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Abstract: With the emergence of various interpretability methods, the quality of the interpretable models in terms of un-
derstandability for humans is becoming dominant. In many cases, interpretability is measured by convenient
surrogates, such as the complexity of the learned models. However, it has been argued that interpretability is
a multi-faceted concept, with many factors contributing to the degree to which a model can be considered to
be interpretable. In this paper, we focus on one particular aspect, namely semantic coherence, i.e., the idea
that the semantic closeness or distance of the concepts used in an explanation will also impact its perceived
interpretability. In particular, we propose a novel method, Cognitively biased Rule-based Interpretations from
Explanation Ensembles (CORIFEE-Coh), which focuses on the semantic coherence of the rule-based expla-
nations with the goal of improving the human understandability of the explanation. CORIFEE-Coh operates
on a set of rule-based models and converts them into a single, highly coherent explanation. Our approach is
evaluated on multiple datasets, demonstrating improved semantic coherence and reduced complexity while
maintaining predictive accuracy in comparison to the given interpretable models.

1 INTRODUCTION

Machine learning systems are increasingly used in
various fields and have become capable of solving
complex problems and making decisions in the real
world. Models that achieve a strong predictive per-
formance also tend to become increasingly more com-
plex, as, e.g., exemplified by random forests or deep
neural networks. Therefore, we need to deal with
the trade-off between the performance of a machine
learning model and its interpretability. As a result,
a new field, eXplainable Artificial Intelligence (XAI)
(Samek and Müller, 2019; Došilović et al., 2018),
emerged with a focus on interpreting and explaining
the behavior of black-box models. The goal is to pro-
vide or increase trust, confidence, and transparency,
especially for high-stake decisions. The importance
of explaining black-box models leads to numerous
studies and research on proposing interpretable mod-
els and post-hoc explanation methods, which produce
explanations in different formats such as rules, feature
importance weights, etc.

Interpretability is a well-known concept, but nev-
ertheless, there are hardly any precise mathematical
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definitions for it (Linardatos et al., 2021). Among
various definitions for interpretability, we single out
(Doshi-Velez and Kim, 2017), who define inter-
pretability as ”the ability to explain or present in un-
derstandable terms to humans”, and (Miller, 2019)
where it is defined as ”the degree to which a hu-
man can understand the cause of a decision.” These
human-centered views on explanations are often ne-
glected in the current XAI literature, where explana-
tions are typically assessed by their complexity (sim-
pler explanations being perceived as more compre-
hensible), and their fidelity to the black-box model
(i.e., the degree to which the white-box surrogate ex-
planation coincides with the black-box model). How-
ever, even if these objectives are taken for granted,
there remain often multiple diverse explanations to
choose from, a phenomenon also known as the
Rashomon effect (Müller et al., 2023).

Despite various definitions proposed for inter-
pretability, it is a domain-specific concept, i.e., it
could be different for different user groups, or in rela-
tion to the model, domain knowledge, target model,
etc. Accordingly, the interpretability of a model’s
explanation can be measured by taking into account
human knowledge and feedback or experiments with
end-users as part of the assessment. Since human
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feedback is not always available, interpretability is of-
ten measured with the complexity of the learned con-
cepts. While this is important, it is also not the only
relevant criterion. For example, it has been argued
that different cognitive biases may contribute to the
perceived interpretability of concepts and should thus
be evaluated and possibly optimized in rule learning
(Kliegr et al., 2021; Fürnkranz et al., 2020).

In this paper, we focus on one of these aspects,
namely semantic coherence, i.e., the idea that a mean-
ingful concept definition should be composed of con-
ditions that are semantically similar to each other. In
linguistics, semantic coherence refers to the sense re-
lationships between propositions, units, and sentences
in a text. Because of the existing relations, texts are
logically and semantically consistent for readers and
listeners. Our goal is to develop a method that is able
to improve the semantic coherence of learned rule sets
without significantly sacrificing accuracy. More pre-
cisely, we propose a method that generates a more co-
herent interpretable model from a pool of rule mod-
els while maintaining approximately the same level
of accuracy. The results of our proposed method are
evaluated by comparing the accuracy and a semantic
coherence score, which measures how semantically
related concepts are to each other, and indirectly spec-
ifies the understandability of the generated explana-
tions and interpretable models to humans.

