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Abstract: This paper presents a novel optimization approach for allocating grid operation costs in Peer-to-Peer (P2P)
electricity markets using Quantum Computing (QC). We develop a Quadratic Unconstrained Binary Opti-
mization (QUBO) model that matches logical power flows between producer-consumer pairs with the physi-
cal power flow to distribute grid usage costs fairly. The model is evaluated on IEEE test cases with up to 57
nodes, comparing Quantum Annealing (QA), hybrid quantum-classical algorithms, and classical optimization
approaches. Our results show that while the model effectively allocates grid operation costs, QA performs
poorly in comparison despite extensive hyperparameter optimization. The classical branch-and-cut method
outperforms all solvers, including classical heuristics, and shows the most advantageous scaling behavior. The
findings may suggest that binary least-squares optimization problems may not be suitable candidates for near-
term quantum utility.

1 INTRODUCTION

The increasing adoption of distributed energy re-
sources and the ongoing transformation of electricity
consumers into prosumers drive fundamental changes
in power systems operation. P2P electricity markets
have emerged as a promising paradigm to facilitate
direct energy trading between prosumers while main-
taining grid stability and operational efficiency (Sousa
et al., 2019). However, a key challenge in imple-
menting P2P markets lies in fairly allocating grid op-
eration costs among participants based on their ac-
tual infrastructure usage. Traditional constant net-
work tariffs become inadequate in P2P settings as
they fail to account for the complex power flow
patterns that emerge from bilateral trades (Baroche
et al., 2019), leading to unfair cost distributions be-
tween customers. This requires dynamic cost allo-
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cation mechanisms to appropriately distribute grid
operation and maintenance costs among market par-
ticipants based on their contribution to network uti-
lization. To implement P2P, the Distribution Sys-
tem Operator (DSO) requires that the cost allocation
mechanism covers all operational and maintenance
costs. The combinatorial nature of matching multiple
producers and consumers presents a computationally
challenging optimization problem.

QC, particularly Quantum Annealing (QA), has
shown promise in solving complex combinatorial op-
timization problems in various domains (Abbas et al.,
2024). Recent advances in quantum hardware and hy-
brid quantum-classical algorithms offer new opportu-
nities to address challenging energy sector optimiza-
tion problems (Blenninger et al., 2024). However, the
practical utility of quantum approaches for P2P mar-
ket optimization remains largely unexplored.

This paper makes two main contributions: First,
we develop a novel optimization model for allocat-
ing grid usage costs in P2P electricity markets based
on actual power flow patterns. Second, we conduct
a comprehensive benchmark study comparing quan-
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tum annealing, hybrid quantum-classical, and classi-
cal optimization approaches for solving the proposed
model. Our analysis provides insights into the poten-
tial and limitations of current quantum optimization
techniques for P2P market applications.

The remainder of this paper is organized as fol-
lows: Sec. 2 provides background on quantum an-
nealing and classical optimization and reviews related
work. Sec. 3 presents our problem formulation for
P2P cost allocation. Sec. 4 analyzes the model be-
havior through a detailed case study. Sec. 5 presents
benchmark results comparing different optimization
approaches, and Sec. 6 concludes, giving future re-
search directions.

2 BACKGROUND & RELATED
WORK

2.1 Quantum Annealing

The quantum bit (qubit), as the elementary informa-
tion unit in quantum mechanics, manifests in super-
position states |ψ⟩= α |0⟩+β |1⟩ with |α|2+ |β|2 = 1.
This property enables n coupled qubits to encode the
complete set of 2n bit configurations in a quantum
state described by

|ψ⟩=
2n−1

∑
x=0

ψx |x⟩ , (1)

for x ∈ {0,1}n. Computational basis measurements
reveal bit string x with probability |ψx|2 (Nielsen and
Chuang, 2010), forming the foundation for quantum
optimization approaches that maximize the measure-
ment probability of optimal bit configurations.

The framework for quantum optimization typi-
cally employs an Ising Hamiltonian constructed from
Pauli z-matrices σ̂

z
i = |0⟩⟨0|− |1⟩⟨1|. This cost oper-

ator takes the form

ĤC =−∑
i, j

Ji, jσ̂
z
i ⊗ σ̂

z
j −∑

i
hiσ̂

z
i , (2)

where tensor products indicate simultaneous opera-
tions on qubit pairs (i, j). The diagonality of ĤC in
the z-basis ensures its ground state corresponds to
a computational basis state x∗. The classical repre-
sentation of bit string energies follows naturally as
⟨x| ĤC |x⟩= HC(x), yielding the QUBO formulation:

HC(x) =−∑
i, j

Ji, jziz j −∑
i

hizi = ∑
i, j

Qi, jxix j, (3)

with zi = 1−2xi and σ̂
z
i |xi⟩= zi |xi⟩. This equivalence

enables physical implementation of the Ising Hamil-
tonian for combinatorial optimization (Lucas, 2014).

