
What Kind of Information Is Needed? Multi-Agent Reinforcement
Learning that Selectively Shares Information from Other Agents

Riku Sakagami1 and Keiki Takadama2,3 a

1Department of Informatics, The University of Electro-Communications, Tokyo, Japan
2Information Technology Center, The University of Tokyo, Tokyo, Japan

3Department of Information & Communication Engineering, The University of Tokyo, Tokyo, Japan

Keywords: Multi-Agent Reinforcement Learning, Centralized Training with Decentralized Execution, Sharing Additional

Information.

Abstract: Since agents’ learning affects others’ learning in multi-agent reinforcement learning (MARL), this paper aims

to clarify what kind of information helps to improve learning of agents throgh complex interactions among

them. For this purpose, this paper focuses on the information on observations/actions of other agents and

analyzes its effect in MARL with the centralized training with decentralized execution (CTDE), which con-

tributes to stabilizing agents’ learning. Concretely, this paper extends the conventional MARL algorithm with

CTDE (i.e., MADDPG in this research) to have the two mechanisms, each of which shares (i) information on

observations of all agents; (ii) information on actions of all agents; and (iii) information on both the obser-

vations and actions of the selected agents. MARL with these three mechanisms is compared with MADDPG

which shares information on both actions and observations of all agents and IDDPG which does not share any

information. The experiments on multi-agent particle environments (MPEs) have revealed that the proposed

method that selectively shares both observation and action information is superior to the other methods in both

the full and partial observation environments where information on observations of all and selected agents.

1 INTRODUCTION

Recently, Multi-Agent Reinforcement Learning

(MARL) (Zhang et al., 2021; Gronauer and Diepold,

2022) has attracted much attention on by successfully

applying them to many complex real-world prob-

lems, such as automated driving and autonomous

robot swarm control (Shalev-Shwartz et al., 2016;

Hernandez-Leal et al., 2019). MARL aims at

adaptively controlling the learning of agents to cope

with given environments. However, it is hard for

agents in MARL to learn their appropriate policies

simultaneously due to nonstationary situations caused

by complex interactions among agents (Busoniu et

al., 2008; Hernandez-Leal et al., 2017). Such a

non-stationarity in MARL is caused by updating the

policy of all agents at the same time, i.e., the state of

an agent is not always to be transited to the unique

one even if the agent selects the same action. This is

because the actions of other agents may be different.

The simplest way to tackle this difficulty in si-

multaneous learning is to employ global observation

a https://orcid.org/0009-0007-0916-5505

(which includes the state of all agents) and the actions

of other agents when agents learn their policies. From

this viewpoint, the Centralized Training with Decen-

tralized Execution (CTDE) method was proposed in

MARL (Lowe et al., 2017; Yu et al., 2022), which as-

sumes that agents can access extra information (i.e.,

global observation and the actions of other agents)

only during learning (as the centralized training) and

determine their actions according to their individual

information (as decentralized execution). This ap-

proach contributes to not only stabilizing the learning

of agents but also shortening the learning time. The

previous works of CTDE revealed its superiority to

conventional methods (Lowe et al., 2017; Foerster et

al., 2018; Rashid et al., 2020; Yu et al., 2022). Such

information of other agents helps agents to learn their

appropriate policies consistently in MARL.

What should be noted here, however, is that too

much information (i.e., “both” the observation and ac-

tions of “all” agents) in CTDE is not always needed

for learning policies of agents, but rather it may have

a bad influence on their learning. To tackle this issue,

this paper aims to clarify what kind of information

Sakagami, R. and Takadama, K.
What Kind of Information Is Needed? Multi-Agent Reinforcement Learning that Selectively Shares Information from Other Agents.
DOI: 10.5220/0013390100003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 235-242
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

235

helps agents learn in CTDE. Concretely, this paper fo-

cuses on the information on observations and actions

of other agents, which is essential for cooperation in

CTDE, and analyzes its effect by employing (i) infor-

mation on “observations” of “all” agents; (ii) informa-

tion on “actions” of “all” agents; or (iii) information

on both the observations and actions of the “selected”

agents. This information classification aims at clari-

fying what is an essential difference between “obser-

vations” and “actions” from the viewpoint of learn-

ing, and how the performance of agents changes by

employing information of the “selected” agents from

that of “all” agents.