This article is organized as follows. Section 2
briefly reviews related work, Section 3 describes and
reviews the semantic coherence concepts, definitions,
and measurements, Section 4 describes our research
goals and the used terminology, Section 5 the pro-
posed CORIFEE-Coh method, and Section 6 dis-
cusses the results.

2 RELATED WORK

Even though the fundamental goal of XAI is to im-
prove user understanding of the models, only a few
recent studies explore user experiences with explana-
tions and reveal some pitfalls (e.g. Ehsan and Riedl,
2024; de Bruijn et al., 2022). The results show that
end users often find the generated explanations hard to
use and the reasoning distracting and time-consuming
(Lai et al., 2023; Xie et al., 2020; Bansal et al., 2021;
Wang and Yin, 2021). Thus, recent work has focused
on examining the effectiveness and acceptability of
explanations by taking into account users’ perception
(Suffian et al., 2023), as well as their background
knowledge and preferences. The idea of ”putting
humans in the loop” refers to human-centered ap-
proaches (Ehsan et al., 2022; Lai et al., 2023).

2.1 Semantic Coherence in XAI

There is only little prior research on enhancing the in-
terpretability of rule-based models with a particular
focus on improving their semantic coherence. Kiefer
(2022) presents an architecture CaSE that uses seman-
tic interrogations to provide meaningful and coherent
explanations. The architecture combines with a mod-
ified version of LIME (Ribeiro et al., 2016) and en-
ables semantic alignment between humans and ma-
chine learning via topic modeling techniques. The
proposed method is applied to the feature-based in-
terpretability methods by providing meaningful top-
ics for a group of features. Gabriel et al. (2014) pro-
pose a variant of a separate-and-conquer rule learn-
ing algorithm focusing on semantic coherence. The
work’s emphasis on semantic coherence aligns with
our approach; however, it developed a rule learning
algorithm while our proposed method aims at im-
proving the semantic coherence of multiple, existing
rule-based explanations. Confalonieri et al. (2021) in-
troduce TREPAN, which extracts decision trees from
black-box models using ontologies and improves the
understandability and interpretability of explanations
using ontologies. A group of users tests the under-
standability of the extracted and enhanced explana-
tions.

2.2 Extracting Explanations from
Rule-Based Models

Our approach aims at extracting a more coherent ex-
planation than the original ones from a set of inter-
pretable models. This is related to research that fo-
cuses on improving interpretability by reducing the
size of the learned models. Approaches include ap-
proximating a single tree from a random forest (Zhou
and Hooker, 2016), which is interpretable and sim-
plifies the prediction process, or extracting the best
trees from a random forest (Khan et al., 2020) based
on the trees’ individual performance and their Brier
case. Another study by Souza et al. (2022) focuses
on the interpretability of decision trees using a novel
new metric called explanation size. Other works fo-
cus on rule extraction from the trees in a random for-
est model. SIRUS (Stable and Interpretable RUle Set)
(Bénard et al., 2021) aims at generating more stable
and compact rules based on the frequency of the rules
in a random forest. The most frequent rules are ex-
tracted as they represent strong and robust patterns.
RF+HC (Mashayekhi and Gras, 2015) targeted the
large number of trees generated in a random forest,
and tried to reduce the number of rules such that the
comprehensibility improves.
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3 SEMANTIC COHERENCE

In this section, we dive into semantic coherence con-
cepts and definitions and provide the techniques to
measure the concept.

3.1 Concept and Definitions

The word coherence is originally based on the Latin
verb ”cohaerer” which means to stick or to connect
together. Coherence has different meanings and defi-
nitions in various applications, and numerous studies
focus on conducting studies on defining and evaluat-
ing coherence in the context (Skusa, 2006; Sanders,
1997; Bolte et al., 2003; Bresó-Pla et al., 2023). In
linguistics, semantic coherence is defined as what
makes a text semantically meaningful. In other words,
it describes the connectivity in text as semantic con-
sistency of phrases, units, synonyms, etc. Robert De
Beaugrande describes coherence as ”the continuity of
senses” and ”mutual access and relevance within a
configuration of concepts and relations” (De Beau-
grande and Dressler, 1981). In general, coherence
is inherently a subjective measurement, and it is the
outcome of a cognitive process that is related to the
background knowledge of the targeted group of peo-
ple. It expresses the ability to perceive meaningful
relations between concepts and the knowledge that is
available in the text, as well as logical connections
between units. As a result, coherent semantic text can
be easily read and understood by humans (Vakulenko
et al., 2018).