The solution methodology leverages the adiabatic the-
orem (Born and Fock, 1928; Farhi et al., 2001), which
postulates that a system maintains ground-state oc-
cupation under sufficiently slow Hamiltonian evo-
lution. Adiabatic Quantum Computing (AQC) ex-
ploits this principle by initializing the system in |+⟩=
2−n/2

∑x |x⟩, the ground state of ĤD = −∑i σ̂x
i . Time

evolution proceeds under

Ĥ(s) = sĤC +(1− s)ĤD, (4)

with s ∈ [0,1]. Ideally, adiabatic evolution from s = 0
to s = 1 yields the QUBO solution state |x∗⟩.

Physical implementations, however, must contend
with decoherence and noise, necessitating accelerated
evolution times. This practical constraint transitions
the process from AQC to QA (Rajak et al., 2023).
While this departure from the adiabatic regime re-
duces the optimal state probability |ψx∗ |2, repeated
measurements can still reveal the desired solution.
Hence, QA is considered approximate optimization.

Current QA hardware, exemplified by D-Wave’s
Advantage System QPU, implements this approach
using over 5000 qubits interconnected by 35000 cou-
plers (McGeoch and Farré, 2021). The underlying
Pegasus topology establishes 15 couplings per qubit,
though this fixed architecture introduces implemen-
tation challenges for problems requiring higher con-
nectivity. Such cases necessitate the embedding of
logical qubits as multiple physical qubits (so-called
chains).

In addition to its QPUs, D-Wave offers a propri-
etary cloud-based hybrid quantum solver (Leap). The
solver employs graph partitioning to decompose large
optimization problems into quantum-compatible sub-
problems, which are then solved through parallel pro-
cessing using both QA and classical algorithms. A
central orchestrator dynamically allocates these sub-
problems between quantum and classical resources
while a merging process reconstructs the complete
solution. This hybrid architecture enables handling
large-scale problems beyond quantum hardware lim-
itations while maintaining solution quality through
adaptive refinement strategies (D-Wave, 2020).

2.2 Classical Solvers

Optimization heuristics produce fast solutions repeti-
tively to arrive at a reasonable solution candidate in-
stead of a structured search in the space of possible so-
lutions. Even though the optimal solution is often not
reachable for heuristics, the fast runtime and close-to-
optimal solutions are more desirable in many practi-
cal application scenarios, especially if exact methods
suffer from lengthy runtimes.
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Simulated Annealing (SA) is a QUBO heuristic, a
Markov-Chain Monte Carlo method, that starts from a
random initial point and iteratively proposes bit-flips
in its current solution (Kirkpatrick et al., 1983). If
a bit-flip decreases cost, it will be accepted directly.
Still, when it increases, it will only be accepted based
on an acceptance probability dictated by the cost delta
and an annealing parameter β. This parameter in-
creases with every iteration, shifting the search strat-
egy from exploration to exploitation.

Tabu Search (TS) enhances the local search
method by maintaining a tabu list of recently explored
samples in memory to prevent cycling and escape lo-
cal optima (Glover, 1989). At each iteration, it eval-
uates the neighborhood of the current solution and
moves to the best non-tabu neighbor, even if this leads
to a temporary deterioration in solution quality.

Gurobi is a state-of-the-art classical branch-and-
cut solver that structurally explores the search space
using the branch-and-bound algorithm in conjunc-
tion with various cutting plane methods (Gurobi Op-
timization, 2024). Gurobi is capable of solving linear
programming as well as quadratic programming prob-
lems with various constraints.

2.3 Related Work

To the best of the authors’ knowledge, QC has not
been investigated to solve the problem of P2P Cost
Allocation directly, although several applications of
QC within the optimal use of energy exist. Specifi-
cally, applications of QA to solve the problem of grid
partitioning use-cases (Fernández-Campoamor et al.,
2021; Colucci et al., 2023; Bucher et al., 2024b) have
successfully demonstrated some of these first appli-
cations. Furthermore, gate-based optimization algo-
rithms showed promising results for applications in
load scheduling (Mastroianni et al., 2024), charging
optimization (Kea et al., 2023), and coalition forma-
tion (Mohseni et al., 2024). Finally, QA has been
applied for matching producer and consumer pairs in
P2P markets (O’Meara et al., 2023) without consider-
ing cost allocation.

P2P markets have been studied extensively in
the literature. Early work on P2P electricity mar-
kets focused primarily on bilateral trading mecha-
nisms where prosumers directly negotiate energy ex-
changes. Later work introduced a P2P energy trading
framework incorporating network constraints and dis-
tribution fees (Sousa et al., 2019). The challenge of
fair cost allocation gained prominence as researchers
recognized that traditional volumetric network tariffs
could lead to inefficient market outcomes in P2P set-
tings. This study is based on modeling aspects de-

veloped by Baroche et al. (Baroche et al., 2019),
who applied cooperative game theory concepts like
the Shapley value to allocate network costs among
peers, and has been extended by incorporating net-
work losses and congestion costs in their allocation
framework (Le Cadre et al., 2020).

