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Abstract: This study is part of a broader project, the Open Source Bionic Hand, which aims to develop and control, in 
real time, a low-cost 3D-printed bionic hand prototype using signals from the muscles of the forearm. In this 
work, it is intended to implement a bimodal signal acquisition system, which uses EMG signals and Force 
Myography (FMG), in order to optimize the recognition of gesture intention and, consequently, the control of 
the bionic hand. The implementation of this bimodal EMG/FMG system will be described. It uses two 
different signals from BITalino EMG modules and Flexiforce™ sensors from Tekscan™. The dataset was 
built from thirty-six features extracted from each acquisition using two of each EMG and FMG sensors in 
extensor and flexor muscle groups simultaneously. The extraction of features is also depicted as well as the 
subsequent use of these features to train and compare Machine Learning models in gesture recognition, 
through MATLAB's Classification Learner tool. Preliminary results obtained from a dataset of three healthy 
volunteers, show the effectiveness of this bimodal EMG/FMG system in the improvement of the efficacy on 
gesture recognition as it is shown for example for the Quadratic SVM classifier that raises from 75,00% with 
EMG signals to 87,96% using both signals. 

1 INTRODUCTION 

Upper limb myoelectric prostheses, also called bionic 
hands, are electromechanical devices that are attached 
to the residual limb of amputees, in order to replicate 
the functionality of the human hand, and 
consequently improve the quality of life of these 
people. 

Commercial bionic hand models use surface 
electromyographic (EMG) sensors to capture the 
electrical activity produced when muscle remnants 
are activated. However, this is a detection method 
whose effectiveness is susceptible to external 
electromagnetic noise, muscle fatigue, or impedance 
changes in the sensor-skin interface. So research in 
the field of myoelectric prostheses is faced with the 
constant challenge of replicating the functionality of 
the human hand. 

This study is part of a broader project, the Open 
Source Bionic Hand, which aims to develop and 
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control, in real time, a low-cost 3D-printed bionic 
hand prototype using signals from the muscles of the 
forearm. In literature it is possible to find previous 
contributions from this project, focused on the 
implementation of a prototype of a low-cost 
controller of a bionic hand, namely from the 
application of alternative mechanomyographic 
sensors and novel and low-cost electrodes, built from 
a conductive leather material as well as based on 
desktop 3D printing using conductive PLA (Pol-
yLactic Acid) (Marques, 2020) (Silva, 2019). 

The main objective of the work presented in this 
paper it is the implementation and evaluation of the 
effectiveness of a bimodal EMG/FMG signal 
acquisition system for the control of a bionic hand. 
The idea is to counter the limitations of EMG sensors 
by integrating FMG, which shows benefits such as 
robustness in the face of impedance changes at the 
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skin interface and sweating, and lower sensitivity to 
sensor positioning. This is despite having its own 
challenges, such as sensitivity to unintentional move-
ments and external noises. 

The term FMG, or force myography, describes the 
various non-invasive techniques that use force 
sensors to detect voluntary changes associated with 
the activation/deactivation of superficial muscle 
groups relative to a default state that usually 
corresponds to the limb in a relaxed position 
(Grushko, 2020). It also detects voluntary changes 
caused by the movement of tendons under the surface 
of the skin (e.g. in the wrist) (McIntosh, 2016). 

The first work on the FMG technique as a 
modality for the control of myoelectric prostheses 
was published in 1999 (Abboudi, 1999) but it was 
only in the middle of the last decade that it gained 
traction among researchers, driven by the 
development of Machine Learning techniques. 

