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Abstract: Intrusion Detection Systems (IDS) are crucial for ensuring network security in increasingly complex digital en-
vironments. Among IDS techniques, anomaly detection is effective in identifying unknown threats. However,
classical machine learning methods face significant limitations, such as struggles with high-dimensional data
and performance constraints in handling imbalanced datasets. Generative Adversarial Networks (GANs) offer
a promising alternative by enhancing data generation and feature extraction, but their classical implemen-
tations are computationally intensive and limited in exploring complex data distributions. Quantum GANs
(QGANs) overcome these challenges by leveraging quantum computing’s advantages. By utilizing a hybrid
QGAN architecture with a quantum generator and a classical discriminator, the model effectively learns the
distribution of real data, enabling it to generate samples that closely resemble genuine data patterns. This
capability enhances its performance in anomaly detection. The proposed QGAN use a variational quantum
circuit (VQC) for the generator and a neural network for the discriminator. Evaluated on NSL-KDD dataset,
the QGAN attains an accuracy of 0.937 and an F1-score of 0.9384, providing a robust, scalable solution for
next-generation IDS.

1 INTRODUCTION

Intrusion Detection Systems (IDS) play a critical role
in ensuring the security and integrity of digital infras-
tructures by identifying malicious activities, unautho-
rized access, or policy violations (Abdulganiyu et al.,
2023). In networked environments, the Network In-
trusion Detection System (NIDS) is particularly vi-
tal. Among the various detection techniques, anomaly
detection has proven to be an effective approach for
intrusion detection (Rafique et al., 2024). Unlike
signature-based systems that rely on predefined at-
tack patterns, anomaly detection methods establish a
baseline of normal system or network behavior. Any
deviation from this baseline is flagged as a potential
intrusion.

In recent years, machine learning (ML) has
emerged as a powerful tool for both intrusion and
anomaly detection. ML techniques excel at learning
complex patterns, enabling systems to automatically
classify network traffic as normal or malicious. How-
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ever, ML’s reliance on quality datasets and extensive
computational resources can limit its scalability and
applicability in dynamic environments (Muneer et al.,
2024).

One of the most promising advancements in ma-
chine learning for intrusion detection is the appli-
cation of Generative Adversarial Networks (GANs)
(Gui et al., 2021). GANs are a type of neural network
architecture consisting of two components: a gener-
ator, which creates synthetic data, and a discrimina-
tor, which distinguishes between real and generated
data. The adversarial training between these two com-
ponents allows GANs to stand out in generating re-
alistic data samples. In the context of intrusion de-
tection, GANs can generate synthetic network traf-
fic to augment training datasets, address class imbal-
ance issues, and improve the detection of subtle or
rare anomalies. Additionally, GANs have been used
directly as anomaly detection mechanisms by lever-
aging their ability to model the underlying distribu-
tion of normal data. Despite these benefits, ML tech-
niques, including GANs, have inherent limitations.
Classical ML models are constrained by the limita-
tions of classical computing, which may struggle with
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the increasing complexity of data in high-dimensional
spaces (Yamasaki et al., 2023). To address these chal-
lenges, researchers have turned to Quantum Machine
Learning (QML) as a promising alternative (Cerezo
et al., 2022). By harnessing the unique capabili-
ties of quantum computers, QML has the potential
to overcome the scalability and performance limita-
tions of classical ML techniques. Within the domain
of QML, Quantum Generative Adversarial Networks
(QGANs) have emerged as a particularly innovative
approach (Ngo et al., 2023). QGANs extend the prin-
ciples of classical GANs into the quantum domain,
incorporating quantum generators and/or discrimina-
tors. These networks have shown promise in gen-
erating high-quality synthetic data and in improving
the efficiency of anomaly detection systems, as they
can achieve comparable or superior performance to
classical GANs with fewer trainable parameters (Herr
et al., 2021). Furthermore, their ability to operate ef-
fectively with limited data makes them highly suitable
for cybersecurity applications, where datasets are of-
ten sparse or imbalanced.