3 PROBLEM FORMULATION

A power grid can be described as a graph G(V,E)
with power lines as edges E and loads or genera-
tors as nodes i ∈ V = P ∪C, where P and C are
the sets of producers and consumers, respectively.
Given a self-reliant section of the power grid with
the nodal power injection di balanced by the load,
i.e., ∑i di = 0, we strive to find an assignment z =
{(p1,c1),(p2,c2), . . .} ⊆ P×C, such that the follow-
ing condition is satisfied: The combination of all pair
power flows between the pairs in z—called logical
power flow in the following—should match the phys-
ical power flow, which is the power flow when all par-
ticipants inject and draw their full load. By doing so,
we can approximately locate which participant is re-
sponsible for which load in the network power lines.
In reality, many possible assignments can lead to a
close matching of the power flows. Since line usage
is attributed to cost, we want to identify the assign-
ment that benefits the customers most, i.e., minimizes
overall costs for the customers.

Therefore, we devise a multicriteria optimization
problem from the combination of two objectives: The
first objective is to minimize the mismatch between
physical and logical power flow, while the second ob-
jective is to minimize attributed costs.

3.1 Power Flow Matching

Given the power generators and loads di and the grid
infrastructure G(E,V ), we can compute the baseline
power flow wi, j ∀(i, j) ∈ E through standard methods
like DC power flow (Thurner et al., 2018). The power
flow is directed in the sense that wi, j = −w j,i. Fur-
thermore, we consider the optimization within a fixed
time period ∆t. Thus, power flow and injection quan-
tities are referred to in energy units, not in power units
([kWh] instead of [kW]).

The pair power flow vp,c
i, j can analogously be

computed using DC power flow, but instead of all
nodes being active and injecting (drawing) power into
(from) the grid, we only enable the nodes p and
c. Furthermore, we match the production capac-
ity of p to the load demand of c, by using dp,c =
min{−dp,dc} for both nodes. This computation has

Grid Cost Allocation in Peer-to-Peer Electricity Markets: Benchmarking Classical and Quantum Optimization Approaches

753



to be repeated for all possible pairs P×C to obtain the
possible power pair flows. The definition is compara-
ble to the electrical power transfer distance, defined
in Refs. (Baroche et al., 2019; Christie et al., 2000).

Using the binary variables xp,c ∈ {0,1} to indicate
whether a pair is part of the final assignment z, we can
describe the logical power flow as the linear superpo-
sition of all active pair power flows

vi, j(x) = ∑
p,c

vp,c
i, j xp,c. (5)

As a consequence, we can model the objective
to minimize the mismatch between logical and base-
line power flow as a convex least-squares optimiza-
tion problem

min
x ∑

(i, j)∈E
(wi, j − vi, j(x))

2 . (6)

The solution x∗ indicates which producer-consumer
pairs have been selected for P2P trading.

3.2 Cost Allocation

We can estimate the line utilization through ui, j =
|wi, j|/Wi, j, where Wi, j is the specific maximum capac-
ity constant of a power line. To charge the usage of
a line, we employ the utilization as a cost factor and
bill the power flow over a line in accordance to a grid
fee constant ρ [ct/kWh]:

Mp,c = ρ ∑
(i, j)∈E

ui, jv
p,c
i, j . (7)

So far, this formulation for Mp,c does not consider
the direction of the power flow of vp,c

i, j . However, it
can make quite a difference since we only want to
charge line usage in the direction of physical power
flow. Suppose the pair power flow goes in the oppo-
site direction. In that case, we have three possibilities:
(a) bill the absolute value, (b) reimburse because the
opposite direction means that the trade reliefs strain
from the line, and (c) do not charge line costs. Prelim-
inary experiments have shown that option (b) favors
trades in opposing directions to the physical power
flow, pushing the optimization away from the main
objective. Option (a) leads to unfair allocations since
trades are billed that effectively help stabilize the grid
operation. Consequently, this proof-of-concept for-
mulation settles with option (c).

Therefore, we redefine Eq. (7) as follows

Mp,c = ρ ∑
(i, j)∈E

ui, j

[
sign(wi, j)v

p,c
i, j

]+
, (8)

with [·]+ = max{·,0}. Equipped with the cost allo-
cation for a single trade pair, we can split the costs

between producer and consumer equally, considering
all trades that they are involved in

Mi(x) =
1
2

{
∑c xp,cMp,c if i ∈ P
∑p xp,cMp,c if i ∈C.

(9)

3.3 Optimization Model

Finally, we can combine the cost allocation with the
power flow matching into a single objective by adding
a matching penalty parameter α [ct/kWh2]

min
x

[
α ∑

(i, j)∈E
(wi, j − vi, j(x))

2 +∑
p,c

xp,cMp,c

]
. (10)

The problem is already in QUBO form, so no addi-
tional transformations are required to apply quantum
methods like QA. The parameters ρ and α must be
chosen for the specific application instance. Techni-
cally, only a single parameter is necessary to define
the optimization problem’s outcome fully. However,
using ρ already in correct units for cost allocation
makes handling the objective function and interpret-
ing the results more straightforward.