Several scientific publications present promising 
results on the possibility of using the FMG technique 
to predict movement intention in implementations of 
bionic hand prostheses (Citi, 2016) (Kadkhodayan, 
2016) (Radmand, 2016). More recently, there is a 
growing interest in combining sEMG and FMG in 
order to create more robust control systems to be used 
by pattern recognition models (Jaquier, 2017) 
(Nowak, 2017) (Xiao,2017). What makes the bimodal 
system interesting is the fact that it detects both 
electrical and volumetric phenomena associated with 
muscle contraction.  In 2020, Jiang et al., proposed a 
co-localized approach to acquire EMG and FMG sim-
ultaneously at the same location, achieving a 10% 
increase in accuracy in identifying 10 American sign 
language signals, relative to isolated modalities 
(Jiang, 2020). 

In general, robustness and/or accuracy increase 
when using multimodal acquisition systems. 
However, it also increases the information processing 
required, and the complexity of integrating all sensors 
into the same hybrid acquisition system. 

It is also expected that in unimodal FMG systems, 
the number of sensors will strongly influence 
accuracy as they enable higher spatial resolution and 
the extraction of a greater number of features 
(Grushko, 2020). However, there are still several 
shortcomings that need to be addressed in order to be 
able to use FMG technology in commercial bionic 
prostheses (Xiao,2017) (Jiang, 2020) (Xiao, 2019). 

In this paper, we will describe the implementation 
of a bimodal EMG/FMG system using the 
physiological signal acquisition platform, BITalino 
(Plux Biosignals), to make the acquisition of these 
two different signals from BITalino EMG modules 

and Flexiforce™ sensors from Tekscan™. The 
simultaneous acquisition of EMG and FMG data was 
then performed, using BITalino and OpenSignals, as 
well as the optimization of the MATLAB routines for 
signal processing and onset/offset detection of the ac-
quired signals, implemented in previous works within 
the scope of this same project (Rodrigues, 2022) 
(Rodrigues, 2023). These steps are crucial for the 
extraction of features, and subsequent use of these 
features to train and compare Machine Learning 
models in gesture recognition, through MATLAB's 
Classification Learner tool. So our main 
differentiating mark is the choice of low-cost 
hardware, in order to obtain a similar or even greater 
efficacy with a smaller number of sensors than that 
described in the literature, based on an in-depth study 
that allows the selection of a smaller set of the best 
characteristics and supported by an optimized 
classification method. Preliminary results point to 
significant gains in the effectiveness of the 
classification of gestures, in line with the conclusions 
of other studies (Esposito, 2018) (Rafiee, 2011). 
These results, although still very preliminary, are also 
better than those reported in the literature for 
commercial systems with EMG sensors, with an 
accuracy of 87.96% vs 84.60% for these systems 
(Jiang, 2017). 

2 MATERIALS AND METHODS 

This work involved the selection of EMG and FMG 
sensors as well as the platform for robust data 
acquisition. Subsequently, it was necessary to 
implement the filters for signal processing, namely 
the EMG signal, as well as for the detection of 
onset/offset. Finally, the features of the EMG and 
FMG signals to be extracted were selected and the 
entire methodology for the application of the 
classifiers was developed. The main objective is to 
analyze the improvement in efficacy achieved with 
this bimodal system but also to optimize the 
application of these classifiers. 

2.1 EMG and FMG Signals 

The EMG signal is a widely used tool in the detection 
of motion intent in commercial bionic prosthetic 
applications. However, the search for additional 
information on muscle activity has motivated the 
exploration of complementary techniques, such as 
force myography (FMG). 

The EMG signal is the electrical expression of 
muscle activity, in this case captured by surface 
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electrodes placed on the skin on the study muscle. 
The amplitude of the EMG signal, which is stochastic 
(random) in nature, is influenced by the strength of 
muscle contraction and usually ranges from 0 to 10 
mV peak-to-peak, or from 0 to 1.5 mV RMS. The 
EMG signal is particularly useful in the 0-500 Hz 
frequency range, with the dominant energy in the 50-
150 Hz range. This signal characteristic is illustrated 
in Figure 1, which shows power density spectra of 
EMG signals from different hand gestures. 

 
Figure 1: Power density spectra of EMG signals in hand 
gestures (from (Xiao, 2019)). 