Among the many MARL methods based on

CTDE, this paper starts to employ MADDPG (Multi-

Agent Deep Deterministic Policy Gradient) (Lowe et

al., 2017) which shares information on both obser-

vations and actions and of all agents, and extends

it by changing three kinds of the above information

from (i) to (iii). MADDPG is the Actor-Critic based

MARL with CTDE and is focused on in this paper

because of the following reasons: (1) MADDPG is

the simple method developed in the early stage of

CTDE, which helps us to directly clarify an effect of

the three kinds of the above information without con-

sidering any other effect caused by the complex or so-

phisticated CTDE proposed after MADDPG; (2) Un-

like QMIX (Rashid et al., 2020) and VDN (Value De-

composition Network) (Sunehag et al., 2018) which

are based on IGM principle that assumes that an ac-

tion of an agent with the highest value from the local

(agent) viewpoint is the same as that from the global

(multi-agent) viewpoint, MADDPG can derive a co-

operation where some agents give up to select their

own best actions to improve a global performance be-

cause MADDPG is not based on the IGM (Individual

Global-Max) principle; (3) Unlike MAPPO (Multi-

Agent Proximal Policy Optimization) (Yu et al., 2022)

which shares parameters of neural networks of all

agents which is useful for homogeneous agents ac-

quiring the same policy among the agents, MADDPG

can be applied for heterogeneous agents acquiring the

different policies among the agents because MAD-

DPG has independent policies of agents.

To clarify what kind of information helps agents

to learn in CTDE, this paper conducts the experi-

ments on multi-agent particle environments (MPEs)

and compares the results of the modified MAD-

DPGs which share one of three kinds of information,

the original MADDPG which shares all information,

and IDDPG (Independent Deep Deterministic Policy

Gradient) which does not share any information as

MARL with decentralized training with decentralized

execution (DTDE).

The paper is organized as follows: Section 2 in-

troduces the related works of MARL with CTDE, and

Section 3 describes MADDPG as the conventional

method. Section 4 proposes the information-sharing

methods. Section 5 conducts the experiment and an-

alyzes the experimental results. Finally, the conclu-

sions and future work of this study are discussed in

Section 6.

2 RELATEDWORK

2.1 Centralized-Training with

Decentralized-Execution

The Centralized-Training with Decentralized-

Execution (CTDE) paradigm is an essential concept

in recent MARL. In a CTDE setting, each agent i

has an independent policy πi and makes independent

action decisions according to local observations only.

This behavior is the same as that at execution time

(decentralized execution). On the other hand, during

training, agents have access to additional information,

such as global observations and information sharing

among agents (centralized training). This additional

information is discarded at runtime and never used.

The strength of CTDE lies in its potential to improve

learning speed and accuracy by mitigating the partial

observability and non-stationarity of multi-agent

systems with additional information during training.

Its potential application to real-world problems is also

high since it behaves as a fully independent agent at

runtime. Many problems are still challenging to solve

with Decentralized-Training with Decentralized-

Execution (DTDE), and CTDE shows excellent

results while reducing the strong assumptions of

Centralized-Training with Centralized-Execution

(CTCE)(Gronauer and Diepold, 2022; Zhang et al.,

2021).

MADDPG(Lowe et al., 2017), COMA(Foerster

et al., 2018), QMIX(Rashid et al., 2020), and

MAPPO(Yu et al., 2022) are known as representative

MARL methods based on CTDE. MADDPG extends

DDPG((Lillicrap et al., 2015)) to a multi-agent envi-

ronment and, following the CTDE, stabilizes learning

in a multi-agent environment by allowing the central-

ized critic to use additional information (in the paper,

pairs of observations and actions of all other agents).

In addition to being usable in cooperative, adversar-

ial, and mixed tasks, the method has the advantage

of being a very versatile algorithm, supporting both

homogeneous and heterogeneous agents. COMA ad-

dresses the problem of multi-agent credit assignment

by training a single centralized critic to calculate each

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

236

agent’s advantage function based on a counterfac-

tual baseline inspired by difference rewards(Wolpert

and Tumer, 2001). QMIX is a method proposed as

an improvement of the value decomposition network

(VDN)(Sunehag et al., 2018). It learns a joint action-

value function that can be decomposed into individ-

ual action-value functions by using a centralized net-

work called a mixing network that bundles the Q-

function networks of each agent. This decomposi-

tion is based on a monotonicity constraint between

each Q-function and joint Q-functions. MAPPO is a

method that extends PPO(Schulman et al., 2017) to

a multi-agent environment following the CTDE. The

original MAPPO uses additional information through

a shared policy network, but can also consider indi-

vidual policy networks, as can MADDPG, a method

based on the same actor-critic. In that case, the major

difference between the two methods is which algo-

rithm is used, on-policy PPO or off-policy DDPG. In

general, on-policy methods are known to be inferior

to off-policy methods in terms of sample efficiency.