3.4 Final Tariffs

After the optimization, we receive an optimal assign-
ment x∗. Since we only perform discrete assignments,
it is possible that some customers are not fully satis-
fied and trade more (or less) electricity than initially
asked for (or offered), e.g., a producer aims to sell
−dp, but d̃p(x)=∑c dp,cx∗p,c <−dp. In contrast to the
literature formulation in Ref. (Baroche et al., 2019),
we consider the remaining volume to be sourced from
the DSO. Therefore, the difference between required
demand and achieved demand has to be bought (or
sold) using flat tariffs, i.e., λbuy = 30ct/kWh (and
λsell = 8ct/kWh). Furthermore, the consumer com-
pensates the producer with a flat equilibrium tariff
λeq = (λbuy +λsell)/2 = 19ct/kWh that is in between
grid sell and buy price. Tariffs mentioned here are
exemplary only and can be adapted without loss of
generality.

Combining these considerations, we can compute
the final costs M̃ or profits for producers and con-
sumers separately:

M̃p(x) =Mp(x)+λ
buy [d̃p(x)+dp]+

+λ
sell [d̃p(x)+dp]−−λ

eqdp(x) (11)

M̃c(x) =Mc(x)+λ
buy [dc − d̃c(x)

]+
+λ

sell [dc − d̃c(x)
]−

+λ
eqdp(x), (12)
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where [·]− = min{·,0}. This ensures that ex-
cess/deficit energy amounts will be traded with the
DSO. Using the total demand of a peer, we can subse-
quently calculate the effective tariff per unit of elec-
tricity λi = M̃i/di.

3.5 Possible Model Extensions

There are a few considerations to make when ap-
plying the problem to real-world scenarios. A non-
exhaustive list of example extensions is included be-
low:

Grid Connection. The problem described above is
self-contained, i.e., we are in a self-reliant commu-
nity. However, in principle, general problems can also
be considered. This can be achieved by including the
grid connection as an additional trade partner for all
consumers and producers, increasing the number of
binary variables by |V |.

Baseline Grid Fee. Grid costs are only determined
by line usage. This may cause exaggerated price dif-
ferences between participants. An additional small
constant base grid fee can restrict these price differ-
ences.

Bidding Constraints. In literature, P2P markets are
often realized by an auction market in which partici-
pants can bid a price for buying or selling their elec-
tricity (Doan et al., 2021; Muhsen et al., 2022). The
current formulation does not involve the customer’s
action itself. An extension to the current scheme can
be realized by employing constraints that disallow any
assignments where the bids are violated, e.g., if a pro-
ducer only sells for a certain amount, any assignment
resulting in a profit lower than the respective amount
will be disallowed by the constraints.

4 CASE STUDY

Before focusing on the capabilities of quantum ap-
proaches for solving the P2P matching, we investigate
how the model behaves under the parameters ρ and α.
To that end, we examine the IEEE power system test
case 14 (case14), provided by pandapower (Thurner
et al., 2018) in the following. It consists of 14
buses and 20 power lines. Since we focus on resi-
dential P2P operation, we solely take the grid topol-
ogy from the test case and rescale and replace the
power lines with residential lines. The scaling fac-
tor is determined such that the shortest line is 50m

long, the voltage level is dropped to 400V, and NAYY
4x50 SE power lines are employed. We sample the
production and consumption data for the customers
from two shifted normal distributions centered around
±1kWh. Additionally, we rescale the production side
so that the net consumption within the community be-
comes zero. A single instance of the problem is dis-
played in Fig. 1(a). The thickness and direction of
the lines indicate the physical power flow obtained by
pandapower’s DC power flow.

Fig. 1(b) shows the matches found by solving
the model exactly with Gurobi using parameters ρ =
45ct/kWh and α = 100ct/kWh2. The thickness of
the power lines indicates the mismatch between the
physical and logical power flow here.

4.1 Collected Grid Operation Fees

In a non-P2P environment, electricity prices for cus-
tomers do not directly reflect production costs. Be-
sides taxes, a significant portion is attributed to oper-
ational costs for maintaining and stabilizing the power
grid. In P2P markets, those costs still need to be
covered as the market members use the existing in-
frastructure and incur maintenance costs. Let us as-
sume that 50% of the purchase price for electricity is
the grid operation compound, i.e., 15ct/kWh of the
30ct/kWh baseline1. The horizontal line in Fig. 1(c)
represents the total collected grid operation fees of the
DSO in the case14 non-P2P scenario.

The dashed lines in Fig. 1(c) indicate the total cost
allocation for different α’s depending on the grid fee
parameter ρ. As expected, the earnings from P2P
trades for the DSO increase with increasing ρ; how-
ever, they start to fall off again as soon as costs be-
come too expensive for the customers and they rather
trade directly with the DSO again. This is also vi-
sualized in Fig. 1(d), where the ratio of P2P trades
compared to total demand is shown. When customer
demand is not satisfied by P2P trades, it will be sat-
urated by direct DSO electricity purchases, enabling
the DSO to subsequently collect additional grid oper-
ation fees even if no P2P trades are facilitated. The
total collected grid operation fees are observable in
the solid-line plot in panel (c). For α = 10ct/kWh2,
we see that when no P2P trades occur, we precisely
retrieve the collected baseline operation fees.