This work makes the following key contributions:
• Introduction of a novel QGAN-based model

specifically designed for intrusion detection, uti-
lizing a quantum generator and a classical dis-
criminator.

• Development of a mapping function to transform
the generator’s quantum outputs into meaningful
samples that align with the features of an intrusion
detection dataset.

• Extensive experimentation across various config-
urations, archiving an accuracy of 0.937 and F1
score of 0.9384, offering a significant advance-
ment in the state-of-the-art for QGAN applica-
tions in intrusion detection using the NSL-KDD
dataset.
The paper is structured as follows: Section 2 intro-

duces QGANs and the dataset used. Section 3 reviews
the relevant related works. Section 4 details the data
preprocessing steps and the proposed QGAN model.
Section 5 analyzes the evaluation results. Lastly, Sec-
tion 6 summarizes the contributions and suggests fu-
ture research directions.

2 BACKGROUND

2.1 Quantum Generative Adversarial
Networks (QGANs)

QGANs are an extension of classical GANs, adapted
to leverage the principles of quantum computing (Zo-

ufal et al., 2019). They can be implemented in two
primary configurations: full quantum (Kalfon et al.,
2024) and hybrid. In a full quantum QGAN, both
the generator and discriminator are quantum sys-
tems, leveraging parameterized quantum circuits for
data generation and evaluation. In contrast, hybrid
QGANs combine quantum and classical elements
(Ngo et al., 2023). A typical hybrid QGAN consists
of two components:

• Quantum Generator (G): A parameterized quan-
tum circuit (PQC) that generates quantum states
representing data samples.

• Classical Discriminator (D): A classical neural
network that evaluates the similarity between gen-
erated samples and real data.
The discriminator’s objective is to maximize the

correct classification of real samples as real and gen-
erated samples as false. Using binary cross-entropy
(BCE), the loss function for the discriminator, LD, is
defined as:

LD =−Ex∼preal(x)[logD(x)]+

−Ez∼pz(z)[log(1−D(G(z)))]
(1)

Where:
• D(x): Probability output by the discriminator that

x is real.

• D(G(z)): Probability output by the discriminator
that the generated sample G(z) is real.
This loss comprises two terms: the BCE loss for

real data: − logD(x), where the discriminator is pe-
nalized when it fails to classify real data as real, and
the BCE loss for generated data − log(1−D(G(z))),
where the discriminator is penalized when it classifies
generated data as real.

The generator’s objective is to ”fool” the discrim-
inator, such that it cannot distinguish between real
and generated samples. This is achieved by maxi-
mizing D(G(z)), which is equivalent to minimizing
− log(D(G(z))). The generator loss, LG, is therefore
defined as:

LG =−Ez∼pz(z)[logD(G(z))] (2)

In a QGAN, the generator G is implemented us-
ing a PQC. This involves encoding the latent vari-
ables z, which are typically sampled from a simple
prior distribution, such as a uniform or Gaussian dis-
tribution, into quantum states |ψ(z)⟩, applying a se-
ries of quantum gates parameterized by θ, and mea-
suring the quantum circuit to generate output sam-
ples.These latent variables act as a compressed repre-
sentation or ”seed” for generating data, and they cap-
ture the stochastic nature of the data generation pro-
cess. The discriminator remains classical, mapping
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the input data to a probability score using standard
neural network layers.