As discussed in the previous paragraph for algo-

rithms that use CTDE, several types of additional in-

formation can be used during learning in the CTDE,

especially three commonly used types: network pa-

rameter sharing, value factorization, and information

sharing.

• Network Parameter Sharing. In parameter shar-

ing, a single network is used to optimize the poli-

cies of all agents, or each agent has its network for

policy improvement, and its parameters are shared

(e.g., at regular learning intervals); MAPPO (orig-

inal work) is classified as this method. This

method has the advantage of being insensitive to

the scalability of agents, but its network sharing

nature limits it to cooperative tasks performed by

homogeneous agents.

• Value Factorization. In value factorization, the

joint Q-function is learned to optimize individ-

ual Q-functions based on the IGM principle (Son

et al., 2019); VDN and QMIX are classified as

this method in which the joint Q-function is ad-

ditional information. This method allows for ac-

curate Q-function estimation but requires the as-

sumption that the joint Q-function is factorizable.

Also, its application to competitive tasks is lim-

ited due to its nature.

• Information Sharing. In information sharing,

additional information such as the state, observa-

tion, and action of each agent and the global state

of the environment is used for information shar-

ing; MADDPG and MAPPO are classified as this

method. Since this method is a simple approach

to adding environmental information, it can be

used regardless of the nature of the task (cooper-

ative/competitive) or the nature of the agents (ho-

mogeneous/heterogeneous) and can optimize the

agents’ policies independently. On the other hand,

loose constraints tend to result in local solutions,

and the addition of environmental information is

easily influenced by the agent’s scalability.

In this study, we focus on information sharing,

which directly addresses non-stationarity and partial

observability, and evaluate the impact of additional in-

formation on learning accuracy and stability. To this

end, MADDPG is employed as the baseline algorithm

for comparison. This choice is justified by its status

as the most concise actor-critic-based method capable

of leveraging information sharing, as well as its high

versatility, being independent of the specific nature of

the problem or agents. In contrast, the other methods

discussed above have limitations, such as reliance on

the IGM principle or the assumption of homogeneous

agents.

3 BACKGROUND

3.1 Problem Settings

Stochastic games (sometimes called Markov

games)(Littman, 1994) is a natural extension of

Markov decision processes (MDP) to multi-agent

environment. In a more realistic setting, the

agent may not have access to information about

the complete environment, in which case it is

modeled by Partially observable stochastic games

(POSG)(Hansen et al., 2004). A POSG is defined by

a tuple 〈I ,S ,b0,{Ai}i∈I ,{Oi}i∈I ,P ,{Ri}i∈I 〉, where

I = {1, . . . ,N} is a set of agents indexed, S is a set

of all states, b0 is the initial state distribution, Ai is

a set of actions available to agent i, Oi is a set of

observations for agent i, P : S ×
−→
A ×S ×

−→
O → [0,1]

is a set of state transitions and observation prob-

abilities(, where
−→
A = A1 × ·· · × An denotes a set

of joint actions,
−→
O = O1 × ·· · × On denotes a set

of joint observations, P (s′,−→o | s,−→a) denotes the

probability that taking joint action −→a ∈
−→
A in state

s ∈ S results in a transition to state s′ ∈ S and joint

observation−→o ∈
−→
O), Ri : S ×

−→
A ×S →R is a reward

function for agent i, and each agent attempts to

maximize its expected sum of discounted rewards,

E
[

ΣT
t γtRi(st ,

−→a t ,st+1)
]

, where γ is a discount factor

and T is the time horizon.