Furthermore, it is apparent that the total retrieved
grid operation fees exhibit a similar trend up until they
are saturated (ρ < 60ct/kWh), independent of α. We,
therefore, require ρ ≈ 45ct/kWh to gain about 80%
of the baseline costs. The authors arbitrarily choose

1Producers are not charged for grid operation in this as-
sumption.
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Figure 1: P2P power flow matching on an example instance of the IEEE case14. Panel (a) shows the input data to the
optimization problem consisting of the net topology, the consumer and producer data, as well as the physical power flow.
Below, in (b), we depict the solution to the optimization problem Eq. (10); the green arrows indicate the matched pairs and the
thickness of the power lines corresponds to the mismatch between physical and logical power flow. In the center, (c) and (d),
the solution in terms of gathered grid operation costs is shown depending on the model parameters ρ and α. Finally, (e)
visualizes the effective tariffs in dependence of ρ for the consumers and producers separately.

80%, which is sensible since the self-balancing com-
munity, in which P2P trades are facilitated, causes
less strain on the power grid and, therefore, less oper-
ational costs.

4.2 Individual Customer Tariffs

Due to the different line usage, each customer will re-
ceive a different effective tariff composed of grid op-
eration cost allocation and the compensation between
consumer and producer. The final price or tariff is
computed with Eqs. (11) and (12). Fig. 1 (e) shows
the different effective customer tariffs for consumers
and producers for different grid fee parameters ρ.
Clearly, at ρ = 0, all trades are free of charge. Hence,
the consumer and producer tariffs align at the equi-
librium tariff λeq = 19ct/kWh. As the fee increases,
consumption becomes more expensive and produc-
tion less profitable. The average consumption tariff
approaches the baseline tariff of λbuy = 30ct/kWh,
while the consumer compensation tariff decreases to
λsell = 8ct/kWh. The experiments for the effective
customer tariffs shown here have been conducted with
α = 100ct/kWh2.

5 BENCHMARKS

One aim of this study is to evaluate the applicability of
quantum approaches to solving this problem. There-
fore, we compare the performance of different solvers

against each other in the following.

5.1 Experimental Setup

First, we explain the benchmarking setup, i.e., the
considered problem instances, solvers, and metrics.

5.1.1 Problem Instance Dataset

For testing on close-to real-world problems, we re-
quire grid topologies that resemble the future elec-
tricity grid, i.e., energy grids containing decentralized
power generation. To this end, we modify the IEEE
system test cases, as described in Sec. 4. For our anal-
ysis, we select the available IEEE test cases between
9 and 57 nodes, referred to in the following as case{9,
14, 24, 33, 39, 57} where the numbers denote the
number of nodes in the respective IEEE power sys-
tems test case. For each test case, we generate 20 in-
stances using different seeds to sample from the con-
sumption distributions to generate different load pro-
files.

Like Sec. 4, we determine ρ for each test case,
such that the DSO receives roughly 80% of the base-
line costs. Unsurprisingly, the grid topology signif-
icantly impacts the collected fees through cost allo-
cation. Therefore, we must set case-specific grid fee
constants, as seen in Table 1.
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Table 1: ρ values and timeout settings for each case.

case 9 14 24 33 39 57
ρ [ct/kWh] 20 45 40 15 15 15
Timeout [s] 1 2.45 7.2 13.6 19 40.6

5.1.2 Investigated Solvers

We analyze the performance of classical branch-and-
cut (Gurobi), classical heuristics (SA, TS), hybrid
quantum-classical (Leap), and QA (D-Wave).

Specifically, we utilize D-Wave Advantage 5.4,
located in Germany. Since the embedding of the
fully connected optimization QUBO (10) onto the D-
Wave hardware graph is limited to maximally 169 bi-
nary variables, case33 with 272 binary variables is
already too large for D-Wave. For embedding, we
use the Clique embedder, a fast (polynomial-time) al-
gorithm designed explicitly for fully connected prob-
lems (Boothby et al., 2016).

On the other hand, Gurobi can be faced with
two equivalent problem formulations that make a
difference in runtime and solution quality. As the
QUBO (10) has a mean-squared-error form, we uti-
lize CVXPY(Diamond and Boyd, 2016) to interface
Gurobi. CVXPY formulates the optimization problem
as follows

min
x

α∑
i, j

ζ
2
i, j +∑

p,c
xp,cMp,c

s.t. ζi, j = wi, j − vi, j(x) ∀i, (13)

where ζi, j is the residual power flow per line.
This formulation allows Gurboi to find better lower
bounds more efficiently, leading to a faster converg-
ing branch-and-cut procedure. The second alterna-
tive is to present Gurobi the expanded expression of
Eq. (10), which is referred to in the following as
Gurobi[ncvx].

Since the solution bit-string will only be sparsely
populated with ones, i.e., only a tiny fraction of all
possible trades will be satisfied, we initialize the SA
solver with all bits set to zero. This will make the
exploration stage easier at the beginning since SA re-
quires a few bitflips to arrive at a viable solution.

To ensure a fair comparison, we optimize the hy-
perparameters of the classical heuristics and the D-
Wave QA. The results can be found in Table 2, and
further details are presented in the Appendix.

All classical experiments were conducted on a
single core of an AMD Ryzen Threadripper PRO
5965WX.