FMG is a non-invasive technique that makes use 
of pressure sensors placed on the skin above the 

muscles to capture changes in pressure and volume 
associated with the activation and deactivation of 
superficial muscle groups. Instead of measuring 
muscle electrical activity like EMG, FMG records 
mechanical changes, thus capturing distinct 
information, which can be valuable in the context of 
bionic prostheses. 

Although FMG has benefits such as robustness to 
changes in skin impedance and sweating, and less 
sensitivity to sensor positioning, it faces challenges 
such as sensitivity to unintentional movements and 
external interference. These limitations could be 
addressed through the project of a novel 3D printed 
adapter that achieves a more solid fixation of the 
sensor as well as the study of filtering techniques that 
would be able to cancel the noise induced by these 
sources. 

For the acquisition of physiological signals, we 
used BITalino (r)evolution. This platform is 
distinguished by its ability to integrate a wide diversity 
of sensors as electromyography (EMG), 
electrocardiography (ECG), accelerometer (ACC) and 
many others. 

In the context of this work, the BITalino board was 
used to collect EMG and FMG signals. The EMG 
signals were obtained using two BITalino's own EMG 
sensors. On the other hand, the capture of FMG signals 
required the use of two external FSR 402 sensors, 
which, after a signal conditioning circuit, were 
integrated into BITalino. Table 1 summarizes the main 
technical specifications of BITalino (r)evolution. 

Table 1: BITalino (r)evolution: technical specifications. 

Sampling Rate 1, 10, 100 ou 1000 Hz 
Analog Inputs 4 in (A1-A4, 10-bit) + 2 in (A5-A6, 6-bit) + 1 out (8-bit)  
Digital Inputs 2 in (1-bit) + 2 out (1-bit) 
Connectivity Bluetooth Class II v2.0 (range till 10 m) 

 
Figure 2: Previously stored data file in Opensignals, showing EMG (top) and FMG (bottom) signals for the "hand opening" 
gesture. 
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Table 2: Technical specifications of the EMG sensor. 

Gain 1009

Range ±1.64 mV (com VCC = 3.3 V)

Bandwidth 25-480 Hz 

Power Voltage 2.0-3.5 V 

Input Impedance 7.5 GΩ 

CMRR 86 dB 

As previously mentioned, the monitoring of the 
electrical activity of the flexor and extensor muscle 
groups of the forearm was done using two BITalino 
EMG sensors, specially designed for sEMG 
acquisitions. It is compatible with gel and dry 
electrodes, and offers high-quality data with low 
noise due to its bipolar configuration. The EMG 
sensor is responsible for analog filtering, 
amplification, and A/D conversion of the signal. 
Table 2 presents the technical specifications of 
BITalino's EMG sensor. 

Within the scope of this project, sensors of the 
FSR 402 model were selected. Two of these sensors 
were applied, one for each muscle group under study: 
the flexor and extensor forearm. The choice of FSR 
sensors is justified by their ability to detect variations 
in force from an initial/resting state, rather than 
providing an accurate measurement of the applied 
force. This property is essential for FMG systems in 
gesture recognition, where the goal is not necessarily 
to quantify the exact force being applied, but to 
identify if there is any force being applied and how 
that force changes over time. The FSR 402, in 
particular, was chosen for its active area (14.7 mm 
diameter) and minimum actuation force (0.1 N), 
which were considered suitable for the application in 
question. 

2.2 Data Acquisition 

EMG and FMG signals were collected 
simultaneously from each participant, using the 
BITalino platform with four acquisition channels: 
two for EMG and two for FMG. Data acquisition 
from these four channels is commanded by the 
microcontroller unit of BITalino according to the 
previously defined acquisition rate. One pair of 
EMG/FMG sensors was placed in the extensor 
muscle group of the forearm and the other in the 
flexor muscle group. 