2.2 Dataset

NSL-KDD is the intrusion detection dataset used in
this work, which consists of a carefully selected sub-
set of records from the original KDD dataset. NSL-
KDD resolves many of the limitations present in
KDD-99, such as the presence of duplicate records,
while still maintaining a comprehensive representa-
tion of various attack types. NSL-KDD was intro-
duced by Tavallaee et al. (Tavallaee et al., 2009)
as a means to overcome the shortcomings of KDD-
99, particularly to enhance the reliability of network
intrusion detection system evaluations. The dataset
also features a more balanced record selection, where
the number of records from each difficulty level is
inversely proportional to their representation in the
original KDD dataset. Additionally, NSL-KDD is
smaller in size compared to KDD-99, consisting of
fewer but unique records, which reduces computa-
tional costs and enhances efficiency for training ma-
chine learning models. The NSL-KDD dataset is
split into two primary subsets: Training and Testing
datasets. The training set contains 125,972 records,
while the test set contains 22,542 records. Each
dataset is categorized by different attack types like
DoS (Denial of Service), Probe, R2L (Remote to Lo-
cal), U2R (User to Root).

3 RELATED WORK

Recent advancements in machine learning, particu-
larly GANs, have opened new avenues for enhancing
NIDS. GANs are widely used in unsupervised learn-
ing tasks and are capable of generating synthetic data
that closely resembles the original dataset. Their in-
tegration into intrusion detection has shown promise
in improving feature extraction, augmenting datasets,
and addressing limitations in both signature-based
and anomaly-based detection systems.

One of the primary applications of GANs in NIDS
is the generation of synthetic data to enhance train-
ing processes. The authors of (Shahriar et al., 2020)
introduced an ANN-based GAN to generate synthetic
samples for training an IDS on the NSL-KDD dataset.
Their results demonstrated that an IDS incorporat-
ing GAN-generated data significantly outperformed
standalone systems in attack detection. Similarly,
in the work (Lee and Park, 2021), GANs are em-
ployed to mitigate the class imbalance problem in
NIDS datasets, finding GANs to be more effective

than traditional oversampling techniques.
GANs have also been directly applied as detec-

tion mechanisms. The authors of (Patil et al., 2022)
proposed a bidirectional GAN-based framework for
anomaly detection, evaluated using the KDDCUP-99
dataset (Tavallaee et al., 2009), and demonstrated its
superior performance compared to other deep learn-
ing models. Truong et al. (Truong-Huu et al., 2020)
advanced this approach by utilizing two GAN models
with custom neural network architectures for gener-
ators and discriminators. Their experiments on CIC-
IDS 2017 and UNSW-NB15 datasets (Moustafa and
Slay, 2015) showcased the efficacy of GAN-based
systems against traditional unsupervised methods.

Building upon GAN advancements, Quantum
GANs (Lloyd and Weedbrook, 2018; Dallaire-
Demers and Killoran, 2018) have emerged as a
promising extension, particularly for image genera-
tion. Recent works illustrate their potential to outper-
form classical counterparts even with fewer trainable
parameters. The authors of (De Falco et al., 2024) ap-
plied QGANs to latent diffusion models, using classi-
cal diffusion processes for noise generation and quan-
tum denoising with three VQC. Their results showed
that the number of qubits, set to 10 in their study,
significantly influenced performance. Similarly, in
(Chang et al., 2024) it is introduced a QGAN archi-
tecture where the generator is quantum, and the dis-
criminator operates classically in latent space, achiev-
ing superior image quality with fewer training epochs
or smaller datasets. Finally, the work (Vieloszynski
et al., 2024) proposed a hybrid model integrating an
autoencoder to map images into a lower-dimensional
latent space, allowing the quantum generator to effi-
ciently process MNIST data with a lightweight archi-
tecture of seven layers and 140 parameters. Despite
the promising advances of QGANs in image genera-
tion, their application to anomaly detection remains
relatively underexplored, with only a few studies ad-
dressing this intersection.