Table 1: Fragments of coherent and incoherent text.
(a) coherent text.

The student wakes up early in the morning.
She gets ready.
Then she goes to school.

(b) incoherent text.

The student wakes up early in the morning.
She has a younger sister.
Then she goes to school.

Table 1 shows two examples of coherent and in-
coherent texts, which explain the morning routine of
a student. In Table 1a, the main topic is the student
and her habits of going to school, and the reader can
understand the flow of the text. However, in Table 1b,
the text is a combination of habits and personal in-
formation of the student, and the reader cannot easily
understand the connections between the sentences.

This article focuses on the interpretability of the
rules and explanations. As Thagard noted the impor-
tance of coherence for explanatory power, we evalu-
ate the interpretability of learned rules by aiming to
measure the coherence of the provided explanations.
We operationalize the concept of coherence to the se-
mantic similarity in text (Gabriel et al., 2014). The
semantic coherence in rules implies that the condi-
tions in a rule are consistent with each other, and all
the rules are coherent with the existing background
knowledge.

Table 2: Example of highly and lowly coherent rulesets.
(a) highly coherent ruleset.

Salary = high :-
marital-status = married,
relationship = wife.

Salary = high :-
workclass = private,
occupation = manager.

(b) lowly coherent ruleset.

Salary = high :-
age >= 24.
relationship = not-in- family,
hours-per-week >= 46.

Salary = high :-
marital-status = married,
age >= 44,
education = master.

Table 2 shows examples of coherent and inco-
herent rulesets. Ruleset 2a, describes the features
of a person who earns a high salary. The first rule
is defined upon two features, marital status and
relationship, which are related to the person’s per-
sonal environment, and rule 2 reports the two features
that are related to the person’s working status. Since
the features in the two rules describe two general char-
acteristics of a person, it is easy for humans to under-
stand the ruleset; therefore, it is considered a highly
coherent ruleset. In contrast, in ruleset 2b, the first
rule describes a person with a high salary with three
features that refer to three main concepts and charac-
teristics of a person, i.e., age, relationship, and econ-
omy. In the second rule, the features again describe
the targeted person with three different characteris-
tics. Thus, the ruleset has a lower coherence than the
first ruleset.

The assumption behind this work is that all other
things being equal—in particular, there is no differ-
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ence in the discriminatory power of the rules—a more
coherent rule is a more preferable explanation than a
less coherent rule. Our goal is to reformulate previ-
ously learned multiple interpretable models into a se-
mantically more coherent model.

3.2 Measuring Semantic Coherence

To quantitatively evaluate semantic coherence, we es-
timate the semantic similarity by measuring the de-
gree of taxonomical proximity. Typically, there are
two main approaches to measuring semantic simi-
larity: (i) corpus-based methods measure similarity
between concepts based on the information obtained
from corpora, and (ii) knowledge-based measures es-
timate similarities using ontologies and knowledge
graphs. In our work, we follow a knowledge-based
approach. This section reviews some of the most
known techniques to measure semantic similarity
based on ontologies.

Recently, many works on semantic similarity
have been based on the ontological representation
of knowledge (Sánchez et al., 2012; Zhu and Igle-
sias, 2017). An ontology has been defined as ”an
explicit specification of a conceptualization of a do-
main” (Gruber, 1995), or ”a concrete and formal rep-
resentation of what terms mean within the scope in
which they are used” (Hogan et al., 2021). Thus, on-
tologies and knowledge graphs allow us to define the
semantic roots of the terms in a graph and, in that way,
to reason about their semantic relations. A critical re-
view of various definitions of knowledge graph can be
found in (Ehrlinger and Wöß, 2016).