BITalino transmits the data via Bluetooth to a PC, 
where the data that is being acquired it is visualized 
in real-time and stored for further processing using 

OpenSignals software. Participants were instructed to 
perform five gestures: open, close, pinch, point, and 
thumb-up. Each collected data file contains 
approximately ten activations of each gesture. 

The implementation of signal acquisition went 
through the following steps: 

1. For each acquisition session, EMG sensors 
(in bipolar configuration) were positioned in the 
flexor and extensor muscle groups, with a separation 
of approximately 2 cm; 

2. Between the two active electrodes, an FSR 
sensor (on a rigid PVC base) was fixed with an 
adhesive; 

3. A velcro tape was applied to the forearm 
over the two FMG sensors simultaneously to stabilize 
the sensors in place; 

4. Each participant was instructed to perform 
a series of activations of a specific type of gesture, 
with durations and rest intervals between activations 
ranging from 1 to 3 seconds, to ensure the 
representativeness of the data collected. During data 
collection, the participant was asked to remain as 
relaxed as possible between activations and to keep 
the elbow joint still, to minimize the influence of 
residual muscle strains on the collected data; 

5. Each series of activations was recorded in a 
separate file with the name of the gesture performed, 
using the OpenSignals software. The sampling rate 
was 1000 Hz. Figure 3 shows images of signal 
acquisition. 

  
Figure 3: Acquisition of EMG and FMG signals: a) On the 
clasp of the hand; b) Opening the hand. 

2.3 Data Processing 

As illustrated in Figure 4, the EMG and FMG signals 
are then initially acquired by BITalino, where they 
undergo basic preprocessing, which includes 
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amplification and analog filtering as it is the case of a 
low-pass filter to cancel high-frequency noise 
(>500 Hz). 

 
Figure 4: Steps of EMG and FMG signal processing. 

After preprocessing, the data enters the phase of 
extracting the characteristics of the most relevant 
signals for the discrimination of gestures. Previously, 
it is necessary to detect signal onsets and offsets in 
order to identify the periods of muscle activation. 

The signals are then forwarded for offline 
processing in MATLAB. Here, additional denoising 
and bandpass filtering operations are performed to 
maintain only the relevant frequencies. The signal 
offset is also removed. 

Using the MATLAB software, the signals are 
processed and their features are extracted, through a 
set of previously developed routines [1,14]. This set 
comprises a main routine, with the pipeline, along 
with auxiliary functions for onset/offset detection and 
feature extraction from EMG and FMG signals. 

The main routine, implemented in MATLAB, 
performs a series of critical steps in signal processing: 

1. EMG signal filtering: For each text file 
(with EMG and FMG data), the code applies a 
bandpass filter from 20 to 500 Hz to the EMG signals; 

2. Wavelet Denoising: EMG signals go 
through a second stage of noise reduction, this time 
using the wdenoise function of MATLAB's Wavelet 
Toolbox. This technique, which acts in the time-
frequency domain, eliminates random noises that 
could be mistaken for true muscle activity; 

3. Onset and offset detection of muscle 
activity: this is a crucial step. The code uses the 

onsetting function to determine when the muscle 
actually started to contract (onset) and when it 
stopped (offset). The result is time series (vectors) of 
onsets and offsets of muscle contraction. The 
onset/offset function is responsible for identifying the 
moments when the EMG signal demonstrates 
significant activity. The function does this by full-
wave rectification of the signal, applying a moving 
average to calcu-late the test function, and setting a 
threshold for onset detection. If the signal falls be-low 
this threshold, an offset is detected. In addition, the 
function also ensures that the detected activity 
moments have a minimum duration to avoid false 
detections (650 ms); 

4. Corresponding activations: the code looks 
for muscle activations that coin-cide between the 
EMG signals of the two muscle windows (extensor 
and flexor). The onset and offset times of the FMG 
signals are given by the values saved for the 
corresponding EMG signals. The tolerance for 
coincidence is given by the value of the constant 
tolerance_window, and has been maintained at 500 
ms. Figure 5 shows an example of the signals 
acquired with the detection of the onsets and offsets 
of each muscle activation.; 