In (Bermot et al., 2023) it is demonstrated the
use of QGANs for detecting specific physical par-
ticles. They tested their QGAN on up to eight
features, achieving 0.88 accuracy on noiseless sim-
ulators for seven features, outperforming classical
GANs. They also validated its feasibility on ac-
tual quantum hardware for three features. However,
the results were dataset-specific, limiting applicabil-
ity across domains. The authors of (Kalfon et al.,
2024) introduced a novel high-dimensional encod-
ing approach called Successive Data Injection (Su-
DaI), which expands encoded data size without in-
creasing qubits. They utilized a state-fidelity QGAN
with both generator and discriminator implemented
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as quantum circuits. The design incorporated the
SWAP test to compare generated and real data repre-
sentations. Using the Numenta Anomaly Benchmark
(NAB) database, they analyzed temporal anomaly de-
tection but did not report specific performance met-
rics, leaving its practical effectiveness unclear. The
work (Rahman et al., 2023) proposed a QGAN-based
IDS but highlighted challenges due to the quantum
generator producing discrete output values. For each
feature represented by n qubits, the results were lim-
ited to 2n discrete values, potentially reducing fidelity
in real-world applications. Their work lacked spe-
cific implementation details, reproducibility, exten-
sive testing, and performance metrics such as accu-
racy. In this work (Herr et al., 2021) the authors pre-
sented a hybrid quantum–classical anomaly detection
model using Variational Quantum-Classical Wasser-
stein GANs (WGANs) with gradient penalty. Their
method extended the AnoGAN framework (Schlegl
et al., 2019) for anomaly detection, integrating recent
GAN advancements with hybrid quantum–classical
neural networks trained via variational algorithms.
Testing on a credit card fraud dataset, they evaluated
performance with an anomaly score combining gener-
ator and discriminator losses, achieving an F1 score of
0.85. While their results were promising, the dataset’s
simplicity limited the validity of the results in more
complex and diverse real-world scenarios.

This work is motivated by the need to thoroughly
evaluate QGANs in the intrusion detection domain,
focusing on their scalability, robustness, and perfor-
mance. Existing studies have been limited to simpli-
fied datasets and narrow feature sets, leaving their ap-
plicability to real-world intrusion detection systems
underexplored. Additionally, challenges such as im-
proving the fidelity of quantum generator outputs and
achieving high accuracy and reliability in this do-
main remain unresolved. This study aims to optimize
QGANs for intrusion detection by assessing their per-
formance on high-dimensional datasets and provid-
ing a comprehensive analysis of their effectiveness
through key metrics such as accuracy and F1-score.

4 METHODOLOGY

4.1 Data Preprocessing

The NSL-KDD dataset, a widely used benchmark in
intrusion detection, is loaded as a structured dataset.
The data comprises a mix of numerical and categori-
cal features, as well as target labels indicating whether
a given instance corresponds to a normal or anoma-
lous network activity.
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Quantum
Generator

Random Input Noise 
(Latent Variables)

1

n
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.
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.

.
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Figure 1: Proposed QGAN training process.

To standardize numerical features, scaling tech-
niques are applied to ensure uniformity and to miti-
gate the influence of outliers. Robust scaling, which
is resilient to the effects of extreme values, is used
to transform numerical columns. This scaling pro-
cess centers and scales the data based on interquartile
ranges, preserving the distribution’s core properties.
Categorical features, such as protocol types, services,
and flags, are converted into numerical representa-
tions using one-hot encoding. Therefore, the QGAN
framework requires input data that are normalized and
compact. To achieve this, feature values are scaled to
a [0, 1] range using Min-Max scaling.

To further optimize the dataset for QGAN pro-
cessing, PCA is applied. PCA reduces the feature
space to a lower-dimensional latent representation, re-
taining only the components that capture the majority
of the data’s variance. Different numbers of princi-
pal components have been tested to assess their im-
pact on model performance, and the results of these
evaluations will be presented in the next section. The
explained variance ratio is analyzed to confirm the ad-
equacy of the selected components.

