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Abstract: Symbolic models of Artificial Intelligence are based on defining declarative knowledge that is connected
through procedural knowledge forming symbolic graphs through which reasoning flows. Both declarative and
procedural knowledge can be inaccurate, which has led to the definition of different models to represent this
inaccuracy. Since the functioning of quantum computers is inherently probabilistic, it has been proposed to
take advantage of this nature to implement inaccurate knowledge more effectively. In this paper, we present
different models for implementing inaccurate knowledge in quantum computers and propose a unified frame-
work to represent and implement the common features of all of them.

1 INTRODUCTION

Symbolic AI builds computational models of intelli-
gent behavior, focusing on a symbolic representation
of the world and then using logic and search to solve
problems. These AI models are composed of declar-
ative knowledge, a set of facts that describe the real
world and procedural knowledge that specifies how
different elements of declarative knowledge relate.

The reasoning in these symbolic models is built
by establishing knowledge graphs that are formed
by declarative knowledge (the nodes) connected
through procedural knowledge (the connections be-
tween nodes). These knowledge graphs are then im-
plemented as logic rules or, more popularly, as rule-
based systems (RBS).

One of the problems that arises when working
with symbolic AI models is that knowledge in the real
world rarely is completely accurate.

In this paper, we assume that inaccuracy can be
present in two different ways: (1) Imprecision when
it is associated with declarative knowledge, i.e. how
accurate is the description of a given fact. (2) Uncer-
tainty when it is associated with procedural knowl-
edge, i.e. the uncertainty related to the evidential
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strength of the causal relationship.
Over the past years, there have been several pro-

posals to solve the issue of reasoning under inac-
curacy with Quantum Computing (QC). One of the
reasons behind these approaches is the probabilis-
tic nature of QC, which aligns quite seamlessly with
the preexisting models for reasoning with inaccuracy.
However, there are certain drawbacks to develop-
ing practical applications with QC because nowadays
quantum computations are very sensitive to noise in
the currently available hardware.

In this paper, we present a brief state-of-the-art
of how inaccurate knowledge can be represented in
a quantum computer. We extract the common char-
acteristics of these inaccuracy models and their corre-
sponding quantum implementations to build a unified
software framework that allows for easy implementa-
tion of a knowledge graph with inaccurate knowledge
in a quantum circuit. We also carry on a study on how
these models are affected by noise, given its relevance
to the current viability of QC applications.

The paper is structured as follows: section 2
briefly describes classical inaccurate knowledge mod-
els and presents quantum implementations that have
been proposed for these models, section 3 proposes to
build a unified framework for dealing with the quan-
tum implementation of inaccuracy, section 4 applies
our unified model to a synthetic problem (basketball)
and, finally, section 5 include the conclusions.
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2 QUANTUM INACCURATE
KNOWLEDGE MODELS
IMPLEMENTATION

In this section, we present some of the most promi-
nent models to manage inaccurate knowledge in clas-
sical systems (Certainty Factors, Bayesian Networks,
and Fuzzy Models) and we discuss hoy to to use the
probabilistic nature of QC to represent the impreci-
sion and uncertainty inherent to these models.

2.1 Certainty Factors

Proposed by (Shortliffe and Buchanan, 1975), this
model was one of the first to propose a way of deal-
ing with inaccurate knowledge. The certainty factors
(CF) model is ad hoc in nature and therefore lacks
a solid theoretical basis. However, this model was
immediately accepted because of its ease of under-
standing and the quality of the results obtained after
its application. In any case, it seems that, despite its
ad hoc nature, probabilities are at the core of these
certainty factors. In the CF model, the imprecision
is represented by the certainty factors associated with
facts, whereas the uncertainty is represented by cer-
tainty factors associated with rules.

