treatment. Furthermore, the sensi-
tive nature of mental health data raises significant pri-
vacy concerns, making it essential to explore diagnos-
tic systems that protect individual privacy.

Existing approaches have explored the use of deep
learning algorithms for detecting depressive episodes
based on phone call analysis (Mdhaffar et al., 2019).
However, these models are typically trained offline
on static datasets, which limits their ability to adapt
to new patterns or features that may emerge over
time. Moreover, these deep leaning models raise
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concerns about data privacy as they require sensi-
tive user data to be transmitted to external servers
for processing. To address these issues, recent stud-
ies (Ma et al., 2022), (Zhang et al., 2023), (Shenaj
et al., 2023), (Huang et al., 2022), (Lee et al., 2022)
have adopted federated learning, a decentralized ma-
chine learning paradigm that analyzes data locally on
user devices. These approaches ensure that sensitive
data never leaves the user’s device, safeguarding pri-
vacy while enabling real-time monitoring and adap-
tive learning. By decentralizing the training process,
they overcome the privacy challenges associated with
centralized models while mitigating risks of overfit-
ting by training on diverse, user-specific data distribu-
tions. However, these approaches usually suffer from
the catastrophic forgetting and communication over-
head issues.

To tackle the challenges of catastrophic forgetting
and communication overhead, we propose a novel
federated approach, called FedKD4DD. It leverages
the federated learning paradigm, complemented by
knowledge distillation (KD) to reduce communica-
tion overhead, and facilitates the efficient sharing of
knowledge across decentralized mobile devices. KD
allows the model to retain previously learned knowl-
edge across training iterations by saving logits from
past training rounds. Unlike prior works that rely on
explicit teacher-student model configurations, our ap-
proach uses self-distillation, optimizing storage usage
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and ensuring the model’s consistency in detecting de-
pressive symptoms over time.

Our approach combines advanced machine learn-
ing techniques with resource-efficient design, en-
abling deployment on a wide range of mobile devices.
A series of experiments was conducted to evaluate its
performance in terms of accuracy, storage efficiency,
communication overhead, battery usage, CPU con-
sumption, and RAM usage. The results demonstrate
that FedKD4DD achieves satisfactory detection accu-
racy with only a minimal drop in accuracy during the
second run. Moreover, experimental results demon-
strate low communication overhead and low computa-
tional demands, highlighting its potential as a scalable
and privacy-preserving solution for real-world mental
health monitoring.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the funda-
mental concepts relevant to this study, while Section 3
discusses state-of-the-art approaches. Section 4 intro-
duces FedKD4DD, detailing its architecture and its
core components. Section 5 presents implementation
aspects. Section 6 discusses the obtained experimen-
tal results. Finally, Section 7 concludes the paper and
outlines areas for future research.

2 FUNDAMENTAL CONCEPTS

FedKD4DD for early detection of depressive symp-
toms draws on a combination of fundamental con-
cepts and advancements in related research fields. De-
pression, as a critical focus, highlights the necessity of
innovative solutions for mental health care, while fed-
erated learning provides the technological basis for
enabling privacy-preserving, decentralized data pro-
cessing. To further enhance FedKD4DD’s learning
efficiency and adaptability, knowledge distillation is
integrated to address the challenge of catastrophic for-
getting in continual learning scenarios.

2.1 Depression

Depression is a mental health disorder that mani-
fests itself through emotional distress, cognitive im-
pairment, and physical symptoms that disrupt daily
life and productivity (American Psychiatric Associ-
ation, 2013). Depression takes various forms, in-
cluding Major Depressive Disorder, Bipolar Disorder,
and Seasonal Affective Disorder, each with unique
characteristics (National Institute of Mental Health,
2023; Rosenthal et al., 1984). Its societal impact
is profound, including lost productivity, increased
healthcare costs, and family burdens (Goodman and

Gotlib, 2002). Early detection is crucial to mitigate
these effects, making the development of efficient and
privacy-preserving detection systems a priority.