Formally, a knowledge graph K G is defined as a
directed labeled graph K G = (V,E) where V repre-
sents a set of nodes or vertices and E is a set of edges
connecting the nodes. Fig. 1 illustrates an example of
an ontology in which croot is the root node and ci and
c j (shown in green) are two concepts for which we
need to estimate their semantic similarity. The least
common subsumer (LCS) represented as clcs is the
closest common ancestor between the two concepts,
as shown in red in Fig. 1. Pk(ci,c j), is the k-th pos-
sible path of all paths between the two concepts, and
we use |Pk| to denote the number of nodes in this path.
The length l(ci,c j) = mink |Pk(ci,c j)| is the shortest
path between the two concepts, which will go through
clcs, as shown in blue in Fig. 1. The depth d(ci) of a
concept is the shortest path length from the root to the
concept, i.e., d(ci) = mink |Pk(croot ,ci)|, where croot is
the root node of the ontology.

Different techniques have been proposed to mea-
sure the semantic similarity between two concepts on
the basis of a knowledge graph:

Figure 1: Illustration of ontology terminology.

• One of the simple metrics is the path similarity
metric (1) which is estimates the similarity of ci
and c j as inversely proportional to their shortest
path (Rada et al., 1989).

simpath(ci,c j) =
1

1+ l(ci,c j)
(1)

• The Leacock&Chodorow also known as lch se-
mantic similarity metric (Fellbaum and Miller,
1998) is based on the shortest path between ci and
c j and the maximum depth of taxonomy. It is cal-
culated as

simlch(ci,c j) =− log
l(ci,c j)

2 ·D
(2)

where D = max(d(ci),d(c j)) is the maximum
depth of the taxonomy.

• the Wu-Palmer similarity metric (Wu and Palmer,
1994) is defined as

simwup(ci,c j) =
2 ·d(clcs)

d(ci)+d(c j)
(3)

relating the depth of each concept ci and c j to the
depth of their least common subsumer.

• the Li similarity metric (Li et al., 2003) is a param-
eterized method that allows to trade off the impor-
tance of the depth of the concepts and the length
of their path. It is defined as

simli(ci,c j) = e−αl(ci,c j) · e
βd(clcs)− e−βd(clcs)

eβd(clcs)+ e−βd(clcs)

(4)
where α and β are the two parameters that specify
the contribution of the path length and the depth
of the concepts.
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In our experiments, we have tried various defini-
tions, but have not found substantial differences be-
tween these for our work. In the following, we confine
ourselves to reporting the results with the Wu-Palmer
metric.

4 PROBLEM STATEMENT

The work in this article is in the context of a more
general framework that aims to discover Cognitively
biased Rule-based Interpretations from Explanation
Ensembles (CORIFEE). CORIFEE is a meta-XAI
method that takes multiple explanations in the form of
rules as input, and generates new explanations that are
more aligned to the user’s cognitive preferences. The
problem context is inspired by the Rashomon effect
(Breiman, 2001), which states that there are typically
multiple models structured as rules or trees that ex-
plain the data equally well (in terms of a given perfor-
mance measure), but often based their models on very
different feature sets and may thus have very differ-
ent semantical interpretations. It has also been argued
that this phenomenon applies to multiple explanations
in XAI (Müller et al., 2023).

In this work, we develop CORIFEE-Coh, an in-
stantiation of CORIFEE, which focuses on semantic
coherence and aims to generate a more coherent ex-
planation from a pool of interpretable models. Since
various interpretable models provide different expla-
nations of the data, in our approach, we extract domi-
nant features and rules from the pool of used features
and re-assemble them to a new, more coherent expla-
nation.