We implemented CFs model in quantum com-
puters using quantum rule-based systems, which are
quantum circuits that implement knowledge in the
form of production rules (Moret-Bonillo et al., 2022).
We propose that inaccuracy can be obtained from a
unitary matrix that operates on a specific state of the
quantum system. In this context, we introduce matrix
M(δ) (eq. 1), defined as follows in which the δ an-
gle represents the inaccuracy associated with a given
state (if δ = 0, the statement is completely false, and
when δ = π/2, the statement is completely true):

M(δ) =

(
cos(δ) sin(δ)
sin(δ) −cos(δ)

)
(1)

For example, suppose the following RBS with two
rules: R1 : A AND B⇒ X , R2 : X OR C⇒ Y . These
rules can be represented in a quantum computer as
shown in Fig. 1. The circuit uses one qubit for each
fact and each rule and some ancilla qubits for imple-
menting the AND and OR operators. M gates are ap-
plied to fact qubits for representing imprecision and
to rule qubits to represent uncertainty.

2.2 Bayesian Networks

A Bayesian network is a probabilistic graphical model
that represents a set of variables and their conditional

qA : M(δA) •
qB : M(δB) •
qa1 : •
qR1 : M(δR1) •
qa2 : • •
qC : M(δC) • •
qa3 : •
qR2 : M(δR2) •
qa4 :

c : /
1

0

Figure 1: Quantum inferential circuit.

dependencies via a directed acyclic graph that rep-
resents the joint probability distribution over those
variables. Bayesian networks reduce the space com-
plexity by exploiting conditional dependencies in the
distribution, associating with each graph node a con-
ditional probability table for each random variable,
with directed edges representing conditional depen-
dencies. Here, the imprecision is represented by the
marginal probabilities of the root nodes of the net-
work, whereas the uncertainty is represented by the
conditional probabilities that connect the non-root
nodes of the network.

There are several implementations of Bayesian
networks in quantum computers. Low et al. (Low
et al., 2014) proposed a quantum circuit that ef-
ficiently represents the full joint distribution of a
Bayesian network in which the edges in the network
are mapped to conditioning nodes in the circuit. Boru-
jeni et al. (Borujeni et al., 2021) proposed a model in
which the marginal probabilities associated with root
nodes (nodes without any parent nodes) are repre-
sented using rotation gates, and the conditional proba-
bility tables associated with non-root nodes are repre-
sented using controlled rotation gates. The controlled
rotation gates with more than one control qubit are
represented using ancilla qubits.

Let’s see an example using the Titanic dataset, that
lists the complete passengers and crew members on
the RMS Titanic with a variable indicating whether a
person did survive the sinking. Following the “Women
and children first” rule, one can easily guess that sex
and being a child have an impact on the probabilities
of survival. Therefore we can represent the following
Bayesian network: (Sex)→ (Survival)← (isChild)

Since the nodes Sex and isChild are binary, we can
represent them using a single qubit. By applying an
RY gate with an appropriate angle, the probabilities
of the root node can be mapped to the probabilities
(and thus probability amplitudes) of the basis states,
|0⟩ and |1⟩. We use a third qubit with controlled RY
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gates to represent the conditional probability tables
associated with the Survival node (see Fig. 2).

2.3 Fuzzy Models

Fuzzy logic is a form of many-valued logic in which
the truth value of the variables can be any real number
between 0 and 1. The term was introduced with the
1965 proposal of fuzzy set theory by scientist Lotfi
A. Zadeh (Zadeh, 1965). In these models, impreci-
sion is represented by a fuzzification process in which
a numeric input is assigned to a given fuzzy set with
some degree of membership. Uncertainty is propa-
gated through the system using a fuzzy implication
function that triggers partially, and in parallel, several
rules that include those fuzzy sets with some degree
of membership different from zero. The final step is
the defuzzification process, in which the fuzzy results
are converted back into crisp results.

It is easy to see the parallelism between fuzzy
models and quantum computing. The fuzzification
process puts a given crisp value in a sort of “super-
position” of several fuzzy variables (a person can be
considered tall and short at the same time with dif-
ferent degrees of membership). The defuzzification
process is the counterpart to the measure in quantum
computers, the superposition disappears but affects
how a new crisp value is obtained.

