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Integrating quantum computing (QC) into machine learning (ML) holds the promise of revolutionizing com-
putational efficiency and accuracy across diverse applications. Quantum Tensor Networks (QTNs), an ad-
vanced framework combining the principles of tensor networks with quantum computation, offer substantial
advantages in representing and processing high-dimensional quantum states. This systematic literature review
explores the role and impact of QTNs in ML, focusing on their potential to accelerate computations, enhance
generalization capabilities, and manage complex datasets. By analyzing 23 studies from 2013 to 2024, we
summarize key advancements, challenges, and practical applications of QTNs in quantum machine learning
(QML). Results indicate that QTNs can significantly reduce computational resource demands by compressing
high-dimensional data, enhance robustness against noise, and optimize quantum circuits, achieving up to a 10-
million-fold speedup in specific scenarios. Additionally, QTNs demonstrate strong generalization capabilities,
achieving high classification accuracy (up to 0.95) with fewer parameters and training data. These findings
position QTN as a transformative tool in QML, bridging critical limitations in current quantum hardware and

enabling real-world applications.

1 INTRODUCTION

Quantum computing (QC) is a groundbreaking com-
putational paradigm that leverages the principles of
quantum mechanics to process information. Its fun-
damental unit, the qubit, can exist in a superposition
of states, representing both 0 and 1 simultaneously.
This property allows quantum computers to encode
and manipulate significantly more information with
fewer units compared to classical systems. One of
QC’s most promising applications lies in accelerat-
ing the processing of large datasets and complex al-
gorithms, particularly in machine learning (ML). The
integration of quantum computing and ML, known as
quantum machine learning (QML), has the potential
to revolutionize fields such as pattern recognition, op-
timization, and data analysis (Tychola et al., 2023).
By utilizing quantum algorithms, QML aims to en-
hance the efficiency and accuracy of tasks like clas-
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sification and regression, paving the way for trans-
formative advancements in data-driven technologies
(Tychola et al., 2023) (Manjunath et al., 2023).

Tensor Networks (TNs) are versatile mathemati-
cal frameworks widely used in physics and computer
science to model and analyze complex systems, such
as quantum many-body systems and neural networks
(Azad, 2024). A tensor network is composed of inter-
connected tensors and multi-dimensional arrays that
encode numerical data (Azad, 2024). Each tensor cor-
responds to a specific component or site within the
system, representing its states and capturing all pos-
sible configurations or conditions of that component
(Biamonte and Bergholm, 2017b).

This structured representation significantly sim-
plifies computational challenges by reducing the com-
plexity of operations such as evaluating the partition
function, a key measure summarizing the energy con-
figurations of a system in thermal equilibrium (Liu
et al., 2021). TNs are particularly well-suited for sys-
tems with numerous degrees of freedom, where tra-
ditional methods often struggle with scalability and
efficiency (Kardashin et al., 2021).
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Quantum Tensor Networks (QTNs) extend classi-
cal tensor networks, enabling the efficient representa-
tion and manipulation of high-dimensional quantum
states (Rieser et al., 2023) (Hou et al., 2024). They
offer a robust framework for compressing and simpli-
fying large quantum systems, a capability that is es-
sential for managing the complexity inherent in quan-
tum computations (Biamonte and Bergholm, 2017a)
(Azad, 2024) (Liu et al., 2021).

Additionally, quantum computers operate within
the Noisy Intermediate-Scale Quantum (NISQ) era,
which is defined by significant hardware constraints
such as environmental noise, imperfect quantum
gates, and limited qubit availability. QTNs provide
a pathway to address these challenges by optimizing
quantum state representations, minimizing computa-
tional resource demands, and enhancing quantum er-
ror correction techniques. These advances facilitate
more efficient utilization of the constrained resources
available in NISQ-era quantum hardware.

In the context of quantum machine learning
(QML), QTNs present promising solutions to founda-
tional challenges, including reducing representation
complexity for quantum systems and efficiently han-
dling large datasets. By leveraging QTNs, researchers
aim to enhance scalability and computational effi-
ciency, overcoming critical limitations in quantum
computing performance while unlocking new oppor-
tunities for advancements in machine learning appli-
cations (Biamonte and Bergholm, 2017a) (Liu et al.,
2021). Consequently, developing QTNs represents a
pivotal step in integrating quantum computing (QC)
with machine learning (ML), fostering progress at the
intersection of these transformative fields.