4.1 Terminology

In the remainder, we use terminologies and common
terms described in the following. A rule is an if-then
statement represented as r. It consists of a body (if-
part) and a head (then-part). The body might have
multiple conditions connected by conjunctions. The
length of a rule is the number of conditions in the
body. Rule sets are represented as R = {r1, . . . ,rk}.
An interpretable model I is a model that can be in-
spected and its basic operation can be inspected in in-
ternalized by a human. In the context of this work,
interpretable models are always rule sets, possibly
generated from non-interpretable models by an ex-
planation method. Attributes are the dimensions of a
dataset D , denoted as A = {a1, . . . ,an}. Examples are
characterized by specifying individual values v(i)j for
each of the attributes ai. A combination of attribute
and value, which can be evaluated as true or false for

any given example, is known as a feature f .
As the input for our method, we are given sev-

eral rulesets Rk, a dataset D which has been used for
training these rule sets, and a measure s(R ) for char-
acterizing the semantic coherence of a ruleset. Our
objective is to find a rule set R ′ with increased se-
mantic coherence, i.e., where s(R ′)> s(Rk).

5 METHODOLOGY

This section is focused on elucidating the method’s
functionality. As a general overview, the algorithm
generates a semantically coherent explanation by se-
lecting a subset of conditions from features that are
clustered based on their semantic similarity. It com-
prises two main phases: PREPROCESS(I ) where we
first prepare the data by cleaning, renaming, and fill-
ing the missing values, and then construct a focused
knowledge graph, which extracts the parts that are rel-
evant for the given dataset from a larger knowledge
graph. This is then used as the basis for generating a
set of semantically coherent rules from a given set of
interpretable models.

5.1 Focused Knowledge Graph

For creating a focused knowledge graph that cap-
tures information about a dataset, we use WordNet
and ConceptNet to extract the hypernym path of the
nodes that correspond to the database attributes. We
then use LABELEDNODES() to create a subject-verb-
object (svo) triple from the hypernym path in which
the subject is the attribute and the object is the at-
tribute’s value, both of them representing the nodes
in K G , and the verb specifies the relation using
WEIGHTEDRELATIONS() in Algorithm 1. The list of
svo triples is further used to form a knowledge graph,
in which a group of nodes is labeled as the attributes
to form the concepts. Fig. 2 illustrates a simplified ex-
ample of a knowledge graph for the Adult dataset in
which the nodes in green color represent the attributes
(concepts) in the dataset and the nodes in gray color
depict the attributes’ values.

5.2 Coherent Rule Generation

Based on the focused knowledge graph,
CORIFEE-Coh forms rules, initially starting from
single-condition rules, where the single conditions
are subsets selected from clustered features. The
final rules consist of individual rules formed by
adding conditions to optimize a trade-off between
heuristic measurement and semantic similarity. To
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Figure 2: Example of a focused knowledge graph derived
from the Adult dataset.

that end, it first applies the clustering method to the
attribute nodes (green in Figure 2) to form clusters of
attributes based on their distance in the knowledge
graph. Using clusters in the explanation generation
process leads to more general rule sets and ensures
that the rules are based on the conceptual closeness.

The explanation generation procedure mainly
consists of two steps: intracluster candidate genera-
tion and intercluster candidate generation. Utilizing
clustering techniques and factoring in intercluster and
intracluster aspects contributes to the semantic enrich-
ment of the ultimate explanation.

The intracluster candidate generation finds the
candidate conditions within each cluster for each class
in the dataset. At this step, the algorithm starts by it-
erating into each cluster, and, for each cluster ci, it
gets all attribute nodes and their values and saves the
resulting feature fi in clusterFeatures as explained in
Algorithm 1. It then iterates through each feature in
clusterFeatures with an empty rule and constructs it
by adding a condition that satisfies the coverage and
precision criterion. The generated rule is appended to
the Rc.

The intercluster candidate generation step intends
to generate highly semantic coherence rules R ′. It
starts by iteratively getting all pairs of rules in Rc and
evaluates whether the merged rule is valid using the
MERGEVALIDATION function in Algorithm 1. The
function is mainly responsible for verifying the valid-
ity of the merged rules by assessing the feasibility of
merged intervals for numerical features and avoiding
any conflicting features in categorical features. In ad-
dition, it checks whether the merged rules belong to
a class and whether H is maximized. The heuristic
evaluation H forms a trade-off between accuracy and

Input: Pool of interpretable models I .
Output: A more coherent explanation.