2.2 Federated Learning

Federated learning is a decentralized approach that al-
lows multiple clients to collaboratively train a model
while retaining data locally (McMahan et al., 2017).
By transmitting model updates instead of raw data,
this method addresses privacy concerns and supports
compliance with regulations like GDPR. The process
involves iterative updates between clients and a cen-
tral server, employing techniques like Federated Av-
eraging to aggregate local contributions into a global
model.

2.3 Knowledge Distillation

Knowledge distillation transfers the learning of a
complex teacher model to a simpler student model
by leveraging the teacher’s soft output, which pro-
vides more information than hard labels (Hinton et al.,
2015). This technique enables the student to approx-
imate the teacher’s decision boundaries while main-
taining computational efficiency (Yim et al., 2017).
Distillation can occur offline, online, or through self-
distillation, each offering unique advantages (Zhang
et al., 2020; Furlanello et al., 2018).

3 RELATED WORK

(Ma et al., 2022) introduce a framework utilizing
knowledge distillation to address catastrophic forget-
ting, primarily tested on image classification tasks.
Their solution achieves a trade-off between storage
efficiency and communication overhead, which is
particularly beneficial for bandwidth-constrained sys-
tems. However, their approach is tailored to image
data and heavily relies on pre-trained teacher models,
limiting its adaptability to domains where pre-trained
models are unavailable or impractical. Moreover,
their framework does not address the challenges spe-
cific to resource-constrained devices, such as smart-
phones, which are critical for real-world applications.

(Zhang et al., 2023) propose an exemplar-free
knowledge distillation approach that eliminates the
need to store raw data, effectively addressing privacy
concerns. Although this method demonstrates ro-
bust generalization across tasks, it suffers from a high
communication overhead, which constrains scalabil-
ity for large networks or mobile platforms. Our ap-
proach mitigates these issues by retaining logits lo-
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cally on devices, reducing the synchronization fre-
quency, and making it suitable for mobile environ-
ments with limited bandwidth.

(Shenaj et al., 2023) present an asynchronous up-
date mechanism to alleviate communication bottle-
necks and improve scalability. Although this method
allows independent client updates, it introduces com-
plexities in managing divergent model states. Unlike
their method that requires intricate synchronization
management, our approach simplifies this process by
focusing on logit-based distillation. This does not
only reduce communication demands, but does also
effectively addresses catastrophic forgetting, while
optimizing device resources.

(Huang et al., 2022) tackle personalization in
heterogeneous federated learning networks, enabling
adaptation to diverse client data distributions. Their
framework is flexible and robust, but increases solu-
tion complexity. While our work prioritizes efficiency
and scalability over personalization, its specialization
in audio-based depression detection ensures relevance
to healthcare applications, where privacy and data ef-
ficiency are paramount.

(Lee et al., 2022) propose a “not-true” distillation
technique to enhance storage efficiency and reduce
communication costs by storing distilled knowledge
representations instead of raw data. Although this ap-
proach is advantageous for devices with limited re-
sources, its performance on complex and diverse tasks
is limited. Our solution builds on this strength by
tailoring logit-based storage for depression detection,
balancing storage efficiency and task-specific perfor-
mance.

Unlike existing approaches, our proposal ad-
dresses the challenges of high communication over-
head and storage inefficiency by utilizing knowledge
distillation in a novel way for mobile devices. In-
stead of relying on frequent model synchronization,
we focus on training a local model on audio data
collected from phone calls and use knowledge dis-
tillation to store compressed representations of the
learned knowledge (logits). These logits are retained
for future training sessions, allowing us to delete raw
data after each training cycle, freeing up storage space
on the device. This ensures continuous learning from
new data while retaining essential information from
prior tasks, effectively mitigating catastrophic forget-
ting.

4 FedKD4DD

This section presents our proposed approach, called
FedKD4DD. It stands for “Federated Knowledge Dis-

tillation for Depression Detection”. FedKD4DD ad-
dresses catastrophic forgetting and privacy challenges
in federated learning. Using knowledge distillation,
we store logits to enable efficient training on mobile
devices while minimizing storage and communica-
tion overhead. FedKD4DD focuses on audio-based
depression detection, extending federated learning to
healthcare applications.