But the similarities end there, quantum mechan-
ics is based on the Hilbert space formalism and has a
probabilistic nature. On the other hand, fuzzy logic
takes the concept of intersection, union, and implica-
tion of classic logic and converts them to t-norms, t-
conorms, and fuzzy implications that can have several
different implementations.

There are several attempts to implement fuzzy
logic in a quantum computer, among the early works
we can highlight (Mannucci, 2006) and (Schmitt
et al., 2009), and among the more recent ones
(Pykacz, 2015), (Nadaban, 2021) and (Gentili, 2021).
The differences rely on how to implement the dif-
ferent fuzzy connectives as a composition of quan-
tum operations (using unitary and controlled quantum
gates) applied to quantum registers.

3 A UNIFIED VIEW OF
QUANTUM INACCURATE
KNOWLEDGE

We can see that the classical models of inaccurate
reasoning present similarities: Heckerman proposed
a probabilistic interpretation for Certainty Factors

(Heckerman, 1986) and Gentili stated that “the terms
of Bayes’ formula are describable as degrees of mem-
bership to fuzzy sets, and the Bayesian inference is
conceivable as a fuzzy inference” (Gentili, 2021).

This allows us to suggest the possibility of estab-
lishing a unified framework of these models to imple-
ment them in QC. In Table 1 we summarize the sim-
ilarities of the models when dealing with inaccuracy
and implementing them in a quantum computer.

The idea is to define of a knowledge graph and
then facilitate different of this graph as different inac-
curacy models on a quantum computer. Our first step
was the development of software (Magaz-Romero
et al., 2023) for implementing quantum rule-based
systems (QRBS) defining a classical RBS.

3.1 QRBS Software

We present a software library for the implementation
of QRBSs whose source code is available at (Consor-
tium, 2024) under an open-source license.

This software library is structured in two pack-
ages, one for encoding knowledge and one for man-
aging the quantum tasks (Moret-Bonillo et al., 2024).

The first package contains all the required ele-
ments for modeling RBSs, as illustrated in Fig. 3.
In this package we can find the following classes:

• Fact: the building block of RBSs, as it is used to
encode the declarative knowledge of the system.

• {Not,And,Or}Operator: these classes allow for
the composition of the system’s facts, each estab-
lishing a different relationship among them.

• Rule: encodes the procedural knowledge of the
system, as it relates a composition of facts (the
precedent) with a single fact (the consequent).

• KnowledgeIsland: this class aggregates different
sets of rules. The rules of a knowledge island are
those that aim at the same consequent.

The second package contains all the elements to
define a QRBS, as well as the tools to evaluate and
execute it. These components (Fig. 4) are:

• WorkingMemory, InferenceEngine: store the
declarative and procedural knowledge.

• QRBS: used to initialize the system and populate
it with the corresponding knowledge elements.

• QPU: interface defining how the QRBSs are op-
erated, with regards to evaluation and execution.

The library provides the following functionalities:

• RBS modeling: users can model a rule-based
system by encoding declarative and procedural
knowledge into a system, establishing different
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Figure 2: Quantum Bayesian network circuit.

Table 1: Summary on representing the imprecision and uncertainty of different models in classical and quantum computers.

Classical Quantum

Model Imprecision Uncertainty Imprecision Uncertainty

Certainty Factors CFs in facts CFs in rules M gate in facts M gate in rules

Bayesian
Networks

Marginal
probabilities

Conditional
probabilities

RY gates in root
nodes

CRY gates in
non-root nodes

Fuzzy models Fuzzification of
facts Fuzzy implication Superposition of

quantum states
Controlled
quantum gates

consequent

Fact

+ attribute: String
+ precision: float

NotOperator

+ child: LeftHandSide

AndOperator

+ leftChild: LeftHandSide
+ rightChild: LeftHandSide

OrOperator

+ leftChild: LeftHandSide
+ rightChild: LeftHandSide

<<Abstrac>>
LeftHandSide

child

leftChild,
rightChild

leftChild,
rightChild

precedent

Rule

+ precedent: LeftHandSide
+ consequent: Fact

KnowledgeIsland

+ rules: List<Rule>

Figure 3: Class diagram of the knowledge rep. package.