Despite its potential, there is a lack of understand-
ing of QTNs practical applications due to its recent
emergence, which demands a proper systematic liter-
ature review (SLR) to explore its benefits and poten-
tial uses. This review might reveal effective meth-
ods, address challenges, and highlight progress in
quantum computing, offering valuable insights for
researchers aiming to fully harness QTNs potential
(Guala et al., 2023).

As far as we know, there is no SLR on Quantum
Tensor Networks and their applications in Quantum
Machine Learning. This paper aims to fill this gap by
investigating and summarizing the main applications
and challenges of QTN. By doing so, we seek to pro-
vide a clearer understanding of the potential of QTN
in QML and guide future research in this emerging
field. This paper is organized as follows: Section 2
details the definition of Tensor Networks, QTN, and
QML; Section 3 summarizes the SRL steps; Sec-
tion 4 describes the key observations obtained from
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the SRL and finally Section 5 brings this research
main conclusion and the necessary future steps.

2 BACKGROUND

2.1 Tensor Networks

Tensor Networks (TN) operate using tensors, an ex-
tension of traditional data structures like matrices
and vectors (Bridgeman and Chubb, 2016) (Bafiuls,
2023), representing systems through interconnected
smaller tensors (nodes) connected by edges (Sen-
gupta et al., 2022). This structure allows TN to ef-
fectively represent multidimensional real-world data,
making them suitable for modeling complex phenom-
ena across various disciplines (Cores et al., 2024).
Additionally, TNs excel in handling structured and
hierarchical data, providing comprehensive, contex-
tual representations that reveal complex patterns and
subtle interactions between variables (Cores et al.,
2024), making them invaluable for solving computa-
tional challenges across different research fields.

There are various types of TNs, but three are es-
pecially important: Matrix Product States (MPS),
the most famous example of TN states due to its
underlying powerful methods for simulating many-
body quantum systems in one dimension, such as the
Density Matrix Renormalization Group (DMRG) al-
gorithm. (Orus, 2014); Projected Entangled Pair
States (PEPS) it’s defined by a network of three-
dimensional tensors similar to the MPS network,
but with the addition of a set of binding tensors
that connect them (Ords, 2014). PEPS is used
for two-dimensional systems, which extends the ef-
ficiency and power of MPS to higher-dimensional
quantum systems and is, therefore, relevant for
describing complex physical phenomena; and fi-
nally The Multi-scale Entanglement Renormaliza-
tion Ansatz (MERA), a tensor network framework
designed to represent strongly correlated quantum
many-body states efficiently. MERA uses a hierar-
chical organization of tensors to capture entanglement
across multiple scales, making it especially useful for
simulating quantum field theories. It has also been
adapted for computational methods like variational
Monte Carlo and applications in QML (Rieser et al.,
2023) (Bhatia and Kumar, 2018).

Apart from these types, Tree Tensor Network
(TTN), is especially relevant for this SLR because
it is a hierarchical model used to efficiently repre-
sent quantum states by decomposing them into a tree-
like structure of tensors. Each tensor in the net-
work represents a local part of the quantum state, and



Applying Quantum Tensor Networks in Machine Learning: A Systematic Literature Review

the connectivity between tensors reflects the correla-
tions between those parts. This structure allows for
the efficient representation and manipulation of high-
dimensional quantum states, particularly in systems
with strong local correlations (Rieser et al., 2023).
The structure of these TNs is detailed in Figure 1.

(0] MPS (i) PEPS
(iiiy TIN (iv) 1-D Binary MERA

Figure 1: Types of TN (Bhatia and Kumar, 2018)).