4.1 Architecture

The architecture of FedKD4DD leverages federated
learning to handle decentralized datasets, such as
phone call recordings on client devices (i.e., smart-
phones). By incorporating knowledge distillation and
automated data labeling, FedKD4DD enables clients
to contribute to a global model while retaining sensi-
tive data locally. This design preserves user privacy
and ensures adaptability to individual data distribu-
tions, addressing challenges in personalized health-
care applications.

The overall architecture follows a decentralized,
multi-layered structure consisting of a central server
and multiple clients (mobile devices) participating in
federated learning, as depicted in Figure 1. Each
client maintains its dataset, consisting of phone call
recordings, which are pre-processed and labeled auto-
matically before being used for training. The central
server aggregates the updates from all clients without
accessing their raw data.

To minimize communication overhead, the system
exchanges model parameters rather than raw data or
logits, enabling scalability and efficiency. Local train-
ing on personalized datasets enhances model adapt-
ability while preserving user privacy.

Figure 1: Architecture of FedKD4DD.
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4.2 Key Components

The architecture consists of several core components.
They are detailed in the following.

1. Central Server:
• Global Model Initialization: The server ini-

tializes a pre-trained global model to be dis-
tributed to all clients. This model serves as a
starting point for localized training.

• Model Aggregation: The server aggregates
updated model parameters from clients us-
ing Federated Averaging (FedAvg) (McMahan
et al., 2017). This process combines client up-
dates proportionally based on the size of their
datasets, refining the global model iteratively.

2. Clients: Each client represents a mobile device
with a personalized dataset. Key tasks performed
by clients include:

• Data Collection and Labeling: Clients au-
tomatically record and store phone calls lo-
cally. These recordings are labeled using a pre-
trained model integrated into the application.

• Local Model Training: Clients train the global
model on their labeled datasets, tailoring it to
their data distribution.

• Logit Storage for Knowledge Distillation:
Clients save logits from their training sessions
for use in subsequent training rounds.

• Communication with Central Server:
Clients send updated model parameters to
the server without sharing raw data, ensuring
privacy.

3. Knowledge Distillation Mechanism: Self-
distillation is employed to mitigate catastrophic
forgetting. The clients use their previously saved
logits to compute a distillation loss in the next
training round, aligning current training with past
knowledge.

4.3 Data Flow

FedKD4DD’s data flow is designed to ensure effi-
cient training, preprocessing, and communication be-
tween the server and clients while optimizing re-
source utilization on mobile devices. By incor-
porating a preprocessing module and leveraging a
structured pipeline, the system transforms raw audio
recordings into machine learning-ready inputs, en-
abling effective feature extraction and noise reduc-
tion. FedKD4DD’s data flow consists of the following
key steps:

• Model Initialization: The server initializes a
globally shared model and distributes it to all par-
ticipating clients. This step ensures that all clients
start with a common baseline for local training,
enabling effective aggregation during the training
process.

• Data Collection and Labeling: Clients record
phone calls locally using the application. These
recordings are automatically labeled based on pre-
defined criteria, leveraging the pre-trained model
embedded within the app. This automation re-
duces user intervention and ensures consistent la-
beling quality.

• Data Preprocessing: To prepare raw audio data
for machine learning, a robust preprocessing
pipeline is employed. Figure 2 provides a visual
representation of the preprocessing pipeline.

1. Silence Removal: Silent segments in the
recordings are removed to focus on the active
portions of the signal. This is achieved using
an energy threshold-based algorithm, which an-
alyzes the signal in fixed temporal windows:

Trim(y) = y[t1 : t2] where E(yt)> threshold
(1)

Here, E(yt) represents the energy of the signal
in a window t, calculated as:

E(yt) =
1
N

N

∑
n=1

y2
t (2)

Segments with energy below the threshold are
excluded, reducing redundancy and computa-
tional overhead.