▷ Creating a focused knowledge graph
Ip← PREPROCESS(I )
ns← LABELEDNODES(Ip)
rs←WEIGHTEDRELATIONS(Ip)
K G ← CREATEGRAPH(ns,rs)

▷ Cluster nodes using Wu-Palmer
C = CLUSTER(ns,simwup)

▷ Form Initial Rules
Rc = []
for ci in C do

clusterFeatures← get all (V j,Vk)
for fi ∈ clusterFeatures do

for l ∈ CLASSES do
if COVERAGE( fi, l)≥ thc∧

PRECISION( fi, l)≥ thp then
r←{ fi→ l}
Rc← Rc∪ r

end
end

end
end

▷ Merge Rules
R ′← []
for each (ri,r j) ∈ R 2

c do
mergeValid←

MERGEVALIDATION(ri,r j)
r← MERGE(ri,r j)
if mergeValid ∧ H(r)≥ β then

R ′← R ′∪ r
end

end
return POSTPROCESS(R ′)

Algorithm 1: CORIFEE-Coh.

explainability, defined as

H(rule) = (1−α) ·DIS(rule)+α ·COH(rule) (5)

in which the α parameter specifies the contribution
of a conventional rule learning heuristic DIS and a
measure for the semantic coherence COH in expla-
nation generation. As a rule learning heuristic, we
select the m-estimate (Džeroski et al., 1993), a gen-
eralization of the Laplace estimate, which has been
shown to provide a tunable trade-off between preci-
sion, which tends to overfit, and weighted relative ac-
curacy, which tends to over-generalize (Janssen and
Fürnkranz, 2010). It is defined as

DIS(r) =
p+m · P

P+N

p+n+m
(6)
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where p is the positive examples out of all positive
examples P that are covered by the rule, n is the nega-
tive examples out of all negative examples N that are
covered by the rule and m a user-settable parameter
that realizes the above-mentioned trade-off.

For estimating the semantic coherence of a rule,
we use the Wu-Palmer measure as defined above (3),
which is a normalized similarity score, and estimates
the average semantic similarity over all pairs of at-
tributes (nodes labeled as ”Attribute” in K G) in the
merged rules. As it considers the least common sub-
sumer depth, it is well-aligned with how humans per-
ceive similarity based on the shared meaning in a tax-
onomy, and it is computationally efficient compared
to measurements such as Li semantic similarity which
includes exponential factors. Consequently, we define
the semantic coherence COH as

COH(r) =
1
L
·

l−1

∑
i=1

l

∑
j=i+1

simwup(ai,a j) (7)

where ai and a j are two attributes in the rule of length
l, and L =

( l
2

)
is the number of all pairs of attributes.

The parameter α in (5) allows to trade-off between
the rule learning heuristic and the semantic coherence
part. If α = 0, the scoring method generates con-
ditions by only considering the heuristic. As α in-
creases, the semantic coherence gets more dominant,
and the heuristic method decreases its importance.
Accordingly, the conditions that satisfy a threshold
for the scoring method are selected as the final con-
ditions, which are part of the explanation.

As the final step, we perform the post-processing
to generalize the rules by pruning the generated rules.
This step applies to the final explanation R ′ and
is accomplished by iteratively evaluating conditions
within each rule on a validation set and removing the
conditions that do not worsen the error rate. By elim-
inating unnecessary rules, we simplify and generalize
the rules and prevent overfitting.

6 RESULTS

In the following, CORIFEE-Coh is evaluated on mul-
tiple datasets, and the performance of the method is
assessed in terms of accuracy, semantic similarity, and
the number of found rules.

The four selected datasets are binary classifica-
tion data from the UCI repository (Dua and Graff,
2017): The Adult dataset specifies whether a person
earns more than 50K per year, the Hepatitis dataset
contains the occurrence of hepatitis among people
and determines whether they survive or die from it,

the HeartDisease dataset specifies whether the pres-
ence of heart disease and the Titanic dataset describes
which passengers survived the Titanic disaster.

Since the main input to the method is a pool of in-
terpretable models, we use random forests to generate
a low number (typically 2 to 4) trees, convert each tree
to a separate ruleset, and the generated rulesets con-
stitute the pool of rules from which CORIFEE-Coh
constructs a semantically coherent model.