2.2 Quantum Tensor Networks

Quantum Tensor Networks (QTNs) are an extension
of classical tensor networks, specifically designed for
quantum systems, enabling efficient representation
and manipulation of complex quantum states (Bia-
monte and Bergholm, 2017a). They play a significant
role in developing algorithms for small-scale quan-
tum computers, especially those with limited qubit re-
sources. Furthermore, while QTNs are not inherently
resistant to noise, they provide a powerful framework
that can be integrated with quantum error correction
methods, which are crucial in the NISQ era, where
quantum hardware is prone to noise and limited qubit
coherence.

One key feature of QTNs is their ability to rep-
resent quantum circuits, where each qubit and quan-
tum gate operation is associated with a specific tensor,
with the tensor network capturing the interactions and
entanglement between qubits. This allows the tempo-
ral evolution of a quantum system governed by quan-
tum gates to be effectively expressed within a QTN
framework. Figure 2 illustrates how quantum circuits
and QTNs are closely related, providing a clear map-
ping between the two concepts.
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Figure 2: Quantum circuit based on QTN (Guala et al.,
2023)).

Popular examples of QTN include Quantum Ma-
trix Product States (QMPS) (Adhikary et al., 2021),
which is a compact representation of often intractable
wave functions of complex quantum systems, such as
Quantum Tensor Train Networks. It is designed for
efficiently describing two-dimensional systems; and
Quantum Multi-scale Entanglement Renormaliza-
tion Ansatz (QMERA), a more general approach that
represents quantum systems with multiple entangle-
ment scales. These QTN approaches have become
essential tools for simulating quantum systems, opti-
mizing quantum algorithms, and exploring the struc-
ture of quantum states, underscoring their value in ad-
vancing the field of quantum computation.

2.3 Quantum Machine Learning

Quantum Machine Learning (QML) is a research field
that integrates quantum computing principles with
machine learning techniques to tackle computational
challenges more efficiently. Quantum computing uti-
lizes phenomena like superposition and entanglement
to process and store information in fundamentally
novel ways. By leveraging these quantum proper-
ties, QML aims to enhance tasks such as classifi-
cation, regression, clustering, and optimization, par-
ticularly in scenarios involving large and complex
datasets (Huang et al., 2021a).

3 METHODOLOGY

This research employs a systematic literature review
(SLR) approach to investigate the state of the art in
quantum computing (QC), QTN, and QML. Follow-
ing the guidelines proposed by Xiao and Watson in
(Xiao and Watson, 2019), this review addresses spe-
cific research questions through a documented and
reproducible process, emphasizing methodological
rigor in data collection and synthesis stages. The hy-
pothesis "The incorporation of Quantum Tensor Net-
works into Quantum Machine Learning algorithms
has the potential to bring about significant advances
in terms of computational speed, generalization ca-
pability, and efficient handling of complex data." was
developed to address the following research question:

e Can Quantum Tensor Networks (QTN) demon-
strate tangible benefits in Quantum Machine
Learning (QML) applications?

Table 1 describes the databases explored, the
search string developed, and the number of papers ob-
tained in each SRL stage (from the initial search to the
selected papers). This search focused on databases
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highly impacting scientific research, quantum tech-
nologies, and gray literature. Initially, the search
string focused only on the work’s abstract and title.
To refine the results, only articles written in English
were considered, as English is a widely accepted uni-
versal language for research. Additionally, we lim-
ited the search scope to studies published since 2013
to ensure we included the most current technologies,
approaches, and solutions in the field. The search
was concluded on August 17th, 2024, so articles pub-
lished after this date were not considered, aligning
with the deadlines for writing and submitting this ma-
terial. This initial search returned 7967 documents.

Table 1: Details on the databases and search string used in
the SRL.