5. Feature extraction: For each muscle 
activation that matches, the code extracts a set of 
features from both the EMG and FMG signals. 
Features are measures that provide a deeper 
understanding of the signals, which would otherwise 
be very difficult to interpret. 
The extract_emg_features and extract_fmg_features 
functions were used to extract characteristics from the 
EMG and FMG signals, respectively. These functions 
compute a set of characteristics, both in the time and 
frequency domains (in the case of EMG), for each 
instance of a gesture. In total, thirty-six characteristics 
were extracted, twelve EMG and six FMG for each 
muscle group. 

Finally, each feature vector is labeled with the 
corresponding gesture (which appears in the data file 
name) and the data is prepared for classification. This 
data is then used to train a classification model, which 
identifies gestures based on the characteristics 
extracted from the signals (Pires, 2023). 

3 RESULTS 

The preliminary results of this study show significant 
improvement of efficacy on gesture recognition using 
a bimodal EMG/FMG acquisition system. This is 
accomplished from a detailed study of the application 
of different machine learning models. 
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Figure 5: Example of FMG raw-signals and EMG raw and pre-processed signals. Green and red vertical lines shown are, 
respectively, the onset and offset time for each muscle activation. 

3.1 Dataset 

In this study, three healthy individuals participated, 
and the dataset was formed from the thirty-six 
characteristics of the EMG and FMG signals 
extracted from each activation, in each of the files 
corresponding to each of the five gestures. 
In total, seventy data files suitable for the following 
stages of the study were recorded, distributed as 
follows: hand opening (14), hand closing (16), pinch 
(11), thumbs-up (16) and pointing (15). These files 
were selected after discarding others due to 
acquisition problems, such as excessive noise, and 
incorrect positioning and/or improper fixation of the 
sensors. 
Figure 6.(a) shows the dataset for each gesture, while 
Figure 6.(b) shows how the total of thirty-six features 
extracted from each activation are distributed. In fact 
the amount of signal characteristics extracted from 
extensor and flexor muscles is equal. 
However, of these eighteen characteristics, only six 
are extracted from the FMG signal. Of these six 
characteristics, only two are different from those 
extracted from the EMG signal. In Figure 6.(c) all the 
characteristics are presented, showing whether they 
are common to both signals or from only one of the 
signals, through the use of different colors.  
It is also possible to observe that there are only three 
characteristics (Mean Frequency, Peak Frequency 
and Mean Power Spectral Frequency), and only from 
EMG signal, that are frequency domain being all the 

rest time domain, which are usually preferred in 
sEMG based pattern recognition as they are easy and 
quick to calculate since they are based on the 
amplitude of the EMG signal (Christopher et al., 
2018) 
The collected data from the EMG and FMG signals 
of each muscle group, that consists on the relevant 
characteristics that were extracted, is used as input for 
the training of the Machine Learning models, through 
MATLAB's Classification Learner, in order to predict 
the execution of each gesture. 

3.2 Feature Selection 

The preliminary results of this study show 
significant advances in the development of the 
gesture recognition system. In a first phase, a 
preliminary comparison of the thirty-three available 
classification models was made, using accuracy (or 
"effectiveness") as the main metric. In this study, 
these thirty-three classification models were trained 
and evaluated, using the built-in algorithms of the 
MATLAB Classification Learner tool. The 
techniques applied ranged from more linear 
approaches, such as Quadratic Discriminant, to more 
sophisticated methods, including SVMs and Neural 
Network architectures. From these study six 
classification models can be highlighted: Linear 
Discriminant, Quadratic SVM, Cubic SVM and three 
Neural Network architectures (Narrow, Medium  
and Wide). These models were trained with different  
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Figure 6: (a) Dataset for each gesture. (b) Distribution of the amount of features extracted per muscle and per sensor type. (c) 
4 features are extracted from FMG and EMG signals simultaneously (green), 8 features from EMG signal (red) and 2 features 
from FMG signal (black). 