6.1 Comparison to Random Forest

In this experiment, we train a random forest with a
few trees in the dataset and use all the extracted rules
from the trees to create the pool of interpretable mod-
els as CORIFEE-Coh input. The extraction of the
rules is performed by iterating through each node in
each decision tree in the random forest. In addition,
we use the number of rules for a single rule-based
model extracted from a random forest.

CORIFEE-Coh is then executed with different α

parameters, and for each α parameter, the perfor-
mance is evaluated through accuracy, semantic sim-
ilarity, and the number of rules. The evaluation re-
sults of different α parameters are compared against
the performance of random forest.

The results are shown in Fig. 3. For Hepatitis, as
expected, the semantic similarity increases as seman-
tic coherence contributes more to the scoring. The
accuracy reaches its highest value in α = 0.8. Be-
cause of the threshold defined for the scoring, the ac-
curacy reported is the best value that can be achieved.
The number of rules decreases and reaches its low-
est value for α = 1 where the scoring is purely based
on the semantic score. By comparing the best re-
sult for α = 0.8 and the result for the random for-
est, we see that the semantic similarity significantly
improves, and the accuracy is nearly the same as the
random forest, which indicates a good trade-off be-
tween interpretability and accuracy. CORIFEE-Coh
is able to decrease the complexity substantially and, at
the same time, increase the semantic coherence while
maintaining a reasonable level of accuracy.

The results on Adult dataset reported in Fig 3
show that the semantic similarity is improved as the
contribution of semantic coherence increases. The
accuracy has its highest value for α = 0. However,
semantic coherence has no contribution to this α pa-
rameter, and semantic similarity has its lowest value.
An acceptable balance between the accuracy and se-
mantic similarity can be seen in α = 0.8. By com-
paring the results from α = 0.8 the random forest,
we see that they both have quite comparable perfor-
mance in terms of accuracy, but the semantic similar-
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Hepatitis Semantic Number
Algorithm α Accuracy Similarity of Rules

CORIFEE-Coh 0 0.780 0.170 33

0.2 0.735 0.290 28

0.4 0.770 0.339 22

0.6 0.729 0.231 18

0.8 0.778 0.381 11

1 0.707 0.421 9

Random Forest 0.787 0.162 50

Adult Semantic Number
Algorithm α Accuracy Similarity of Rules

CORIFEE-Coh 0 0.815 0.208 62

0.2 0.809 0.228 44

0.4 0.768 0.238 39

0.6 0.795 0.240 35

0.8 0.803 0.383 30

1 0.752 0.405 15

Random Forest 0.827 0.137 34553

Heart Disease Semantic Number
Algorithm α Accuracy Similarity of Rules

CORIFEE-Coh 0 0.796 0.074 35

0.2 0.775 0.083 31

0.4 0.788 0.097 30

0.6 0.790 0.100 25

0.8 0.8 0.145 14

1 0.776 0.222 9

Random Forest 0.833 0.069 70

Titanic Semantic Number
Algorithm α Accuracy Similarity of Rules

CORIFEE-Coh 0 0.697 0.177 51

0.2 0.708 0.193 45

0.4 0.679 0.216 42

0.6 0.682 0.210 40

0.8 0.719 0.221 34

1 0.694 0.250 30

Random Forest 0.759 0.129 272

Figure 3: Results on the datasets (from top to bottom) Hepatitis, Adult, Heart Disease, and Titanic.

ity improves, and the number of rules decreases sig-
nificantly.

The results on Heart Disease and Titanic datasets
are similar, and follow the pattern that the semantic

coherence improves. In particular, they also confirm
that the best trade-off between accuracy and semantic
similarity is obtained in α = 0.8 for both datasets.

Table 3 compares CORIFEE-Coh with a fixed pa-
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Table 3: Summary of the results on all the datasets.