5.1.3 Benchmarking Strategies

In the following, we devise two benchmarking strate-
gies to compare the solvers on solution quality and

runtime.

Solution Quality Within Time Limit. For this
strategy, we set a fixed timeout for each test case and
investigate how close the solutions are to the optimal
solution. The reference solution x∗ is obtained by run-
ning Gurobi for one hour for each instance using the
formulation created with CVXPY (Diamond and Boyd,
2016). The relative objective error can then be com-
puted using

ε(x) =
C(x)−C(x∗)

C(x∗)
, (14)

where C(x) is the cost function defined in Eq. (10).
We choose a linearly growing timeout with the

number of involved binary variables to mitigate the
growing problem difficulty with increasing problem
size. We set the timeout for each use case according to
the number of possible trades, i.e., |P×C|, or approx-
imately (N/2)2, which is subsequently used. We arbi-
trarily set case9 to 1s, and scale the remaining cases
accordingly, see Table 1. Leap has a minimal config-
urable time limit of 3s, which overrides our timeout
setting.

Time to Solution (TTS). As we are investigating
some nondeterministic heuristics with varying suc-
cess probability, it is sensible to inspect the expected
time each solver requires to reach a solution of ade-
quate quality. This evaluation considers solutions ac-
ceptable if they are within 5% of the optimal solution
computed using Gurobi (ε ≤ 5%). Furthermore, we
only run experiments until case33, as the optimal so-
lution has not been found with Gurobi for the larger
cases, possibly distorting the TTS. The error threshold
is chosen since some solvers struggle to find the op-
timal solution, disallowing TTS calculation. We run
each solver on each instance until 50 samples have
been found that are within 5% of the optimal solution.
However, since this might take a very long time, we
fixed an upper limit of 1000 s. To ensure the statistical
significance of our results, we disregard the TTS if we
do not find at least 10 samples within the timeout.

TTS is computed by estimating the expected run-
time based on the sample time ts and the expected
number of repetitions to sample one solution with
99% probability, based on the probability measured
from the samples pε (Steiger et al., 2015)

TTS(ε) = ts

⌈
log(1−0.99)
log(1− pε)

⌉
. (15)

Since Leap only has the time limit as a con-
trollable parameter, we cannot directly evaluate TTS
here. Instead, we investigate how a growing time limit
improves solution quality.
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Figure 2: The median relative objective error for different
solvers and test cases. The error bars mark the 50% per-
centile interval. Gurobi’s median solution quality stays be-
low the 5% rel. error mark for almost all cases.
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Figure 3: Number of instances for which a solution within
the 5% error bound has been obtained.

5.2 Results

Solution Quality. Fig. 2 shows the relative er-
ror with the time limit from Table 1 for different
cases. We can see that, except for D-Wave and the
Gurobi[ncvx], almost all algorithms solve the first
two cases to optimality. Afterward, we see a steep
decrease in solution quality for every solver, crossing
the 5% error threshold between case24 and case33
except for the convex Gurobi, which exhibits the low-
est error (< 5%). This is also highlighted in Fig. 3,
where Gurobi is the only algorithm that consistently
finds solutions that are within 5% of the optimal so-
lution for every case. SA, TS, and Leap perform sim-
ilarly, with Leap having a slight advantage. D-Wave
performs very poorly except for the smallest case (20
binary variables). It exhibits a mean relative error
of more than 20% in case14 and almost 1000% in
case24.

Notably, Gurobi[ncvx] performs considerably
worse than Gurobi and possesses higher solution
quality errors than the classical heuristics and the hy-
brid quantum algorithm.
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Figure 4: Median TTS to find a solution that is within 5%
of the optimal solution with respect to the number of binary
variables in the optimization problem. Error bars indicate
the 50% percentile interval. D-Wave only shows a single
point since no solutions within the error bound were ob-
served for problem instances larger than case9.

Time to Solution. Fig. 4 presents the estimated
TTS results to reach solutions within the 5% error.
We are missing several data points because specific
solvers could not find the minimum required amount
of acceptable samples within the timeout limit, as dis-
cussed in the following. Due to the solution quality
results, we did not attempt to find TTS estimates with
D-Wave for cases larger than case9. Similarly, SA,
TS, Gurobi[ncvx] do not find sufficient satisfactory
solutions for case33, where they crossed the error 5%
error threshold in Fig. 2, even with the increased time
limit considered.

Both Gurobi and SA exhibit exponential runtime
scaling, as the linear dependence with the logarith-
mic time scale is distinctly visible. A linear regression
reveals exponential scaling with ∝ 1.08n for SA and
∝ 1.02n for Gurobi, with R2 scores above 99%, where
n is the number of binary variables in the optimization
problem. Interestingly, TS and Gurobi[ncvx] both ex-
perience a similar dip in required runtime between
case9 and case14, indicating that case14 could be
easier than case9. However, this hypothesis is not
supported by the results from SA and Gurobi, indi-
cating a similarity between the solving strategy of
Gurobi[ncvx] and TS. Since the three data points of
TS and Gurobi[ncvx] do not exhibit apparent expo-
nential scaling, we do not perform linear regression
here. However, qualitatively, TS seems to scale simi-
larly to SA, and Gurobi[ncvx] scales worse than SA.