DATABASES

- Google Scholar

- IEEE Xplore

- DOAJ

- SpringerLink

- IOPscience

- MDPI

- ScienceDirect

- Annual Reviews

- Pennylane

- Quantinuum
ABS(("Abstract":"Quantum|
Computing” OR "Ab-
stract":"Quantum Ten-
sor Networks") AND
("Abstract":"Quantum
Machine Learn-
ing" AND ("Ab-
stract":"computational
speed" OR "Ab-
stract":"generalization
capability” OR  "Ab-
stract":"handling of
complex data")))

Initial Search 7967

FILTER I 346

FILTER 11 121

FILTER III 72

Selected Documents | 23

SEARCH STRING

Inclusion and exclusion criteria for the document
search were established to ensure the relevance and
quality of the selected studies. Both criteria were ap-
plied with a detailed explanation of their meaning dur-
ing the selection process, clearly specifying the ac-
ceptance and rejection factors. This strategy aims to
enhance transparency and reduce subjectivity in each
filter. For this search, three stages were defined to
gradually filter the most relevant work for the SLR,
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each requiring different reading depths. Details are
described as follows:

FILTER I: TITTLE - Aim to filter Academic
Studies on Quantum Computing in Machine Learning
or Tensor Networks by their titles.

* Includes: Studies specifically discussing Quan-
tum Tensor Networks (QTNs) and their appli-
cation in Quantum Machine Learning tasks like
classification and regression.

* Excludes:
Studies unrelated to quantum computing, quan-
tum tensor networks or quantum machine learn-
ing, studies not focused on the specified tasks, or
those focusing solely on classical applications.

After applying this filter, the number of works was
reduced from 7,967 to 346.

FILTER II: ABSTRACT - Aims to filter Aca-
demic Studies on Quantum Computing in Machine
Learning or Tensor Networks or Tensor Networks by
their abstract.

* Includes: Research papers, reviews, theses, and
articles discussing integrating quantum comput-
ing techniques and tensor networks into Quantum
Machine learning algorithms.

e Excludes: Studies that do not address quantum
computing, machine learning, tensor networks, or
their combination.

By narrowing the selection to studies that discuss
integrating quantum computing techniques into ma-
chine learning algorithms, the number of documents
was further reduced from 346 to 121.

Filter III: TEXT Aims to filter Academic Stud-
ies on Quantum Computing in Machine Learning or
Tensor Networks by reading the complete text.

* Includes: Full-text articles, papers, and reports
accessible for review.

* Excludes: Texts that are inaccessible or require
special permissions for access.

Finally, the selection was limited to full-text arti-
cles and reports accessible for review, resulting in 72
documents.

The number of returned documents was observed
to ensure the validity of the systematic review. Ulti-
mately, 23 articles were selected for the analysis after
thoroughly reviewing the 72 filtered articles, elimi-
nating those that did not directly answer the research
question. We focused on papers that implemented
and tested QTN in different scenarios, clearly show-
ing through experiments and comparative analysis the
many benefits of QTN in QML.

While there is no strict rule, more than 30% of
the filtered articles are often considered adequate for
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comprehensive analysis in such reviews, indicating a
robust selection process. This quantity not only en-
hances the reliability of the review but also supports
the overall quality of the findings.

Data extraction is the final step following the
search and filtering stages. It involves extracting
the necessary information about computational speed,
generalization capability, and complex data handling
through detailed reading to validate or refute the hy-
potheses. The extracted information is organized into
topics related to the inclusion criteria as shown in Ta-
ble 2. The purpose of this list is to ensure that all
relevant aspects are covered and to facilitate analysis.

To address the research question guiding this SLR,
we seek specific insights from the analyzed papers.
The exploration of QML application areas focuses on
identifying domains such as supervised learning or
classification, enabling a comprehensive understand-
ing of QML’s practical scope. Algorithm performance
is assessed using metrics like accuracy and reliability
to evaluate the effectiveness of QML models and pin-
point areas for improvement.

A critical aspect of the analysis is computational
speed, which examines the time efficiency of QML
algorithms compared to classical counterparts, high-
lighting a core advantage of QTNs. The generaliza-
tion capacity of QML models, reflecting their ability
to reliably perform on unseen data, is another key fac-
tor, as it determines scalability and suitability for real-
world deployment.

Efficiency in handling complex data is also evalu-
ated, emphasizing QML’s capability to process large,
high-dimensional datasets—a domain where QTNs
could offer substantial benefits. The resource de-
mands for model training are examined to understand
the feasibility of implementing QML compared to
classical methods. Lastly, post-implementation ben-
efits assess practical experimentations, demonstrating
how QML solutions can deliver meaningful outcomes
such as improved decision-making or cost reductions,
ultimately showcasing the practical value of incorpo-
rating QTN.