What Kind of Information Is Needed? Multi-Agent Reinforcement Learning that Selectively Shares Information from Other Agents

237

3.2 Multi-Agent Deep Deterministic

Policy Gradient (MADDPG)

In an N-agent POSG, if each agent employs a

policy µ = {µ1, . . . ,µN} parameterized by θ =
{θ1, . . . ,θN}, the gradient of the expected return for

agent i, J(µi) = E[Ri] in MADDPG is given by

∇θi
J(µi) =

E−→o ,
−→a ∼D

[

∇θi
µi(ai | oi)∇ai

Q
µ

i (
−→o ,
−→a) |ai=µ(oi)

]

.

(1)

Here Q
µ

i (
−→o ,
−→a) represents a centralized actio-value

function that takes as input the observations and ac-

tions of all agents. The replay buffer D stores tuples

of the form (−→o ,
−→a ,r1, . . . ,rN ,

−→o ′), recording the ex-

periences of all agents. The centralized action-value

function is updated by

L(θi) = E−→o ,a,r,−→o ′
[

(Qµ

i (
−→o ,
−→a)− y)2

]

,

y = ri + γQ
µ
′

i (−→o ′,−→a ′) |a′j=µ
′
j(o j) . (2)

Here µ′ = {µθ′1
, . . . ,µθ′N

} is the set of target policies

with delayed parameters θ′i.

4 METHODS

The most basic information shared during learning in

methods following the CTDE framework is the obser-

vations and actions of each agent. We consider that

there are stages in sharing this information, shown

in Table 1. Usually, independent information is used

when sharing is not assumed (e.g., IDDPG is shown

in Figure 1), and full information is used when shar-

ing is assumed (e.g., MADDPG is shown in Figure 2),

while

1. The case in which only observations are shared

(Table 1 upper-right cell).

2. The case in which only actions are shared (Table 1

lower-left cell).

3. The case in which information is selected and

shared (Table 1 middle-center cell).

Algorithms that rely on independent information face

challenges in addressing the non-stationarity inherent

in multi-agent systems. Conversely, algorithms that

share and utilize all available information risk having

critical information obscured by other excessive in-

formation. Building on the above, this paper outlines

the three types of sharing methods that are the focus

of this study.

Table 1: Degree of sharing information.

act\obs non partial full

non IDDPG – target 1

partial – target 3 –

full target 2 – MADDPG

4.1 Sharing Full-Observations

In this shared method, each agent estimates a Q-

function based on the joint observations of all other

agents and its own action, as illustrated in Figure 3.

Specifically, the input to critic i is a vector compris-

ing the joint observations −→o and the agent’s own ac-

tion ai. Consequently, even in a partially observable

environment, the critic can approximate global envi-

ronmental information through the joint observations.

To be precise, the ability to derive an observation rep-

resentation that closely approximates the global ob-

servation from multiple local observations depends

on the neural network training process and the spa-

tial distribution of agents. However, since the ac-

tions of other agents are not shared, the issue of non-

stationarity remains unresolved. The Algorithm 1

represents the pseudocode for the update function of

this sharing method with MADDPG.

4.2 Sharing Full-Actions

In this sharing method, each agent estimates a Q-

function based on its own observation and the joint

actions of all other agents, as illustrated in Figure 4.

Specifically, the input to critic i is a vector comprising

the agent’s own observation oi and the joint actions
−→a . Consequently, the closer the local observations

are to the global observations, the more effectively

this critic can mitigate non-stationarity. However, this

approach cannot address the issue of partial observ-

ability. The Algorithm 2 represents the pseudocode

for the update function of this sharing method with

MADDPG.

4.3 Sharing Selected Observations and

Actions

In this sharing method, each agent estimates a Q-

function based on its own observations and actions, as

well as those of selected agents, as illustrated in Fig-

ure 5. Specifically, the input to critic i is a vector com-

prising the selected observations {oi,o j} j∈Ii,select
and

the selected actions {ai,a j} j∈Ii,select
, where Ii,select ⊆ I

denotes the set of indices corresponding to the se-

lected agents for each agent i. The criteria for se-

lecting agents can be arbitrary (e.g., based on dis-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

238

tance, role, attention, etc.). Consequently, this critic

cannot completely mitigate non-stationarity and par-

tial observability unless the number of selected agents

matches the total number of other agents in the en-

vironment. Nevertheless, excluding agents that are

weakly related to the target agent may alleviate scala-

bility issues while reducing redundancy in the shared

information. The Algorithm 3 represents the pseu-

docode for the update function of this sharing method

with MADDPG.