4.2 QGAN Configuration

The proposed QGAN model is an adaptation for the
intrusion detection problem, specifically a dedicated
interpret function and a selection for quantum circuits
has been done. The structure is depicted in Figure
1 and consists of two primary components: a quan-
tum generator implemented as a Variational Quantum
Circuit and a classical discriminator implemented as
a neural network. This hybrid design leverages quan-
tum mechanics’ inherent probabilistic nature for data
generation and the computational power of the classi-
cal neural network for discrimination tasks.

The process begins with a random noise vector
that serves as input to the generator. This noise in-
troduces variability to generate diverse samples. The
generator is a quantum circuit acting on n-qubits.
Starting from the initial state |0⟩, the circuit applies
parameterized quantum gates defined by θG weights.
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Figure 2: Quantum circuit for the generator.

This generates a quantum state:
G(θG)|0⟩⊗n,

which represents the generated false data, encoded in
a Hilbert space of dimension 2n.

The quantum state produced by the generator can-
not be directly evaluated classically. Therefore, an
interpret function is applied to map the quantum state
to classical data.

The discriminator is a classical neural network
that receives input data, either from the generator or
real data. It evaluates the data and outputs a probabil-
ity score indicating whether the input is benign or an
attack.

The generator and discriminator are trained adver-
sarially. While the discriminator D(θD) learns to dis-
tinguish between real data (from the training set) and
false data (from the generator), the generator G(θG)
learns to fool the discriminator by improving the qual-
ity of its generated data, minimizing the difference be-
tween real and false samples. This iterative process
enables the generator to produce increasingly realis-
tic data. The QGAN training process is described in
Algorithm 1.

The generator is constructed as a variational quan-
tum circuit designed to produce synthetic data from a
noise vector. The Figure 2 depicts an instance of the
several tested configurations. Each qubit in the cir-
cuit represents a feature of the dataset. The number
of qubits, therefore, equals the number of features.
The circuit begins by applying Hadamard gates to all
qubits, bringing them into a superposition state. This
ensures that the circuit starts with a uniform distribu-
tion over the possible states. A feature map is applied
to enhance the expressiveness of the circuit by encod-
ing latent variables into the quantum state. In this cir-
cuit the ZZFeatureMap utilizes entanglement across
qubits, introducing interdependence among qubits.
The ansatz defines the trainable portion of the quan-
tum circuit. In the scheme of this specific configura-
tion, EfficientSU2 architecture is used, characterized
by a combination of single-qubit rotation gates and
two-qubit entangling gates. By repeating these lay-
ers multiple times, the circuit gains expressive power,
allowing it to approximate intricate probability distri-
butions. The number of repetitions (hyperparameter)

controls the trade-off between circuit depth and the
capability to represent complex distributions.

The generator incorporates trainable parameters
associated with the rotation gates in the ansatz. Ad-
ditionally, noise is injected into the circuit via rota-
tion gates, parameterized by a vector representing the
noise input. The combination of noise input and train-
able weights enables the generator to sample from a
wide range of data distributions.

The circuit is converted into a Quantum Neural
Network (QNN) using a quantum sampler to evaluate
the circuit and compute gradients, which are then up-
dated leveraging Adam optimizer. This QNN frame-
work enables integration with classical optimization
techniques for training. The sampler evaluates the cir-
cuit multiple times (shots), ensuring robust estimates
of expectation values.

The interpret function transforms the generator’s
output, which corresponds to measurements of all
possible combinations of n qubits, into a lower-
dimensional representation of cardinality n. Each of
the 2n values produced by the generator represents
the probability of observing a specific combination of
qubit states. For each qubit i, the interpret function
extracts its marginal probability by summing over all
measurement outcomes where qubit i is in state 1. Let
P(x) represent the probability of observing a particu-
lar n-qubit state x = (x1,x2, . . . ,xn), where xi ∈ {0,1}.
Then, the marginal probability pi for qubit i is com-
puted as:

pi = ∑
x :xi=1

P(x),

where the summation runs over all 2n possible states
x such that the i-th qubit is 1. The resulting vec-
tor (p1, p2, . . . , pn), of dimension n, represents the
marginal probabilities of each qubit being in state 1.
Each component pi lies in the range [0,1], making it
directly comparable to the features in the real dataset.