4 RESULTS AND DISCUSSIONS

In this section, we discuss the main findings of the
SLR. As mentioned, after applying inclusion and ex-
clusion criteria and reading the papers completely, 23
studies were selected due to their relevance to answer-
ing the research question. In the following sections,
we highlight the observed advantages of QTN in ef-
ficiently dealing with high-level data and enhancing
QML performance, as well as the current applications

Table 2: Key information analyzed during data extraction.

Areas explored in | Focuses on the specific
QML domains (e.g., supervised
learning, classification)
where QML is applied,
providing insights into its
broader applications.

Algorithm perfor- | Evaluates the effectiveness

mance of QML algorithms through
metrics like accuracy and
reliability, revealing their
strengths and limitations.

Computational Assesses the time efficiency

Speed of QML algorithms, espe-

cially compared to classical
methods, to determine com-
putational advantages.

Generalization Ca-
pacity

Examines how well QML
models adapt to new data,
which is essential for practi-
cal application and reliabil-

1ty.

Efficiency in Han- | Looks at QML’s ability
dling Complex | to process large or high-
Data dimensional datasets, a
significant advantage over
classical approaches.

Post- Analyzes the advantages of
implementation QML in practical exper-
benefits imentations, such as im-
proved decision-making and
cost savings, supporting its
practical value

of these networks.

4.1 QTN Advantages

QTN is particularly beneficial in QML because it
can compress high-dimensional data, significantly
reducing the computational and memory resources
needed to represent and manipulate large datasets.
Studies by (Araz and Spannowsky, 2022) (Ords,
2019) (Rieser et al., 2023) (Huggins et al., 2019)
highlight how QTNs offer efficient data compres-
sion techniques that significantly reduce memory and
computational requirements and excel at represent-
ing and manipulating high-dimensional datasets while
maintaining computational feasibility. For example,
(Huggins et al., 2019) indicates that using QTNs for
processing data like an 8 x 8 pixel image for hand-
writing recognition tasks can allow the number of
physical qubits needed to scale logarithmically with
the size of the processed data, whereas previously it
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scaled linearly.

In addition to enhancing the representational ef-
ficiency of high-dimensional data, QTNs also help
overcome other issues, such as barren plateaus, by
employing local loss functions, which optimize the
training landscape (Rieser et al., 2023). For exam-
ple, in a scenario where a classical model faced a bar-
ren plateau, the loss function showed minimal gra-
dient updates, leading to stagnation in training with
a plateau observed at a loss value of 0.3. However,
applying QTN with local loss functions did not en-
counter the same plateau effect, resulting in a more fa-
vorable training landscape and achieving a loss value
improving down to 0.15 (Rieser et al., 2023).

Moreover, QTNs offer significant advantages in
simulating large-scale quantum circuits. Unlike
traditional state vector methods, which scale expo-
nentially with the number of qubits, QTNs leverage
tensor contractions that are optimized through rear-
ranged contraction sequences, thereby reducing mem-
ory requirements and computational costs (Lykov,
2024). For example, applying a diagonal representa-
tion of quantum gates decreased tensor network con-
traction’s complexity by one to four orders of magni-
tude. By optimizing the conversion of the QAOA cir-
cuit into a tensor network and using techniques like
the greedy algorithm from the QTensor package, cal-
culating a single amplitude of the QAOA ansatz state
had a significant improvement in terms of computa-
tional speed, achieving a speedup of up to 10 million
times. This optimization allowed for the simulation of
larger QAOA circuits, increasing the number of qubits
from 180 to 244 on a supercomputer (Lykov, 2024).

Another significant advantage of QTNs in QML
is their ability to effectively model effectively
model complex quantum correlations, a feature
that enables improved generalization in QML models
(Rieser et al., 2023). QTNs achieve this balance be-
tween complexity and tractability through adjustable
bond dimensions, which define the maximum number
of states that can be represented at the interfaces be-
tween tensors. These bond dimensions determine the
network’s capacity to represent quantum states while
influencing the structure and variety of the tensor net-
work (Bernardi et al., 2022). By tuning these param-
eters, QTNs mitigate risks associated with complex
datasets, such as overfitting (Huggins et al., 2019).