Figure 1: IDDPG Figure 2: MADDPG.

Figure 3: MADDPG with
Sharing Full-Observations

Figure 4: MADDPG with
Sharing Full-Actions.

Figure 5: MADDPG with Sharing selected Observations &
Actions.

5 EXPERIMENTS

5.1 Multi-Agent Particle Environments

For the experimental environment, we use coopera-

tive navigation, one of the multi-agent particle envi-

ronments (MPEs) provided in (Lowe et al., 2017).

Cooperative Navigation. This environment is a co-

operative task in which multiple agents and an equal

number of goals are placed in a two-dimensional real-

valued space, and the target is for all agents to cover

Algorithm 1: Update actor and critic function for ”Sharing
Full-Observations”.

function UPDATE AGENT(i)

Sample a random minibatch of S samples

(−→o j,
−→a j,r j,

−→o ′ j) from replay buffer D

Set y j = r
j
i + γQ

µ
′

i (−→o ′ j,a′ ji) |a′k=µ′k(o′k)
Update critic by minimizing the loss:

L(θi) =
1

S
∑

j

(

y j−Q
µ

i (
−→o j

,a
j
i)
)2

Update actor using the sampled policy gradient:

∇θi
J ≈

1

S
∑

j

∇θi
µi(o

j
i)∇ai

Q
µ

i (
−→o j

,a
j
i) |ai=µi(o

j
i)

Algorithm 2: Update actor and critic function for ”Sharing
Full-Actions”.

function UPDATE AGENT(i)

Sample a random minibatch of S samples

(−→o j,
−→a j,r j,

−→o ′ j) from replay buffer D

Set y j = r
j
i + γQ

µ
′

i (o′ ji ,
−→a ′ j) |a′k=µ′k(o′k)

Update critic by minimizing the loss:

L(θi) =
1

S
∑

j

(

y j−Q
µ

i (o
j
i ,
−→a j)

)2

Update actor using the sampled policy gradient:

∇θi
J ≈

1

S
∑

j

∇θi
µi(o

j
i)∇ai

Q
µ

i (o
j
i ,
−→a j) |

ai=µi(o
j
i)

all goals. In this task, the goal of each agent is not

explicitly specified, so it must decide its action while

considering the goals of other agents. In our setting,

the initial state is as in Figure 6 (left), where each

agent is placed at random coordinates and the goal

position is set uniformly in the environment. When

the time step is t, and the agent ID is i, each agent re-

ceives an observation oi
t , which includes its absolute

position, the relative positions of each goal, and the

relative positions of other agents. Based on the pol-

icy µi, the agent determines its action ai
t , specifying

movement in the x and y directions. The reward for

each agent is given by ri = −∑N
j=0(mink∈I ||g

j
pos−

ak
pos||)− collision-penalty, where N represents the

number of agents and the number of goals, gpos de-

notes the position vector of a goal, apos denotes the

position vector of an agent, and collision-penalty

refers to the penalty reward assigned for agent col-

lisions.

5.2 Settings and Parameters

The actor and critic networks consisted of three and

four fully connected layers, respectively, with a unit

What Kind of Information Is Needed? Multi-Agent Reinforcement Learning that Selectively Shares Information from Other Agents

239

Algorithm 3: Update actor and critic function for ”Sharing
Selected Observations and Actions”.

function UPDATE AGENT(i)

Sample a random minibatch of S samples

(−→o j,
−→a j,r j,

−→o ′ j, Iselect) from replay buffer D
−→o j

i ←{o
j
i ,o

j

k}k∈Ii,select

−→a
j
i ←{a

j
i ,a

j

k}k∈Ii,select

−→o ′ ji ←{o
′ j
i ,o

′ j
k }k∈Ii,select

Set y j = r
j
i + γQ

µ
′

i (−→o ′ ji ,
−→a ′ ji) |a′k=µ′k(o′k)

Update critic by minimizing the loss:

L(θi) =
1

S
∑

j

(

y j−Q
µ

i (
−→o j

i ,
−→a j

i)
)2

Update actor using the sampled policy gradient:

∇θi
J ≈

1

S
∑

j

∇θi
µi(o

j
i)∇ai

Q
µ

i (
−→o j

i ,
−→a j

i) |ai=µi(o
j
i)

Figure 6: Cooperative navigation (5 agents).

size 64 for the hidden layer and an Adam optimizer

with a learning rate of α = 0.01 for updating the net-

work and τ = 0.01 for updating the target network.