QRBS

+ memory: WorkingMemory
+ engine: InferenceEngine

WorkingMemory

+ facts: List<Fact>

InferenceEngine

+ rules: List<Rule>
+ islands: List<KnowledgeIsland>

<<Interface>>
QPU

+ evaluate(QRBS)
+ execute(QRBS)

"use"

Figure 4: Class diagram of the QRBS package

facts with their respecting imprecision, and relat-
ing them through rules with uncertainty.

• Automated QRBS implementation in different

models: after defining an RBS, users can auto-
matically obtain the corresponding QRBS in the
different models available without providing any
additional information.

• Evaluate and execute QRBS: users can evaluate
their QRBS to analyze their viability , and if fa-
vorable execute it to obtain the corresponding re-
sults. These are encoded as the certainty values of
the rules’ consequents, which users can consult.

The general QRBS workflow would be as follows:

1. The user defines the elements of a classical rule-
based system (facts, rules, etc.)

2. The user establishes the level of inaccuracy in the
elements of the system.

3. An implementation of the QPU interface uses this
information to build the corresponding quantum
routine for a given quantum computer.

4. This implementation is executed, yielding the re-
sults for the consequents of the different rules.

5. The values of the consequents are updated so the
user can consult them.

With this library, we allow for an easy manage-
ment of the knowledge elements of RBSs, indepen-
dently from a specific model of uncertainty. Once the
declarative and procedural knowledge of the system
is identified, it is trivial to encode it with the library.

Furthermore, it enables a fast workflow for exper-
imenting with these systems. Once its structure has
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been defined, the user can easily tweak small aspects
directly (e.g., the accuracy values of each of the el-
ements) and automatically obtain the corresponding
quantum routines for each of the models available.

3.2 On the Subject of Noisy Quantum
Computations

Quantum Computing has gained enormous momen-
tum in recent years thanks to the development of the
first publicly available quantum computers, although
these machines are still far from being comparable
with classical computers. While classical computers
have enough capacity for error correction , for quan-
tum computers it is a luxury (Wolfowicz et al., 2021).

Nevertheless, current quantum computers are
worth using and researching . This is where NISQ al-
gorithms come into play, as they are designed to work
under these circumstances. Their goal is to leverage
the available resources to perform classically chal-
lenging tasks (Bharti et al., 2022).

We have developed our approach within this con-
text. While the quantum routines that result from
the different models are themselves limited by the
number of qubits, the framework itself is ready to
scale when quantum computers with more capacity
are made available. However, we must test the frame-
work’s robustness against noise.

4 SYNTHETIC CASE:
BASKETBALL PROBLEM

To illustrate the framework and the use of the QRBS
software, we propose to study the following case,
which we name the basketball problem.

4.1 Description of the Problem

This problem is based on a simulated case, where a
basketball coach has to make a new team from the
players available. He decides to compare them by
evaluating two statistics: the scored shots out of 20 as
a measurement of skill, and the height of the player.

Each stat is split into five categories: Worst, Bad,
Regular, Good and Best. Therefore, we have 10 in-
put facts for the system, with a level of inaccuracy
assigned depending on the input of the stat.

For the evaluation of the player, we consider four
categories: Bad (which is discarded directly), Regu-
lar, Good, and Excellent. In this case, we obtain the
precision levels for each category from the inference
process of executing the system.

Once we have defined the facts of the system, we
define the rules that relate the stats to the evaluations.
We consider those in Table 2.

To evaluate the system, we generate a batch of
synthetic players, i.e. a pair of shots/height, and input
this data into the system to analyze the results. Table
3 shows the generated data for the synthetic players.
We have implemented the problem classically to ob-
tain an expected value for each synthetic player, so we
can later validate the output.

For each of these players, we initialize the pre-
cision of the facts according to their pair of statistics.
For the sake of briefness, we assume that the certainty
for the rules is always 1.00.

We have defined this set of players with values
spread across the range of evaluation so we can later
evaluate the effect of noise in them.