2. Amplitude Normalization: After silence re-
moval, the audio signal is normalized to ac-
count for variations in recording devices. This
step scales the signal to a standardized range,
ensuring consistency across all recordings:

Normalize(y) =
y

max(|y|)
(3)

where max(|y|) is the maximum absolute am-
plitude of the signal.

3. Spectrogram Conversion: The normalized
audio is transformed into spectrograms us-
ing the Short-Time Fourier Transform (STFT),
which provides a frequency-based representa-
tion of the signal:

STFT(y)(t, f ) =
N−1

∑
n=0

y[n] ·w[n] · e− j2π f n/N (4)

Here, w[n] is a Hamming window function ap-
plied to reduce edge effects. The spectrogram is
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then converted to decibels to align with human
perceptual scales:

Spectrogram(t, f ) = 10 · log10(|STFT(y)(t, f )|2 + ε)
(5)

where ε is a small value added to avoid loga-
rithmic errors.

4. Spectrogram Resizing: Spectrograms are re-
sized to 256× 256 pixels to match the neural
network’s input requirements.

Transformation 
into a 

Spectrogram

Silence 
Removal

Resized 
Spectrogram

Amplitude 
Normalization

Audio 
without 
Silences

Raw Audio

Normalized 
Audio

Spectrogram 
Resizing

Spectrogram

Figure 2: Preprocessing Pipeline for Audio Data.

• Local Training: Each client trains the global
model locally using its preprocessed and labeled
data. This step allows the model to learn from
client-specific data distributions while preserving
user privacy.

• Logit Storage: Upon completing local training,
clients store the output logits for all training sam-
ples. These logits are critical for future rounds
of training, enabling the implementation of self-
distillation to mitigate catastrophic forgetting.

• Model Update and Communication: Clients
send their locally updated model parameters to
the central server. The server aggregates these up-
dates using a weighted averaging approach to pro-
duce a new global model.

• Self-distillation: During subsequent training
rounds, clients utilize stored logits to compute
a distillation loss. This process aligns the new
model’s predictions with prior knowledge, ensur-
ing that previously learned information is pre-
served while integrating new data.

The combination of automated preprocessing, lo-
cal training, and knowledge distillation enables the
system to handle the challenges of audio-based tasks,
resource constraints, and catastrophic forgetting.

5 IMPLEMENTATION

The development of the federated learning applica-
tion required careful integration of various compo-
nents and technologies to achieve seamless function-
ality, privacy preservation, and efficient performance.
The mobile application was developed using Android
Studio that integrates seamlessly with TensorFlow
Lite and TensorFlow Federated used by FedKD4DD.
TensorFlow Federated was used to manage feder-
ated learning communication between clients and the
central server. It simplifies the orchestration of dis-
tributed training and supports privacy-preserving pro-
tocols. Federated learning was locally tested using
FLWR, a framework that facilitates communication
between client devices and the central server, ensur-
ing privacy by exchanging only model parameters
rather than raw data. This setup is crucial for en-
abling personalized learning without compromising
user privacy. Differential privacy was also integrated
into the federated learning protocol to mask individ-
ual contributions by adding noise to model updates,
ensuring compliance with privacy regulations and en-
hancing user trust. The mathematical guarantees of
differential privacy are formally defined in Equation
(6) (Dwork et al., 2006).

Pr[A(D1) ∈ S]≤ eε Pr[A(D2) ∈ S] (6)

where A is the algorithm, D1 and D2 are datasets dif-
fering in one element, and ε controls the privacy loss.
A smaller ε value implies stronger privacy guarantees.
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5.1 Neural Network for Audio
Processing

The core of FedKD4DD is a convolutional neural
network (CNN) combined with a Long Short-Term
Memory (LSTM) layer to handle the sequential nature
of audio data. Audio preprocessing involves trans-
forming raw waveforms into spectrograms, which
capture time and frequency components of the audio
signal, making it suitable for deep learning models.
Key architectural components include:

• Convolutional Layers: Extract spatial features
from spectrograms, highlighting frequency pat-
terns.