Focusing on the absolute TTS at the smallest
case9, we see that SA is fastest (< 1ms), Gurobi and
TS come second with ≈ 10ms. Afterwards, we iden-
tify D-Wave (≈ 20ms) and Gurobi[ncvx] (≈ 100ms)
as the slowest.

Since TTS analysis is impossible with D-Wave’s
Leap hybrid solver, we separately analyze the solution
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Figure 5: D-Wave hybrid Leap BQM solver solution quality
improvement against timeout setting.

quality improvement upon growing time limit settings
in Fig. 5. Due to the minimum timeout of 3 s for
Leap, we cannot infer the TTS for case24 as it is cer-
tainly below 3 s. For case33, we can estimate that
the TTS is probably larger than 160 s, since the me-
dian point crosses the 5% threshold there. As a con-
sequence, the median TTS is about 160 s, which is
slower than Gurobi but probably faster than SA, judg-
ing from Fig. 4, where 3 s and 160 s are indicated with
faint pink horizontal lines.

5.3 Discussion

The results show that Gurobi—equipped with the
convex problem formulation—outperforms (or per-
forms on par with) every other solver in terms of so-
lution quality within a time limit. Only the TTS of
SA and TS is faster for the small test cases case9
and case14, as apparent from Fig. 4, which can be
explained by the fast sampling times of heuristics in
these small instances and initialization overhead of
the more complex Gurobi solver.

That Gurobi outperforms the classical and
quantum-classical heuristics is to some extent sur-
prising since the problem of Eq. (10) is inherently
of unconstrained form, which means no constraints
had to be formulated as penalty, which typically
makes problems more challenging to solve with un-
constrained solving algorithms (Lucas, 2014; Bucher
et al., 2024a). The analysis of both formulations for
Gurobi unmistakably showed that presenting Gurobi
with the convex formulation is advantageous. Our re-
sults on the scaling behavior of the TTS of Gurboi
and SA also show superior scaling of Gurobi com-
pared to SA, indicating that no break-even point can
be expected with growing problem size.

Furthermore, QA performs extremely sub-par in
this use case, already losing solution quality beyond
the accepted threshold of 5% relative error in the sec-
ond smallest test case. This result can be explained by
the embedding necessary to map the fully connected

problem structure onto the graph of the D-Wave hard-
ware. Even though we utilize the specialized Clique
embedding method for fully connected problems with
chain strength hyperparameter optimization, the em-
bedding still requires excessive amounts of physical
qubits for a single logical one.

Since the experimental results demonstrate that
classical heuristics and hybrid methods yield inferior
solutions compared to Gurobi, QA hardware advance-
ments may not help solve this problem more effi-
ciently. Instead, we expect they merely close the gap
between the current quantum results and the classical
heuristics. We can make the same argument for other
heuristic quantum optimization algorithms, including
the gate-based Quantum Approximate Optimization
Algorithm (Farhi et al., 2014), challenging better ex-
perimental results than classical heuristics. However,
further experimental validation is necessary to con-
firm this hypothesis. Due to the large problem size
and deep quantum circuits required because of the
fully connected problem structure, this verification is
currently out of reach for simulation or real hardware
experiments.

The findings from this specific problem of power
flow matching tentatively suggest that binary least-
squares problems, or even binary convex problems,
might not be suitable candidates for quantum op-
timization applications, as they can be more effi-
ciently solved using existing classical optimization
algorithms. However, more extensive studies are
needed to prove the generalization of this statement.
It is important to remark here that quantum special-
ized optimization methods for convex problems (Ab-
bas et al., 2024) have not been investigated within
that study but only QUBO optimization methods like
QA. Nevertheless, these oracle-based methods are ex-
pected only to apply when fault-tolerant QC is avail-
able.

6 CONCLUSION

This study had two objectives: first, to develop an
optimization model for allocating grid usage costs in
P2P electricity markets, and second, to investigate
whether quantum optimization techniques can suc-
cessfully be employed to solve the defined model.

For the first part, we devised a binary optimization
model that aims to match the logical power flow—the
power flow that can be attributed to P2P consumer-
producer pairs—with the physical power flow when
all producers and consumers in the network inject
(draw) power into (from) the grid. An in-depth in-
vestigation of the model behavior showed that this
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formulation could retrieve all collected grid operation
fees from beforehand. This indicates that the formula-
tion is viable for attributing P2P grid operation costs.
Nevertheless, the formulation is still rudimentary and
probably requires extensions (e.g., external grid con-
nection, baseline grid fees, and bidding constraints)
to make it applicable in a real-world scenario. Yet,
it serves as a sufficient proof-of-concept use case for
benchmarking and a seed for future work.

The second goal is to show the applicability of
quantum optimization techniques. This is straightfor-
wardly possible as the problem formulation is already
in QUBO form, which is atypical in applied quantum
computing to real-world use cases. Thus, we directly
benchmarked QA against classical heuristics, hybrid
quantum-classical heuristics, and a classical branch-
and-cut solver. When posed with a convex formula-
tion of the least-squares problem, the classical solver
outperformed any heuristic, with QA performing sig-
nificantly sub-par due to the fully connected nature of
the problem. This substantially challenges the valu-
able application of QA to solve the power flow match-
ing problem, as classical methods find better solutions
faster and exhibit more favorable scaling behavior.