Dataset CORIFEE-Coh (α = 0.8) Random Forest

Accuracy Semantic Similarity Number of Rules Accuracy Semantic Similarity Number of Rules

Hepatitis 0.872 0.381 11 0.901 0.162 5760
Adult 0.803 0.383 30 0.827 0.137 34553
Heart Disease 0.800 0.145 14 0.833 0.069 70
Titanic 0.719 0.221 34 0.759 0.129 272

rameter setting (α = 0.8) to the random forest from
which its rules were generated. We observe that the
former gives a better trade-off between accuracy and
interpretability, resulting in more coherent rulesets at
the expense of reducing predictive accuracy.

6.2 Comparison to Individual Models

Since the pool of interpretable models consists of
rules extracted from trees in random forest, in this
section, we investigate the performance of each in-
dividual tree in the random forest model. Tables 4a
and 4b report the accuracy and semantic similarity of
the trees in a random forest on Hepatitis (3 trees) and
Heart Disease (2 trees).

Table 4: Comparison to individual trees of a random forest
on two datasets using the default value α = 0.8.

(a) Hepatitis

Semantic
Tree Accuracy Similarity

CORIFEE-Coh 0.872 0.381

tree1 0.723 0.089

tree2 0.745 0.121

tree3 0.749 0.085

(b) Heart Disease

Semantic
Tree Accuracy Similarity

CORIFEE-Coh 0.800 0.145

tree1 0.766 0.079

tree2 0.755 0.063

The results of both datasets show that the accuracy
and semantic similarity score are less than the results
reported for α = 0.8 in Fig. 3.

6.3 Sample Rules

As reported in previous sections, CORIFEE-Coh gen-
erates rule sets with considerably higher semantic
similarity compared to the existing rule sets in the
pool. This section will investigate the coherency of
the rule sets learned by random forest and CORIFEE-
Coh.

Table 5: Fragments of rule sets generated by CORIFEE-
Coh and random forest on Adult dataset.

(a) rule sets generated by CORIFEE-Coh.

1. income >50k :-
capital -gain >= 5119,
marital -status = married -civ-spouse ,
relationship = husband.

2. income <=50K :-
capital -gain <= 7585,
capital -loss <= 2441,
race = White ,
age <= 38.

(b) rule sets learned by random forest.

1. income >50K :-
hours -per-week >= 44.5,
capital -gain >= 4307,
capital -loss <= 2377,
32 <= age <= 39.5.

2. income <=50K :-
marital -status = never -married ,
capital -gain <= 7073.5,
age <= 33.5,
capital -loss <= 2266.5,
education = HS-grad ,
occupation = sales.

Table 5 displays fragments of the rule sets gener-
ated by random forest and CORIFEE-Coh on Adult
dataset. From the user’s standpoint, a comparison
of the results in ruleset 5a and ruleset 5b illustrates
that the former is more coherent: each rule gives fea-
tures related to a few related concepts, whereas the
rules in the latter refer to various different concepts.
For example, rule 1 in ruleset 5a describes the finan-
cial concept (capital-gain) and the marital status as-
pect (marital-status and relationship), while rule 2 in
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ruleset 5b provides an explanation based on financial,
marital status, working class, and career.

7 CONCLUSION

In this paper, we introduced CORIFEE-Coh, a novel
method capable of generating coherent explanations
that are more understandable for humans from a pool
of interpretable models, such as the result of a ran-
dom forest. The findings and results demonstrate that
the method is able to generate a new explanation with
considerably enhanced semantic coherence and fewer
rules compared to the semantic coherence of the rule-
sets in the pool, while maintaining nearly the same
accuracy as the underlying models in the pool.

Future studies could explore how the method can
be tailored to match users’ preferences, improving
the understandability of the generated explanation ac-
cording to the targeted users.
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Ehrlinger, L. and Wöß, W. (2016). Towards a definition
of knowledge graphs. In Martin, M., Cuquet, M., and
Folmer, E., editors, Joint Proceedings of the Posters
and Demos Track of the 12th International Conference
on Semantic Systems (SEMANTiCS2016), volume 1695
of CEUR Workshop Proceedings, Leipzig, Germany.
CEUR-WS.org.

Ehsan, U. and Riedl, M. O. (2024). Explainability pit-
falls: Beyond dark patterns in explainable AI. Patterns,
5(6):100971.

Ehsan, U., Wintersberger, P., Liao, Q. V., Watkins, E. A.,
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