• LSTM Layer: Capture temporal dependencies in
sequential data, such as speech patterns.

• Dropout and Batch Normalization: Prevent
overfitting and stabilize training.

• Fully Connected Layers: Translate learned fea-
tures into classification outputs.

5.2 Local Testing and Preprocessing

Prior to deploying the application, extensive local
testing was conducted to validate the key compo-
nents of the system. This phase involved leveraging
PyTorch for model training and Librosa for audio
preprocessing, ensuring that the proposed methods
were both effective and compatible with the federated
learning framework. The FLWR library (Flower) was
employed to simulate federated learning during lo-
cal experimentation, enabling the evaluation of model
aggregation and communication efficiency in a con-
trolled environment.

The preprocessing pipeline focused on convert-
ing raw audio signals into features suitable for model
training. Using Librosa, the pipeline performed si-
lence removal to eliminate non-informative segments,
amplitude normalization to standardize the audio sig-
nals, and spectrogram generation for feature extrac-
tion. Specifically, audio signals were transformed into
Mel-frequency cepstral coefficients (MFCCs), a rep-
resentation that captures the frequency content most
relevant to human perception. This approach was cho-
sen to improve the accuracy of depression detection
by emphasizing meaningful audio patterns.

The spectrograms were resized to match the input
dimensions required by the model, ensuring compat-
ibility and efficient batch processing during training.
This preprocessing strategy was designed to minimize
computational overhead while preserving key audio
features, aligning with the constraints of resource-
limited mobile devices.

6 EXPERIMENTAL RESULTS

This section presents and discusses the conducted
experiments, using the DAIC-WOZ dataset (Gratch
et al., 2014). Our evaluation examines multiple per-
formance metrics, including accuracy, resource con-
sumption, and computational feasibility.

6.1 Experimental Setup

The experiments were conducted using the DAIC-
WOZ dataset (Gratch et al., 2014), a publicly avail-
able resource for depression detection that provides
annotated vocal recordings. This dataset was chosen
for its relevance to the project, as it enables the devel-
opment of machine learning models tailored to audio-
based psychological analysis. However, the dataset
posed several challenges, such as its relatively small
size and significant class imbalance. The dataset in-
cludes 170 samples labeled as non-depressed (class
0) and 49 samples labeled as depressed (class 1), re-
sulting in a class ratio of approximately 3.5 : 1. Such
an imbalance can bias models toward predicting the
majority class, thereby reducing the accuracy of de-
pression detection for the minority class.

To address this issue, the “Synthetic Minority
Over-sampling Technique (SMOTE)” was employed
during preprocessing. SMOTE generates synthetic
samples for the minority class by interpolating be-
tween existing data points and their nearest neighbors
in feature space. This approach increases the diver-
sity of the minority class without duplicating exist-
ing data, enhancing the model’s ability to generalize
across both classes. By applying SMOTE, the dataset
was effectively balanced, improving the model’s ca-
pacity to identify depressive symptoms and ensuring
a fair evaluation of the federated learning approach.

The experiments simulated a federated learning
environment by distributing the preprocessed DAIC-
WOZ dataset among three clients. Two clients op-
erated as virtual devices, emulated through Android
Studio, and were configured with 4 GB of RAM and
Android 13. These virtual devices provided a con-
trolled testing environment for evaluating the app’s
performance under consistent conditions. The third
client was a Realme C51 smartphone, equipped with
4 GB of RAM and a Unisoc T612 processor. This
device represented a typical resource-constrained mo-
bile phone, aligning with the project’s goal of deploy-
ing federated learning solutions on real-world devices
with limited computational and storage capabilities.

To compare FedKD4DD with related approaches,
we implemented four state-of-the-art methods and
evaluated them on the DAIC-WOZ dataset, using the
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same experimental setup.