As demonstrated in studies by Rieser, Koster, and
Raulf (Rieser et al., 2023), QTNs not only enhance
generalization to unseen data but also provide ro-
bustness against noise — a critical challenge in quan-
tum computing. For instance, research in (Rieser
et al., 2023) and (Huggins et al., 2019) highlights
how QTNs enable higher accuracy with less training
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data: with the MNIST dataset and the model used
for digit classification, the accuracy was 0.88 using
the full dataset of 60,000 images. However, apply-
ing the model with QTN, the accuracy was reduced
to approximately 0.806, still an high value, but with
the dataset size reduced to 20%, all while demon-
strating resilience to noise. Furthermore, the hierar-
chical structure of QTNss facilitates the representation
of weight parameters in machine learning algorithms,
making them a powerful and efficient tool for process-
ing and analyzing complex datasets (Huggins et al.,
2019). Moreover, (Rieser et al., 2023) indicated that
QTN classifiers can achieve high classification ac-
curacies ranging from 0.85 to 0.95 while utilizing a
limited number of parameters and internal qubits and
suggests that the structured nature of QTNs may fa-
cilitate easier training through local optimization rou-
tines QTNs can efficiently capture relevant patterns in
data with a reduced amount of training data required.

4.2 QTN Applications

QTNs are primarily applied in QML for quantum
classification and feature extraction tasks. The work
in (Araz and Spannowsky, 2022) evaluated the per-
formance of Classical Tensor Networks (TN) and
their quantum counterparts (QTN) in classifying sim-
ulated Large Hadron Collider (LHC) data, focus-
ing on top jet discrimination against the QCD back-
ground. The results demonstrated that QML mod-
els combined with QTNs outperformed classical TN-
based approaches. For instance, classical TNs re-
quired significantly more parameters— up to 64,800
in some configurations — to achieve competitive per-
formance. At the same time, QTNs attained superior
AUC values (e.g., 0.914 for Q-MERA) with as few
as 17 parameters. Moreover, QTNs achieved this ef-
ficiency using only 10,000 training events, compared
to 50,000 events required by classical TNs (Araz and
Spannowsky, 2022). These findings underscore the
advantages of QML models leveraging QTNs in terms
of parameter efficiency and performance, particularly
in high-energy physics applications (Araz and Span-
nowsky, 2022).

Variational Quantum Tensor Networks (VQTN)
are designed to operate effectively on near-term quan-
tum processors (Huang et al., 2021b). The VQTN
classifier excels in tasks like classification by com-
bining quantum and classical processing. While tra-
ditional QML algorithms like quantum principal com-
ponent analysis or quantum linear regression lever-
age quantum properties solely for speed, the VQTN’s
hybrid model incorporates a classical neural network
for processing output from quantum tensor networks.
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Additionally, the algorithm employs kernel encoding,
circuit models, multiple readouts, and stochastic gra-
dient descent to reduce quantum circuit complexity
and improve performance.

Experimental results demonstrate that VQTN re-
duces the number of qubits needed while achieving
higher accuracy rates than the traditional QTN algo-
rithm. Tested on Iris and MNIST datasets, using TTN
models in its architecture, VQTN uses half the num-
ber of qubits compared to QTN while maintaining
an average accuracy of 93.72%. Compared with the
QTN algorithm, the accuracy is improved by 7.71%
(Huang et al., 2021b). Thus, VQTN serves as a bridge
that effectively enhances computational speed and ca-
pacity for complex data analysis, which may not be
achievable with isolated QML algorithms.

Another notable application of QTNs lies in Nat-
ural Language Processing (NLP). Researchers at
Quantinuum achieved a significant breakthrough by
successfully running scalable quantum natural lan-
guage processing (QNLP) models on quantum hard-
ware (Quantinuum, 2024). Their tensor-network-
based approach incorporates syntax awareness into
the models, offering enhanced interpretability while
reducing the number of parameters and gate oper-
ations required. Experimental results indicate that
QNLP models running on current quantum devices
achieve prediction accuracy comparable to neural-
network-based classifiers, demonstrating the practical
viability of these models (Quantinuum, 2024).