This dimensionality reduction captures relevant
probabilistic information about each qubit while dis-
carding higher-order correlations between multiple
qubits. The transformation simplifies the discrimina-
tor’s input without sacrificing the ability to distinguish
between real and generated data. The transformed n-
dimensional data is then fed into the discriminator.

The discriminator is a classical feedforward neu-
ral network designed for binary classification, dis-
tinguishing between real and generated data. It
takes input vectors matching the dataset’s feature
size and processes them through dense hidden layers
with LeakyReLU activations, which introduce non-
linearity while mitigating vanishing gradients. The
output layer uses a sigmoid activation to produce a
probability score indicating whether the input is real.
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Trained with Binary Cross-Entropy loss, the discrim-
inator iteratively improves through adversarial feed-
back with the generator. Evaluation metrics such as
loss values, accuracy, and the F1 score monitor per-
formance, while the quality of generated data is vali-
dated by comparing its statistical properties with real
data.

In the following section it will be discussed all the
tested configurations and the relative results. The ex-
periments are replicable, and the source code is avail-
able on (Franco Cirillo, 2024).

5 RESULTS AND DISCUSSION

To evaluate the proposed QGAN model, several hy-
perparameters have been taken in consideration. Ta-
ble 1 presents a comprehensive analysis of various
configurations implemented, highlighting the perfor-
mance of each setup in terms of accuracy and F1
score. These configurations are among the most sig-
nificant experiments conducted in the study, provid-
ing insights into the impact of different architectural
and hyperparameter choices on the QGAN’s perfor-
mance. For all the experiments, the training pro-
cess was executed over 80 epochs to ensure suffi-
cient convergence and reliable results, and a ZZFea-
tureMap has been applied for encoding noise allow-
ing the quantum generator to effectively learn com-
plex data distributions.

A clear trend can be observed where increasing
the number of generator repetitions (reps) generally
leads to slightly improved performance metrics. For
example, moving from 6 to 9 generator repetitions re-
sulted in one of the highest performance outcomes
(accuracy = 0.937, F1 score = 0.9384). However,
while the gains in performance are incremental, the
computational time required to train the model in-
creases substantially. This trade-off must be carefully
considered when deciding on the optimal number of
generator repetitions for real-world applications.

Results also show that configurations with at least
32 discriminator neurons tend to achieve more stable
performance. Using fewer neurons, such as 8 or 16,
often results in instability in the loss functions dur-
ing training, potentially leading to less reliable con-
vergence. For instance, configurations with 32 or 64
discriminator neurons consistently yield higher accu-
racy and F1 scores compared to those with 8 neurons.
Additionally, configurations with 64 or more discrim-
inator neurons slightly outperform those with 32, al-
though the improvements are not always substantial.

The learning rates for both the generator and dis-
criminator (denoted as lr g and lr d) play a crucial

Input : Number of qubits n, batch size b,
learning rates lG

r , l
D
r , epochs N, real

data X .
Output: Trained generator G and

discriminator D.

Initialize: Create generator G using quantum
circuit and noise parameters z;

Define discriminator D, a classical
feedforward neural network;

Initialize Adam optimizers AdamG and
AdamD with learning rates lG

r , l
D
r ;

Define Binary Cross-Entropy Loss LBCE ;

for epoch e← 1 to N do
Step 1: Train Discriminator with Real

Data;
Sample a batch Xreal ⊆ X of size b;
Compute real loss:

L real
D ← LBCE(D(Xreal),1);

Update discriminator: AdamD← ∇L real
D ;

Step 2: Train Discriminator with
Generated Data;

Generate noise z∼N (0,1);
Generate data: Xgen← G(z);
Apply interpret function:

Xgen← InterpretFunction(Xgen);
Compute gen loss:

Lgen
D ← LBCE(D(Xgen),0);

Update discriminator: AdamD← ∇Lgen
D ;

Step 3: Train Generator;
Generate new data: Xgen← G(z);
Apply interpret function:

Xgen← InterpretFunction(Xgen);
Compute generator loss:

LG← LBCE(D(Xgen),1);
Update generator: AdamG← ∇LG;

Step 4: Monitor Training Progress;
Generate samples Xgen← G(z) and apply

interpret function;
Compare statistical properties and
distributions of Xgen with X ;

Record losses: L real
D ,Lgen

D ,LG;
Evaluate metrics (accuracy, F1-score);

end
Algorithm 1: QGAN Training Algorithm with Quan-
tum Generator and Classical Discriminator.

role in determining the stability and convergence of
the QGAN. While most configurations use balanced
learning rates (e.g., 0.01 for both), experiments with
significantly smaller or unbalanced learning rates
(e.g., 0.001/0.005 or 0.003/0.008) show mixed results.
These settings sometimes lead to minor performance
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Table 1: Performance of QGAN with different configurations.

Features Ansatz Generator
Reps

Discriminator
Layers

Learning Rates
(Gen/Disc)

Performance
(Accuracy / F1)

6 EfficientSU2 3 16 0.01 / 0.01 0.914 / 0.9189
5 EfficientSU2 3 16 0.01 / 0.01 0.909 / 0.916
6 EfficientSU2 3 8 0.01 / 0.01 0.899 / 0.9001
6 EfficientSU2 3 32 0.01 / 0.01 0.911 / 0.9178
6 EfficientSU2 3 64 0.01 / 0.01 0.923 / 0.9241
6 RealAmplitudes 3 32 0.01 / 0.01 0.915 / 0.9202
6 EfficientSU2 6 32 0.01 / 0.01 0.9210 / 0.9187
6 RealAmplitudes 3 32 0.001 / 0.001 0.904 / 0.9087
6 EfficientSU2 6 64 0.01 / 0.01 0.9270 / 0.9215
6 EfficientSU2 6 64 0.001 / 0.005 0.914 / 0.9007
6 EfficientSU2 6 64 0.005 / 0.001 0.909 / 0.8991
6 EfficientSU2 10 8 0.01 / 0.01 0.913 / 0.9012
6 EfficientSU2 6 128 0.01 / 0.01 0.917 / 0.9015
5 EfficientSU2 8 16 0.01 / 0.001 0.793 / 0.7812
6 EfficientSU2 6 64 0.001 / 0.005 0.909 / 0.9161
6 EfficientSU2 10 8 0.01 / 0.01 0.922 / 0.9275
6 EfficientSU2 6 64 0.003 / 0.008 0.913 / 0.918
6 RealAmplitudes 3 32 0.007 / 0.007 0.914 / 0.9189
6 EfficientSU2 9 128 0.01 / 0.01 0.937 / 0.9384
6 EfficientSU2 6 64 0.006 / 0.01 0.917 / 0.9222
5 EfficientSU2 8 64 0.01 / 0.001 0.899 / 0.9083

drops, highlighting the importance of carefully tuning
the learning rates.

Regarding the ansatz, EfficientSU2 and RealAm-
plitudes are compared in the table. Overall, Effi-
cientSU2 demonstrates slightly better performance
across most configurations, particularly when com-
bined with 6 principal components. Reducing the
number of features to 5 generally leads to a slight de-
crease in performance, indicating that retaining more
features provides the model with richer information
to generate better outputs, but it is not without limita-
tions.

The highest-performing configuration combines 6
PCA features, the EfficientSU2 ansatz, 9 generator
repetitions, and 128 discriminator neurons. This setup
achieves an accuracy of 0.937 and an F1 score of
0.9384.