The discount factor γ = 0.95. The replay buffer size

is 106, and the network parameters are updated after

every 100 sample is added to the replay buffer. The

batch size before updating is 1024 episodes, with one

episode having a maximum of 25 steps, and the en-

vironment is updated every episode. Each agent has

an independent network and does not share network

parameters. These parameters are following MAD-

DPG(Lowe et al., 2017).

5.3 Comparison of Learning Accuracy

by Grade of Information Sharing

5.3.1 Experiment 1: Cooperative Navigation

with Fully Observable

The results of the comparison of IDDPG, MAD-

DPG, and the three proposed methods (Sharing Full-

Observations: -fo, Sharing Full-Actions: -fa, and

Sharing selected Observations& Actions: -soa) in

the cooperative navigation task shown in Figure 6

for learning 100,000 episodes (about 2.5M steps) are

shown in Figure 7 (top). The horizontal axis shows

the learning progress [steps], the vertical axis shows

the task completion rate [%], the solid graph shows

the average of the 31 trials, and the band shows

the standard deviation. Figure 7 (bottom) shows

the boxplots of the 31 trials, and Table 2 shows the

Mann-Whitney U test results for MADDPG and each

method. In addition, Figure 7 (bottom) shows the

boxplots of average task completion rates for the eval-

uation experiments using the learned model for all 31

trials, and Table 2 shows the results of the Mann-

Whitney U-tests for MADDPG and each method.

Evaluation experiments were conducted on the latest

20% of the learned models (a total of 20 models from

80,000 to 100,000 episodes).

Figure 7, Table 2 shows that MADDPG-fa has

the highest achievement rate at 73.63 ± 9.51[%],
followed by MADDPG-soa (71.58± 17.42), MAD-

DPG (63.89± 12.28), IDDPG (44.58± 13.31) and

MADDPG-fo (36.89± 21.56). These results indi-

cate that sharing the observations of other agents

in an environment where complete observations are

available creates redundancy and leads to undesirable

results (MADDPG-fa > MADDPG and IDDPG >

MADDPG-fo). The comparison of MADDPG and

MADDPG-soa may serve as a basis for estimating

the impact of reduced shared information. In this ex-

periment, the performance of MADDPG-soa, where

shared information is limited, was statistically signif-

icantly better than that of MADDPG. These results in-

dicate that unnecessary information sharing has detri-

mental effects on performance and that performance

gains can be achieved through appropriate selection.

Specifically, in a fully observable environment, shar-

ing observational information from other agents in-

troduces redundancy and potentially degrades perfor-

mance.

5.3.2 Experiment 2: Cooperative Navigation

with Partially Observable

A fully observable environment is unrealistic in prac-

tical scenarios. Since the lack of observation may al-

ter the prioritization of additional information, a simi-

lar experiment was conducted by extending the coop-

erative navigation task shown in Figure 1 to a partially

observable environment. In this experiment, partial

observability is represented by restricting the observ-

able information to the relative coordinates of two ad-

jacent agents. The results of the comparison of ID-

DPG, MADDPG, and the three proposed methods in

the same setting as in Experiment 1 are shown in Fig-

ure 8 (top). The horizontal axis shows the learning

progress [steps], the vertical axis shows the task com-

pletion rate [%], the solid graph shows the average of

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

240

Table 2: Mean success rate (standard deviation) and Mann-Whitney U Test results.

MADDPG IDDPG MADDPG-fo MADDPG-fa MADDPG-soa

Exp. 1 63.89(12.28) **44.58(13.31) **36.89(21.56) **73.63(9.51) *71.58(17.42)

Exp. 2 70.11(21.58) **51.02(12.38) 67.7(20.78) **51.88(18.28) 74.99(17.51)

*: p < .05, **: p < .01 (Mann-Whitney U)

Figure 7: Results of 5 agents cooperative navigation with
the fully observable setting. Top: Learning progress and
success rate. Bottom: Distribution of task success rates in
evaluation experiments.

the 31 trials, and the band shows the standard devi-

ation. Figure 8 shows the boxplots of average task

completion rates for the evaluation experiments us-

ing the learned model for all 31 trials, and Table 2

shows the results of the Mann-Whitney U-tests for

MADDPG and each method. Evaluation experiments

were conducted on the latest 20% of the learned mod-

els (a total of 30 models from 120,000 to 150,000

episodes).