 
Figure 7: Confusion matrices for the Wide Neural Network model. (a) validation (b) test. 

feature selection methods - ANOVA, ReliefF and 
Kruskal Wallis - and varying the percentage of 
selected features (75, 50 or 25%). standing out with 
100% of the features, achieving validation and test 
accuracies of 91.7% and 93.8%, respectively. On the 
other hand, the classifiers based on neural networks 
showed a greater variability in their results, indicating 
a sensitivity to the selection of features. In particular, 
the wide neural network showed excellent 
performance without feature selection, achieving 
validation and testing accuracies of 95.1% and 
93.8%, respectively. 

Figure 7 shows the confusion matrices for an 
example of the trained models (Wide Neural 
Network), to show that these matrices help to 
understand how each model handles the different 
classes and provide a visual understanding of the 
models' performances. 
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Table 3: Comparison of the accuracy of the classifiers between the use of all data, EMG only and FMG only. 

Classifier Model Validation 
(EMG +FMG) 

Test (EMG 
+FMG) 

Validation 
(EMG) 

Test 
(EMG) 

Validation 
(FMG) 

Test 
(FMG) 

Linear Discriminant 74,07 75,46 62,96 64,35 50,69 53,24 
Quadratic SVM 89,35 87,96 79,28 75 65,16 68,06 
Cubic SVM 89,24 87,96 79,4 79,63 70,49 70,37 
Narrow NN 79,51 78,7 73,96 74,54 63,19 68,52 
Medium NN 85,07 81,02 74,54 75 59,49 60,19 
Wide NN 88,43 82,41 78,47 79,17 67,25 68,06 

 
3.3 Bimodal vs EMG vs FMS Efficacy  

In this section, we explore the impact of combining 
EMG and FMG characteristics on the performance of 
classifiers. To this end, the bimodal approach was 
contrasted with the more common practice that uses 
exclusively EMG characteristics. Table 3 details the 
performance of the six classifiers indicated above, 
when they use all characteristics, only EMG 
characteristics and only FMG characteristics. 

4 DISCUSSION 

This paper presents preliminary results of the 
implementation of a bimodal sys-tem with EMG and 
FMG sensors in which two EMG+FMG pairs are 
placed in the flexor and extensor muscles. A total of 
thirty-six characteristics of these two acquired signals 
were used for three healthy individuals, and the 
dataset consisted of five different gestures. The main 
objective of this study is to evaluate the benefit, in 
terms of efficacy in the recognition of the gestures 
performed, that is obtained by the acquisition of the 
FMG signal simultaneously with the EMG signal, 
because this signal when used in isolation has some 
limitations that result, for example, from variations in 
the impedance of the skin interface. 
MATLAB's Classification Learner was used, thirty-
one classifiers were applied and a study was also 
made on the possibility of reducing the number of 
characteristics, which will be an important point to 
reduce the processing time and consequently the 
response time of the bionic hand in the execution of  
gestures. For this, three different methods of selection 
of the characteristics were used, with different 
percentages (75%, 50% and 25%) of the total of 
thirty-six characteristics. 

The preliminary results presented focus on the 
most used metric which is accuracy but the results are 
also being analyzed with other metrics, namely, F-

score and the area under the ROC curve. It is possible 
to verify how different classifiers have very different 
behaviors, with those that are more effective but more 
sensitive to the reduction of the number of 
characteristics and others that are more immune to 
this selection of characteristics. 

Although this evaluation of the bimodal system is 
still ongoing, the results presented here reinforce the 
idea, supported by previous research, that the 
combination of EMG and FMG allows to improve the 
efficiency of machine learning models in gesture 
recognition. So, as ultimate conclusion, this study 
contributes to the field of myoelectric prostheses by 
exploring the implementation and testing the 
efficiency of a bimodal EMG/FMG signal acquisition 
system for the control of a bionic hand. 
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