The plot shown in Figure 3 represents the loss of
the generator and the discriminator (for both real and
generated data) over the course of training, focusing
on the configuration with the best performance. The
generator’s loss starts relatively high at the beginning
of the training process, as it initially produces poorly
generated samples. As the epochs progress, the gen-
erator’s loss gradually decreases, indicating its im-
proved ability to produce data that closely resembles
the real dataset. By the end of the training process, the
generator achieves a relatively stable loss, suggesting
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0.8
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Loss plot
generator loss
discriminator loss real
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Figure 3: Generator and Discriminator loss during the train-
ing process.

that it has effectively learned the underlying data dis-
tribution.

The discriminator’s loss for real data starts lower
at the beginning, as the discriminator can easily dis-
tinguish between real and generated samples when
the generator is weak. However, as the generator im-
proves, the discriminator’s task becomes more chal-
lenging, leading to an increase in its loss for real data.
Toward the later epochs, the loss stabilizes, indicating
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Figure 4: Distribution comparison of feature values with real and generated samples.

that the discriminator has adapted to the generator’s
improved outputs.

Instead, the loss for generated data follows a com-
plementary trend to the generator’s progress. Initially,
the discriminator easily identifies fake data, resulting
in a low loss. As the generator’s outputs improve, the
discriminator’s loss for fake data increases, reflect-
ing its reduced confidence in distinguishing fake data
from real data. By the end of training, this loss also
stabilizes, balancing the adversarial dynamics.

The overall stability in loss values across the
epochs demonstrates that the adversarial training be-
tween the generator and discriminator has reached
equilibrium.

The provided plots in Figure 4 compare the dis-
tributions of real data and generated data for each
of the six principal components (PCA features) ex-
tracted from the dataset for this best parameter con-
figuration. These visualizations evaluate how closely
the generated data aligns with the real data in terms
of feature distribution, providing an important assess-
ment of the generator’s ability to replicate the under-
lying patterns of the original dataset.

The plots demonstrate a strong alignment between
the real and generated data distributions, indicating
that the generator successfully learns the essential sta-
tistical features of the dataset. In most cases, the gen-
erated data closely follows the shape, range, and den-
sity of the real data, particularly in high-density re-
gions where the majority of data points are concen-
trated. This suggests that the generator is effective at
capturing the primary structure of the dataset.

Minor deviations are observed in certain areas,
especially in lower-density regions or the extremes
of the distributions, where the generator occasion-
ally underestimates or overestimates specific ranges.
These variations reflect potential areas for improve-
ment, such as fine-tuning hyperparameters or increas-
ing the training iterations to better capture the nuances
of the dataset.

The results validate the effectiveness of the
QGAN configuration in generating synthetic data that
closely mirrors the real dataset. Loss trends confirm
stable adversarial training, and distribution plots show

strong alignment between real and generated data,
with minor deviations in low-density regions. Over-
all, the model proves highly effective, balancing ac-
curacy and realism, though computational trade-offs
must be considered.

6 CONCLUSION AND FUTURE
WORK

This work presents an adaptation of the hybrid QGAN
framework for intrusion detection, showcasing its po-
tential to address key challenges in anomaly detection
systems. The quantum generator, implemented using
a VQC, effectively learns the data distribution and
generates realistic samples, while the classical dis-
criminator evaluates these samples to refine the gener-
ator’s performance. This structure not only enhances
anomaly detection capabilities but also maintains
compatibility with standard evaluation frameworks.
The QGAN was tested on the NSL-KDD dataset, un-
der various configurations, including changes to the
number of qubits, circuit repetitions, ansatz struc-
tures, and feature maps, achieving an accuracy of
0.937 and an F1 score of 0.9384, demonstrating its
effectiveness and scalability.

Future research will extend these experiments to
explore a wider range of configurations and datasets,
focusing on optimizing performance across diverse
environments. Further, integrating advanced quantum
hardware and incorporating domain-specific feature
engineering could unlock even greater potential for
QGAN-based intrusion detection systems.
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