Figure 8, Table 2 shows that MADDPG-soa had

the highest achievement rate at 74.99±17.51[%], fol-

lowed by MADDPG (70.11± 21.58), MADDPG-fo

(67.7±20.78), MADDPG-fa (51.88±18.28) and ID-

DPG (51.02± 12.38). These results indicate that in

one of the partially observable environments, obser-

vational information has a higher priority for sharing

than action information (MADDPG-fo ¿ MADDPG-

fa). This finding contrasts with the results of Exper-

iment 1 and highlights the importance of addressing

the issue of partial observability. Nonetheless, the su-

perior performance of MADDPG and MADDPG-soa

over MADDPG-fo clearly demonstrates that sharing

behavioral information remains effective even in par-

tially observable environments. As in Experiment 1,

the comparison between MADDPG and MADDPG-

soa in Experiment 2 further suggests that selective in-

formation sharing can enhance accuracy.

Figure 8: Results of 5 agents cooperative navigation with
the partially observable setting. Top: Learning progress and
success rate. Bottom: Distribution of task success rates in
evaluation experiments.

6 CONCLUSIONS

This paper extends MADDPG, a MARL algorithm

with CTDE, to propose three methods, i.e., MAD-

DPG with sharing (i) information on actions of all

agents, (ii) information on observations of all agents,

and (iii) information on both the actions and observa-

tions of the selected agents to investigate the extent

of information sharing in CTDE comprehensively.

To our knowledge, the degree of information shar-

ing varies by task setting and application destination.

Since no exhaustive survey has been conducted, we

believe this validation is essential. Experimental re-

sults show that selective additional information reduc-

tion can maintain learning accuracy, especially when

sharing actions of all agents, and is best performed

in a fully observable environment. We also showed

What Kind of Information Is Needed? Multi-Agent Reinforcement Learning that Selectively Shares Information from Other Agents

241

cases where redundant additional information wors-

ens learning accuracy and identified priorities for ad-

ditional information in fully and partially observable

environments.

In this paper, experiments were conducted with

additional information limited to agent observations

and actions. Future research should consider ap-

plying this approach to other types of additional in-

formation. Furthermore, the information selection

method in this study was defined at runtime and re-

mained fixed throughout the learning process. Given

the complexity of multi-agent reinforcement learn-

ing (MARL), it is likely that the critical information

may vary depending on the learning stage. Therefore,

dynamic selection based on the progress of learning

would be a valuable direction for future work.

REFERENCES

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. (2018). Counterfactual multi-agent pol-
icy gradients. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

Gronauer, S. and Diepold, K. (2022). Multi-agent deep re-
inforcement learning: a survey. Artificial Intelligence
Review, 55(2):895–943.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S.
(2004). Dynamic programming for partially observ-
able stochastic games. In AAAI, volume 4, pages 709–
715.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Contin-
uous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pages 157–163. Elsevier.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. Ad-
vances in neural information processing systems, 30.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. (2020). Monotonic
value function factorisation for deep multi-agent re-
inforcement learning. Journal of Machine Learning
Research, 21(178):1–51.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y.
(2019). Qtran: Learning to factorize with transforma-
tion for cooperative multi-agent reinforcement learn-
ing. In International conference on machine learning,
pages 5887–5896. PMLR.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat,
N., Leibo, J. Z., Tuyls, K., and Graepel, T. (2018).

Value-decomposition networks for cooperative multi-
agent learning based on team reward. In Proceedings
of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’18, pages
2085–2087, Richland, SC. International Foundation
for Autonomous Agents and Multiagent Systems.

Wolpert, D. H. and Tumer, K. (2001). Optimal payoff func-
tions for members of collectives. Advances in Com-
plex Systems, 4(02n03):265–279.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,
and Wu, Y. (2022). The surprising effectiveness of ppo
in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624.

Zhang, K., Yang, Z., and Başar, T. (2021). Multi-agent rein-
forcement learning: A selective overview of theories
and algorithms. Handbook of Reinforcement Learning
and Control, pages 321–384.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

242