4.2 Implementation of the Problem

We test the three models available in the QRBS soft-
ware,as each should yield similar results to the other
two.As stated in Table 1, each model has a differ-
ent quantum implementation. To illustrate them, we
present the quantum routines corresponding for Rule
5 (see Table 2). The same procedure is applied for the
rest of the rules to compose the corresponding entire
quantum circuit.

For Certainty Factors, the quantum routine is the
one shown in Fig. 5. M(θ) is used to initialize the
facts’ qubits for their imprecision and the rules’ qubits
for their uncertainty. We apply the quantum opera-
tors according to the logical associations between the
facts, as well as the ones for the inference of the rules.

|q0⟩ M(θh Good)

|q1⟩ M(θs Good)

|q2⟩

|q3⟩ M(θh Best)

|q4⟩ M(θs Good)

|q5⟩

|q6⟩

|q7⟩ M(θR5)

|q8⟩

Figure 5: Quantum routine for Rule 5 with CF model.

For Bayesian networks, we obtain the quantum
routine from Fig. 6. We use RY (θ) for the declara-

Unified Framework for Implementing Inaccurate Knowledge in Quantum Symbolic Artificial Intelligence Models

843



Table 2: Rules for the basketball problem.

ID Precedent Output

1 IF shots is Worst OR shots is Bad Bad
2 IF height is Worst OR height is Bad Bad
3 IF height is Regular OR shots is Regular Bad

4 IF (height is Regular AND shots is Good) OR (height is Regular AND shots is Best)
OR (height is Good AND shots is Regular) OR (height is Best AND shots is Regular)

Regular

5 IF (height is Good AND shots is Good) OR (height is Best AND shots is Good) Good

6 IF (height is Good AND shots is Best) OR (height is Best AND shots is Best) Excellent

Table 3: Generated data for the basketball problem.

ID Scored shots Height Expected value

P1 15 203 50.00
P2 16 198 64.60
P3 17 188 16.90
P4 17 193 56.10
P5 18 176 0.00
P6 18 186 17.60
P7 18 200 83.70

|q0⟩ RY (θh Good)

|q1⟩ RY (θs Good)

|q2⟩ X X

|q3⟩ RY (θh Best)

|q4⟩ RY (θs Good)

|q5⟩ X X

|q6⟩ RY (θR5) RY (θR5) RY (θR5)

Figure 6: Quantum routine for Rule 5 with Bayes model.

tive knowledge (root nodes), and CRY (θ) for the pro-
cedural knowledge (non-root nodes). We apply the
quantum operators to model the relationship between
nodes, following the rules of the system.

For Fuzzy models, the resulting quantum routine
is illustrated in Fig. 7. For this model, we apply RY (θ)
gates for the inaccuracy of both the facts and the rules.
We implement the AND with a CCNOT and the OR
with a composition of X and CCNOT .

With these quantum routines, we show how each
of the models is implemented with slight differences.
It is worth mentioning that the routines have been ob-
tained from the same classical inferential circuit.

Regarding the noise models, we follow the error
model based on thermal relaxation with the qubit en-
vironment. Table 4 illustrates the parameters applied
for each noise model, as we introduce noise in U1,
U2, and U3 quantum gates, in the CX controlled op-
erator, and in the measuring process. The first model
is noiseless and validates the values from the quantum

|q0⟩ RY (θh Good)

|q1⟩ RY (θs Good)

|q2⟩ X X

|q3⟩ RY (θh Best)

|q4⟩ RY (θs Good)

|q5⟩ X X

|q6⟩ X

|q7⟩ RY (θR5)

|q8⟩

Figure 7: Quantum routine for Rule 5 with Fuzzy model.

Table 4: Parameters (in nanoseconds) for the noise models.

Noise U1 U2 U3 CX Measure

0 0 0 0 0 0
1 71 142 428 1428 1428
2 142 285 857 2857 2857
3 214 428 1285 4285 4285
4 285 571 1714 5714 5714
5 357 714 2142 7142 7142
6 428 857 2571 8571 8571
7 500 1000 3000 10000 10000

routines against the classical expected values.