Furthermore, these results indicate that binary
least-squares problems can be inherently challenging
for classical heuristics and quantum methods, unlike
linear least-squares results might suggest (Borle and
Lomonaco, 2018). Yet, this statement and whether
this consequence extends to general convex optimiza-
tion problems requires further experimental investi-
gation. Nevertheless, specialized convex quantum al-
gorithms such as Refs. (van Apeldoorn et al., 2020;
Chakrabarti et al., 2020; Abbas et al., 2024) may be
a more advanced future route for solving the power
flow matching. Another route forward could be to in-
vestigate the spectral gap throughout the quantum an-
nealing process, which may give valuable insight into
whether the complete connectedness or the problem
itself is the main barrier to solving.

Finally, the authors suggest that future searches
for applications of quantum optimization algorithms
should focus on problems with sparser intercon-
nections and structures that are not classically ex-
ploitable, such as unconstrained and non-convex
problems.
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APPENDIX

Table 2: Optimal hyperparameters for D-Wave.

case 9 14 24

chain strength factor 0.3 0.4 0.9
annealing time [µs] 10 20 20

To ensure fair benchmark comparison, we aim to de-
vote equal effort to hyperparameter optimization of
the individual solvers (Bucher et al., 2024a). Leap
cannot be fine-tuned, and Gurobi, as a commercial
solver, is also considered with default parameters.
Preliminary experiments showed little to no response
of TS to changing hyperparameters; hence, we do not
consider it in the following section. Instead, we only
consider SA and D-Wave in the following, whose re-
sults are summarized in Table 2.

Simulated Annealing

The most critical hyperparameter of SA is the num-
ber of Monte Carlo sweeps (num sweeps) computed
for a single sample. A larger number of sweeps re-
sults in better solutions, but the runtime for a single
sample of the algorithm is directly proportional to the
number of sweeps in the algorithm. Therefore, we
expect a TTS sweet spot when tuning num sweeps,
similar to Refs. (Rønnow et al., 2014; Steiger et al.,
2015). Indeed, Fig. 6 shows that the smaller instances
exhibit an optimal TTS of around 100 sweeps, while
case24 is optimal with around 1000 sweeps. For the
larger test cases, it was not really possible to estimate
the TTS correctly, as the samples were consistently
above the 5% error threshold. Hence, we heuristically
set increasing num sweeps for these instances: 5000
sweeps for case33 and case39 and 10000 for case57.

The second set of parameters investigated is the
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Figure 6: Left-hand side shows the TTS of SA for different num sweeps with annealing schedule (0.02,1000) showcasing
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Figure 7: Average and Minimum relative energy error of D-Wave Advantage 5.4 with different chain strength factors. Gray
vertical lines mark the optimal chain strength factor.

start- and end-point of the geometric annealing sched-
ule of SA. Since we have a fixed starting point, where
all bits are set to zero, we conjecture that the opti-
mal annealing schedule stays similar throughout dif-
ferent problem sizes. The right two plots of Fig. 6
show combinations of different start and end values
as a heatmap of case9 and case14. Visually, we ob-
serve a similar large region with good TTS values
for both cases, centered around (0.2,1000). Since
the high computational demand required for this par-
ticular investigation, we only conducted it on case9
and case14. Nevertheless, we tested the (0.2,1000)
parameter setting against the default (automatically
calculated) schedule for all instances and ultimately
received better results averaged over all instances.
Hence, we argue that this setting is overall beneficial,
even if it may not be the best one for a single instance.

D-Wave

The most prominent parameter for QA is the
annealing time, governing the overall time of the
annealing process. In theory, a longer annealing time
should result in better solution quality. However, due
to the error-prone NISQ hardware, longer times most
often introduce too much error, resulting in unusable
samples. Nevertheless, our experiments showed lit-
tle to no effect of the annealing time on the solution

quality. Only a slight indication was found that for
case9 10 µs is optimal, while for the remaining cases,
the default 20 µs worked best.

As explained in the main text, embedding the fully
connected QUBO problem onto the D-Wave QPU
hardware graph requires the aggregation of multi-
ple physical qubits to a single logical qubit to repli-
cate the connectedness required for the input prob-
lem. Technically, this is done by augmenting the op-
timization problem with large biases between qubits
belonging to the same binary variable. The strength
of this interaction is commonly calculated using
D-Wave’s uniform torque compensation. How-
ever, it is heuristically computed from the biases in
the input problem, so the strength setting may not
be optimal. Therefore, we scale the bias using a
chain strength factor that weakens the interac-
tions if less than 1 and strengthens them otherwise.

Fig. 7 shows the minimum and mean relative en-
ergy error from 1000 samples. We can observe a min-
imum in all three embeddable cases, indicating the
optimal chain strength factor (Table 2).

Finally, we also conducted initial experiments on
annealing schedule parameters (including reverse an-
nealing) but abolished that route due to insignificant
effects on the result.
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