The experiments further utilized advanced mod-
els, including the unitary structured tensor network
(uSTN) and the relaxed, structured tensor network
(rSTN), both of which delivered strong performance
across various NLP tasks (Quantinuum, 2024). No-
tably, the implementation of qubit reuse strategies en-
abled the compression of a 64-qubit uCTN circuit into
an 11-qubit circuit, significantly optimizing resource
usage. This efficient utilization of quantum hardware
underscores the potential of tensor network models
to enable sequence classification tasks on near-term
quantum devices, paving the way for more resource-
efficient and scalable quantum NLP applications.

A novel approach has been developed for embed-
ding continuous variables into quantum circuits using
piecewise polynomial features. This method, called
Piecewise Polynomial Tensor Network Quantum Fea-
ture Encoding (PPTNQFE), aims to enhance the ca-
pabilities of QML models by integrating continuous
variables into quantum circuits (Ali and Kabel, 2024).
This method leverages low-rank TN to create spatially
localized representations, making it particularly suit-
able for numerical applications like partial differential
equations (PDEs) and function regression.

The efficacy of PPTNQFE is demonstrated
through two applications in one-dimensional scenar-
ios (Ali and Kabel, 2024). Firstly, it enables ef-
ficient point evaluations of discretized solutions to
PDE:s; specifically, compared to traditional rotation-
based encoding methods, which can require expo-
nential resources for representing similar data, PPT-
NQFE significantly reduces complexity by leverag-
ing tensor networks, thus improving the efficiency of
quantum algorithms in PDE solving. A second ap-
plication is in function regression tasks, particularly
for modeling localized features like jump discontinu-
ities. Conventional approaches often struggle with pe-
riodicity and noise sensitivity, leading to inaccurate
approximations. In jump function tests, PPTNQFE
provided more accurate approximations using fewer
parameters, simplifying training and deployment pro-
cesses (Ali and Kabel, 2024).

S CONCLUSIONS

This paper presented an SRL on the use of QTNs
in QML. The primary objective was to address the
research question: Can Quantum Tensor Networks
demonstrate tangible benefits in quantum machine
learning applications? Through a comprehensive
analysis of 23 selected studies, we validated the hy-
pothesis that QTNs significantly enhance machine
learning by leveraging the unique capabilities of
quantum computing.

The findings reveal that QTNs offer several key
advantages in QML. Firstly, they excel in compress-
ing high-dimensional data, which significantly re-
duces computational and memory requirements. This
capability is particularly beneficial for handling large
datasets, enabling more efficient processing and stor-
age. Secondly, QTNs enhance computational speed,
achieving up to a 10-million-fold speedup in specific
scenarios, such as simulating large-scale quantum cir-
cuits. Thirdly, QTNs improve the generalization ca-
pabilities of QML models, allowing them to perform
reliably on unseen data with fewer parameters and
less training data.

Moreover, QTNs have shown promise in model-
ing complex quantum correlations, which enhances
their ability to capture patterns in data. This feature,
combined with their hierarchical structure, makes
QTNs a powerful tool for tasks such as classification,
feature extraction, and NLP. Applications in high-
energy physics, variational QTNs, and QNLP have
demonstrated the practical viability of QTNs, show-
casing their potential to outperform classical methods
in terms of parameter efficiency and accuracy.
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Despite these advancements, several challenges
remain. The implementation of QTNs on near-term
quantum devices requires further optimization to ad-
dress hardware constraints, such as limited qubit co-
herence and noise. Additionally, more systematic
benchmarking against classical and QML approaches
is needed to fully understand the trade-offs and ad-
vantages of QTNs.

In conclusion, the incorporation of QTNs into
QML has the potential to drive significant advance-
ments in computational efficiency, generalization, and
data handling. Continued development and explo-
ration of QTNs will not only advance the field of
quantum machine learning but also contribute to the
broader landscape of computational science, paving
the way for transformative quantum technologies.
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