4.3 Results

In the first place, we must validate that the quantum
routines’ outputs match with the expected ones. For
that, we evaluate the quantum routine of each model
with the noiseless model, shown in Fig. 8.

It can be observed how the obtained values cor-
respond to the expected values from the classical im-
plementation, therefore validating our framework. As
expected, the results obtained for each model are sim-
ilar to the ones from the other two, with some of them
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even being identical.
We continue with the results of the experiments

with the different noise levels, shown in Fig. 9.
These results showcase how noise affects the val-

ues returned by the quantum routines. The output
value tends to 50 as the noise becomes more ag-
gressive. As more noise is introduced in a reason-
ing process, the conclusions provide less information,
which is reflected as an evaluation of 50: the player is
equally “good” and “bad”.

However, for the proposed framework, the in-
fluence of noise does not affect the problem’s goal.
Since noise affects all cases equally, the players’ or-
der is preserved. There are some points where this
proportion does not hold up as strongly as one would
prefer, due to the probabilistic nature of QC.

We have calculated the error for each noise level
output for the noiseless model, which can be seen in
Fig. 10. In general, the CF model presents the highest
error value, yet it could be argued that also preserves
the proportion of the players’ values the best.

In general, the models developed in this work
present enough robustness against the noise models
that have been experimented with. This makes them
appropriate to be used during the NISQ era of QC.

5 CONCLUSIONS

AI has classically been divided into two worlds, the
symbolic world and the connectionist world. Today
we can say that the latter has surpassed the former in
terms of results. However, many researchers believe
that an exclusively connectionist model is not enough
to achieve Artificial General Intelligence (AGI), i.e.
human-level AI, and that a mixed approach is needed.

Similarly, quantum AI has tended to machine
learning (ML) developments because such mod-
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Figure 8: Scores for the synthetic players without noise.

els deal with massive parallel processing of high-
dimensional data, it seems that quantum computers
can be an advantage when designing ML algorithms.

However, we think that there is room in the quan-
tum world for symbolic AI. Since QC is inherently
probabilistic, we can take advantage of this nature to
implement inaccurate knowledge more effectively.

This idea has taken form in the QRBS software
presented here. With this framework, users can model
their knowledge classically and implement it automat-
ically in a given quantum computer.

On top of that, the results obtained prove both that
the framework presented is valid for the implemen-
tation of symbolic AI models in a QC, and that it
manages inaccurate knowledge successfully. We also
have demonstrated how our framework is suitable for
NISQ quantum computers, making it viable before
noise-correcting quantum computers are available.

This development presents a first step towards
a quantum symbolic AI library that can implement
generically classical symbolic AI models in a quan-
tum computer, and that allows us to take advantage of
the probabilistic nature of quantum computers to find
a quantum advantage in such implementation.
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and Alvarez-Estévez, D. (2024). D6.14 Final QRBS
software and IDC application.

Nadaban, S. (2021). From classical logic to fuzzy logic and
quantum logic: A general view. International Journal
of Computers communications & control, 16(1).

Pykacz, J. (2015). Quantum physics, fuzzy sets and logic.
Springer.

Schmitt, I., Nürnberger, A., and Lehrack, S. (2009). On the
relation between fuzzy and quantum logic. In Seis-
ing, R., editor, Views on Fuzzy Sets and Systems from
Different Perspectives, pages 417–438. Springer.

Shortliffe, E. H. and Buchanan, B. G. (1975). A model
of inexact reasoning in medicine. Mathematical Bio-
sciences, 23(3):351–379.

Wolfowicz, G., Heremans, F. J., Anderson, C. P., Kanai, S.,
Seo, H., Gali, A., Galli, G., and Awschalom, D. D.
(2021). Quantum guidelines for solid-state spin de-
fects. Nature Reviews Materials, 6(10):906–925.

Zadeh, L. (1965). Fuzzy sets. Information and Control,
8(3):338–353.

QAIO 2025 - Workshop on Quantum Artificial Intelligence and Optimization 2025

846