6.2 Evaluation Metrics

To provide a comprehensive evaluation of
FedKD4DD, the following metrics were analyzed:

• Accuracy (%): Measures the percentage of cor-
rectly classified samples over multiple rounds of
training (Powers, 2011).

• Storage Efficiency (MB): Indicates the storage
requirements for models and associated data on
client devices.

• Communication Overhead (MB): Quantifies the
data exchanged between clients and the central
server during training.

• Training Time (minutes): Accounts for the du-
ration of preprocessing, local training, and weight
updates.

• Battery Consumption (%): Reflects the percent-
age of battery depleted per training session.

• CPU and RAM Usage: Represents the computa-
tional demand on devices during training.

6.3 Results

The results of the experiments, visualized through
histograms, demonstrate the practical viability of the
proposed approach. Each metric is discussed in detail
below.

1. Accuracy Analysis
The histogram in Figure 3 illustrates the accuracy
achieved in the first and second training rounds.
FedKD4DD attained an initial accuracy of 65%,
which slightly decreased to 63% in the second
round. This minor drop indicates the effective-
ness of knowledge distillation in addressing catas-
trophic forgetting, as it ensures retention of previ-
ously acquired knowledge while accommodating
new information.
Compared to (Shenaj et al., 2023), which showed
accuracies of 59% and 52%, the proposed ap-
proach demonstrates a notable improvement. This
balance between performance and resource effi-
ciency underscores its suitability for mobile de-
ployment.

2. Resource Efficiency
Table 1 highlights the storage and communica-
tion overhead of the proposed method. With a
storage requirement of 220 MB and a commu-
nication overhead of 18 MB, the approach out-
performs resource-intensive methods like (Shenaj
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Figure 3: Accuracy Comparison Across Training Rounds.

et al., 2023) (400 MB, 30 MB). This efficiency
is critical for mobile devices with limited storage
and bandwidth. Additionally, the training time
(see Table 1) was optimized at 38 minutes, signif-
icantly lower than 51 minutes reported by (Shenaj
et al., 2023). This reduction demonstrates the
effectiveness of preprocessing and the compact
model architecture employed.

3. Computational Feasibility
As shown in Table 1, the CPU usage averaged
80%, while RAM consumption was 550 MB, both
of which are well within the capabilities of mod-
ern smartphones. Furthermore, Table 1 shows
that the average battery consumption was 7% per
training session, lower than some other methods,
such as (Shenaj et al., 2023) (10%).

7 CONCLUSION

This paper presented a federated learning solution
to address catastrophic forgetting in mobile environ-
ments, focusing on depression detection from au-
dio recordings. By leveraging knowledge distillation
and storing logits instead of raw data, the approach
ensured privacy preservation while maintaining re-
source efficiency, making it suitable for deployment
on mobile devices.

The proposed method achieved competitive per-
formance on the DAIC-WOZ dataset, with an initial
accuracy of 65% and optimized resource consump-
tion, including storage, communication overhead, and
computational demands. Comparative analysis high-
lighted its advantages over related work, demonstrat-
ing its feasibility for resource-constrained environ-
ments.

However, slight accuracy drops across training
rounds suggest opportunities for improvement in
knowledge retention. Additionally, validating the ap-
proach on larger and more diverse datasets remains a
priority to enhance its generalizability.

In the future, we aim to investigate other data sets
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Table 1: Comparison of Model Performance using DAIC-WOZ Dataset.

Paper Training Time (mins) Battery Used (%) CPU Usage (%) RAM Usage (MB)
(Ma et al., 2022) 45 8 85 600

(Shenaj et al., 2023) 51 10 90 700
(Huang et al., 2022) 44 7 80 600

(Lee et al., 2022) 57 9 88 660
Our Approach 38 7 80 550

in federated learning such as non-IID datasets that
might occur in our use case. Moreover, we plan to
deal with the challenge of heterogeneous DL mod-
els that might be deployed on the clients. Finally, we
want to propose a server-less federated learning ap-
proach that does not depend on a centralized aggrega-
tion server.
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